Skip to main content
Erschienen in: BMC Pulmonary Medicine 1/2014

Open Access 01.12.2014 | Research article

Serum heat shock protein 47 levels are elevated in acute interstitial pneumonia

verfasst von: Tomoyuki Kakugawa, Shin-ichi Yokota, Yuji Ishimatsu, Tomayoshi Hayashi, Shota Nakashima, Shintaro Hara, Noriho Sakamoto, Hiroshi Kubota, Mariko Mine, Yasuhiro Matsuoka, Hiroshi Mukae, Kazuhiro Nagata, Shigeru Kohno

Erschienen in: BMC Pulmonary Medicine | Ausgabe 1/2014

Abstract

Background

Heat shock protein (HSP) 47, a collagen-specific molecular chaperone, is involved in the processing and/or secretion of procollagen. We hypothesized that HSP47 could be a useful marker for fibrotic lung disease. The aim of this study was to evaluate serum levels of HSP47 in patients with various idiopathic interstitial pneumonias (IIPs).

Methods

Subjects comprised 9 patients with acute interstitial pneumonia (AIP), 12 with cryptogenic organizing pneumonia (COP), 16 with nonspecific interstitial pneumonia (NSIP), 19 with idiopathic pulmonary fibrosis (IPF), and 19 healthy adult volunteers.

Results

Patients with AIP had serum HSP47 levels that were significantly higher than those of COP, NSIP or IPF patients and those of healthy volunteers. In contrast, serum levels of HSP47 among patients with COP, NSIP, IPF, and healthy volunteers did not differ significantly. Receiver operating characteristic curves revealed that the cut-off level for HSP47 that resulted in the highest diagnostic accuracy for discriminating between AIP and COP, NSIP, IPF, and healthy controls was 859.3 pg/mL. The sensitivity, specificity, and diagnostic accuracy were 100.0%, 98.5%, and 98.7%, respectively.

Conclusion

The present results demonstrate that, among patients with various IIPs, serum levels of HSP47 were elevated specifically in patients with AIP.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2466-14-48) contains supplementary material, which is available to authorized users.

Competing interests

T. Kakugawa received a research grant from Takeda Science Foundation and the Kato Memorial Trust for Nambyo Research. T. Kakugawa and S. Yokota have a patent application pending for research related to this manuscript.

Authors’ contributions

TK made substantial contributions to the study conception and design. TK, NS, SH, SN and YI were involved in collecting clinical samples. SY made a substantial contribution to the determination of serum levels of HSP47 by ELISA. HK and YM made substantial contributions to the preparation of recombinant HSP47 protein. TK made a substantial contribution to the immunohistochemistry. TK and TH made pathological assessments. TK and MM were involved in statistical analysis. TK was involved in drafting the article. SY, YI, NS, HM, KN and SK were involved in revising the article critically for important intellectual content. All authors read and approved the final manuscript.
Abkürzungen
IIPs
Idiopathic interstitial pneumonias
SP
Surfactant protein
KL-6
Krebs von den Lungen-6
HSP
Heat shock protein
IPF
Idiopathic pulmonary fibrosis
NSIP
Nonspecific interstitial pneumonia
DAD
Diffuse alveolar damage
UIP
Usual interstitial pneumonia
AIP
Acute interstitial pneumonia
COP
Cryptogenic organizing pneumonia
P/F ratio
PaO2/fraction of inspired oxygen ratio
A-a DO2
Alveolar-arterial difference of oxygen
LDH
Lactate dehydrogenase
ELISA
Enzyme-linked immunosorbent assay
ARDS
Acute respiratory distress syndrome.

Background

Clinical courses of the various types of idiopathic interstitial pneumonias (IIPs) vary widely [1, 2]. Although analysis of a surgical lung biopsy has traditionally been the gold standard for the pathological diagnosis of IIPs and is clinically relevant for selecting appropriate treatment [1, 3], it involves performance of a relatively invasive procedure, especially for patients with advanced IIP. Accordingly, identifying circulating markers effective for evaluating and monitoring disease activity and distinguishing the various types would improve management of IIPs. A number of serum markers suggestive of interstitial lung disease have been reported, including surfactant protein (SP)-A, SP-D, and Krebs von den Lungen-6 (KL-6), a circulating, high molecular weight glycoprotein expressed by type II pneumocytes [413]. However, the clinical usefulness of these serum markers for distinguishing the several types of IIPs remains unclear.
Heat shock protein (HSP) 47 is a collagen-binding, stress-inducible protein localized to the endoplasmic reticulum. HSP47 serves as a collagen-specific molecular chaperone in intracellular processing during procollagen production [1416]. Recent studies have demonstrated that HSP47 expression is highly tissue-and cell-specific—mainly restricted to phenotypically altered collagen-producing cells [17]. HSP47 expression is upregulated in animals with experimentally induced pulmonary fibrosis [1820]. Previous studies have also shown that expression of human HSP47 is increased in fibrotic lesions of idiopathic pulmonary fibrosis (IPF), idiopathic nonspecific interstitial pneumonia (NSIP), and diffuse alveolar damage (DAD) [2123]. Similar to the fibrotic lung diseases mentioned above, induction of HSP47 is consistently observed in other fibrotic diseases such as those affecting the liver, kidney, heart, eyes and skin [17, 2426].
We recently showed in an experimental pulmonary fibrosis model that collagen accumulation and disease progression were associated with the level of HSP47 protein expression [19]. In addition, HSP47 expression is higher in the lungs of patients with idiopathic usual interstitial pneumonia (UIP) than in those with collagen vascular disease-associated UIP and idiopathic NSIP [22]; idiopathic fibrotic NSIP patients with higher HSP47 expression in their lungs had poorer prognosis than patients with lower HSP47 expression [27]. These findings suggest that the expression of HSP47 in fibrotic lung tissue correlates with fibrotic disease activity.
We hypothesized that HSP47 may leak into the peripheral blood, and that it could be a useful marker for fibrotic lung disease. Although Yokota (one of the authors of the present manuscript) et al. previously reported that the serum levels of HSP47 did not differ significantly between patients with IPF and healthy controls [28], we recently reported that HSP47 serum levels in patients with acute exacerbation of IPF were found to be markedly higher than in patients with stable IPF [23]. These findings suggest that serum HSP47 could be a useful marker for IIPs. However, the precise association between serum levels of HSP47 and IIPs remains obscure. The purpose of this study was to evaluate serum HSP47 levels in patients with various IIPs.

Methods

Study population

The present study was a retrospective case–control study. Study subjects consisted of 56 patients who were admitted to Nagasaki University Hospital from April 1996 to March 2011, and 19 healthy adult volunteers. Patients included 9 with acute interstitial pneumonia (AIP), 12 with cryptogenic organizing pneumonia (COP), 16 with NSIP, and 19 with IPF. Diagnoses were made according to the official ATS/ERS/JRS/ALAT statement [2] and the American Thoracic Society/European Respiratory Society consensus criteria [1]. Patients had no signs or positive serological (or other) markers of collagen vascular disease. All patients diagnosed with AIP met the following criteria: 1) development or unexplained worsening of dyspnea within 30 days; 2) high-resolution computed tomography chest scans with new bilateral ground-glass opacities and/or consolidation; 3) PaO2/fraction of inspired oxygen (FiO2) ratio (P/F ratio) < 300 mmHg; and 4) absence of apparent infection, pneumothorax, pulmonary thromboembolism, heart failure or alternative causes of acute lung injury, such as trauma, blood infusion or toxic inhalation. Serological and urinary studies were performed, and were negative in all patients diagnosed with AIP, for the following pathogens and pathogen components: endotoxin, Mycoplasma pneumoniae, Chlamydophila pneumoniae, Chlamydophila psittaci, cytomegalovirus antigen, β-D glucan, Legionella spp. and Streptococcus pneumoniae. Blood, sputum, and urine cultures were also negative. Echocardiography demonstrated no evidence of heart failure in any of the patients. All NSIP and IPF diagnoses were confirmed pathologically in multiple lobes by open lung biopsy or video-assisted thoracoscopic surgery. Sera were obtained from patients at the time of diagnosis. Patient characteristics were collected from the clinical notes recorded at the time of diagnosis and included age, sex, P/F ratio, and alveolar-arterial difference of oxygen (A-a DO2). Serum concentrations of KL-6, SP-A, SP-D and lactate dehydrogenase (LDH) were also collected from the clinical notes recorded at the time of diagnosis. For records lacking data for these markers, measurements were done using preserved serum samples. The 30-and 90-day mortality rates were determined for all disease groups. In addition, sera were obtained from healthy volunteers to serve as control subjects, all of whom had normal chest radiographs, were free of symptoms and were not taking any medications.
The study protocol was approved by the Institutional Review Board of Nagasaki University Hospital and the Ethics Committee, Nagasaki University Graduate School of Biomedical Sciences. Written informed consent was obtained from all subjects.

Sandwich enzyme-linked immunosorbent assay (ELISA) for determining HSP47 concentration

Sandwich ELISA for determining HSP47 concentration was carried out as described previously [28].

Measurement of serum KL-6, SP-A, SP-D, and LDH levels

Serum levels of KL-6, SP-A, SP-D, and LDH were measured using specific kits according to the manufacturers’ protocols. KL-6 concentrations were measured using a sandwich-type electrochemiluminescence immunoassay kit (Picolumi KL-6, Sanko Junyaku Co., Tokyo, Japan). SP-A and SP-D levels were measured using sandwich-type enzyme immunoassay kits (SP-A test-F, Kokusai Shiyaku Co., Hyogo, Japan; and SP-D kit, Yamasa, Yamasa Shoyu Co., Tokyo, Japan). LDH levels were measured using an ultraviolet method with an L-type WAKO LDH kit (Wako Pure Chemical Industries, Ltd., Osaka, Japan). All assays were performed in duplicate. Data regarding these markers was not obtained from all enrolled patients because some preserved serum samples were not of sufficient volume. Data for the patients in whom these markers were measured (including their numbers) are presented in Results section.

Immunohistochemistry

Immunohistochemistry was performed as described previously [22].

Statistical analysis

Values for continuous variables are expressed as median (range). Differences among groups were determined by analysis of variance or the Kruskal-Wallis test for continuous variables and the χ2 test for categorical variables, as appropriate. If a significant difference was found by analysis of variance, pair-wise comparison was performed using the Scheffe method. The upper left corner coordinate point of the receiver operating characteristic curve was used to determine the optimum cutoff level for discriminating between AIP and COP, NSIP, IPF, and healthy volunteers. Statistical analysis was performed using a statistical software package (SAS 9.1.3, SAS Institute, Cary, NC, USA). P values <0.05 were considered statistically significant.

Results

Patient characteristics

Table 1 lists characteristics of enrolled patients. The P/F ratios of the AIP groups were significantly lower, and the A-a DO2 significantly higher, as compared with those of the COP, NSIP, and IPF groups.
Table 1
Patient characteristics
 
Healthy volunteer (N = 19)
COP (N = 12)
NSIP (N = 16)
IPF (N = 19)
AIP (N = 9)
p value
Age (years)
35*
(27-59)
65.5
(38-87)
57.0
(28-74)
64.0
(34-75)
75.0
(53-81)
<0.001
Sex (male/female)
11/8
 
7/5
 
6/10
 
13/6
 
6/3
 
N.S.
Smoking (s/ex/n)
0/0/19
 
2/4/6
 
3/5/8
 
6/5/8
 
5/1/3
 
0.002
P/F ratio (mmHg)
-
 
385.0
(289.5-490.5)
399.3
(343.3-442.4)
389.8
(283.3-491.9)
102.3
(59.9-254.8)
<0.001
A-a DO2 (mmHg)
-
 
19.9
(-5.14-46.9)
15.3
(2.6-37.9)
17.1
(-3.5-52.7)
402
(58.6-611.4)
<0.001
Data presented as median (range).
N = number of patients; COP = cryptogenic organizing pneumonia; NSIP = nonspecific interstitial pneumonia; IPF = idiopathic pulmonary fibrosis; AIP = acute interstitial pneumonia; N.S. = not significant; s/ex/n = current smoker/ex-smoker/nonsmoker; P/F ratio = PaO2/fraction of inspired oxygen (FiO2) ratio; A-a DO2 = alveolar-arterial difference of oxygen.
*P < 0.01 compared with COP, NSIP, IPF, and AIP.
P < 0.01 compared with COP, NSIP, and IPF.

Disease outcomes

In the AIP group, 30-day mortality was 44.4% (4 of 9 patients), and 90-day mortality was 66.7% (6 of 9 patients). In contrast, none of the patients in the COP, NSIP, or IPF groups died within 90 days.

Serum levels of HSP47, KL-6, SP-A, SP-D and LDH

Serological data are presented in Table 2 and Figure 1. Serum levels of HSP47 in patients with AIP were significantly higher than in those with COP, NSIP, IPF, or in healthy volunteers. Serum levels of HSP47 among patients with COP, NSIP, IPF, and healthy volunteers were not significantly different (Figure 1). Serum levels of KL-6 in patients with NSIP and IPF were significantly higher than in those with COP and in healthy volunteers. Serum levels of SP-A in patients with IPF and AIP were significantly higher compared to those in healthy volunteers. Serum levels of SP-A in patients with IPF were significantly higher than in those with COP and NSIP. Serum levels of SP-D in patients with AIP were significantly higher compared to those in healthy volunteers. Serum levels of LDH in patients with AIP were significantly higher than in those with COP, NSIP, IPF, or in healthy volunteers. Serum levels of LDH in patients with NSIP and IPF were significantly higher compared to those in healthy volunteers.
Table 2
Serum concentrations of HSP47, KL-6, SP-A, SP-D, and LDH
 
Healthy volunteer (N = 19)
[n]
COP (N = 12)
[n]
NSIP (N = 16)
[n]
IPF (N = 19)
[n]
AIP (N = 9)
[n]
p value
HSP47 (pg/mL)
565.8
(332.1-879.8)
[19]
239.1
(16.6-476.6)
[12]
290.7
(24.8-603.0)
[16]
330.9
(105.1-487.6)
[19]
1530.2*
(1075.1-3919.9)
[9]
<0.001
KL-6 (U/mL)
193.0
(144-322)
[19]
427.5
(172-1310)
[10]
1568.5
(192-4745)
[14]
1460
(444-4340)
[15]
332.5
(201-2200)
[8]
<0.001
SP-A (ng/mL)
22.7
(12.1-60.8)
[19]
52.8
(20.6-129)
[8]
48.9
(20.3-127)
[12]
103§
(62.4-355)
[15]
138£
(43.8-148)
[6]
<0.001
SP-D (ng/mL)
17.3
(17.3-58.6)
[19]
105.7
(27.8-247)
[8]
477.0
(17.2-942)
[13]
316.0
(93.1-721)
[14]
417#
(72.1-4510)
[8]
<0.001
LDH (IU/L)
124.5
(20-246)
[19]
164.0
(132-236)
[12]
212.5#
(135-738)
[14]
233#
(113-416)
[15]
380*
(231-736)
[9]
<0.001
Data presented as median (range).
N = number of patients; n = number of patients examined; COP = cryptogenic organizing pneumonia; NSIP = nonspecific interstitial pneumonia; IPF = idiopathic pulmonary fibrosis; AIP = acute interstitial pneumonia; HSP47 = heat shock protein 47; KL-6 = Krebs von den Lungen-6; SP-A = surfactant protein-A; SP-D = surfactant protein-D; LDH = lactate dehydrogenase.
*P < 0.01 compared with COP, NSIP, IPF, and healthy volunteers.
P < 0.01 compared with healthy volunteers; P < 0.05 compared with COP.
§P < 0.01 compared with NSIP and healthy volunteers; P < 0.05 compared with COP.
£P < 0.01 compared with healthy volunteers.
#P < 0.05 compared with healthy volunteers.

Receiver operating characteristic curve

Based on a receiver operating characteristic curve (Figure 2), the cut-off level of HSP47 that resulted in the highest diagnostic accuracy for discriminating between AIP and COP, NSIP, IPF, and healthy volunteers was 859.3 pg/mL. This value discriminated between AIP and COP, NSIP, IPF, and healthy volunteers with 100% sensitivity and 98.5% specificity. The diagnostic accuracy was 98.7%. Use of serum HSP47 levels for diagnosis of AIP resulted in an area under the curve of 1.000.

Histopathological and immunohistochemical findings

Photomicrographs of histological and immunohistochemical studies of representative DAD autopsy specimens are shown in Figure 3. This DAD patient was given a final diagnosis of AIP. Figure 3 A-B and D-E depict pairs of sequential sections. At low magnification, diffuse involvement, including interstitial edema and inflammation, was seen (Figure 3 A-B). The expression of HSP47 in DAD was diffuse and higher than in UIP surgical lung biopsy specimens (data not shown). Histopathological examination at high magnification revealed interstitial edema, fibrosis, and inflammation in the DAD tissue. The expression of HSP47 was noted predominantly in fibroblasts, epithelial cells, and endothelial cells in DAD (Figure 3 D-E). Negative control studies using non-specific immunoglobulin-G revealed no positive cells (Figure 3 C, F).

Discussion

In the present study, HSP47 serum levels in patients with AIP were found to be markedly higher than in patients with COP, NSIP, IPF, or in healthy volunteers. To the best of our knowledge, this is the first study to evaluate HSP47 serum levels of patients with AIP.
Despite extensive research conducted in the past, the precise molecular mechanisms leading to the lung injury and fibrosis of AIP are poorly understood. Previous reports have suggested that KL-6, SP-A, and SP-D might be useful markers for interstitial pneumonias [413, 29]. It was assumed that serum levels of these markers in AIP patients would be higher than those in COP, NSIP and IPF patients: however, the current study demonstrated that they did not significantly differ from those in patients with other IIPs. In contrast, serum HSP47 levels were markedly elevated in AIP, but not in COP, NSIP, and IPF, indicating that the molecular mechanisms generating pathogenic fibrosis affecting serum HSP47 levels may differ distinctly between AIP and other IIPs.
Previous studies demonstrated that HSP47 expression in lung was higher in patients with UIP than in those with COP and NSIP, and in controls [22, 30]. In contrast, the present study indicated that HSP47 levels in serum were elevated only in patients with AIP. Although a precise mechanism for the above unexpected observation was not elucidated in this study, the following is hypothesized: 1) We recently reported that HSP47 expression was higher in DAD lung that resulted in a final diagnosis of acute exacerbation of IPF than in UIP lungs, and that HSP47 serum levels in patients with acute exacerbation of IPF were found to be markedly higher than in patients with stable IPF [23]. The present study also demonstrated that HSP47 expression in lung was markedly high in a DAD patient who was given a final diagnosis of AIP. The amount of HSP47 in the lung, which has been reported to correlate with fibrotic disease activity [19, 22, 27, 31], might correlate with serum levels. 2) Elevation of serum HSP47 in AIP might be due to distinctive characteristics of DAD, including severe inflammation, tissue destruction, alveolar epithelial and endothelial injury with increased vascular permeability [32]. These changes and high expression of HSP47 in epithelial cells and endothelial cells may possibly induce leakage of HSP47 protein into the extracellular matrix.
We also compared serum levels of HSP47 in the patients with acute exacerbation of IPF, which were reported in our previous study [23], with those of the AIP patients in the present study. Serum levels of HSP47 in patients with AIP did not differ significantly from those in patients with acute exacerbation of IPF (data not shown). Considering data from the present study together with our previous study [23] led us to the conclusion that serum HSP47 might be a useful marker to identify patients with DAD. Although patients with AIP and acute exacerbation of IPF histologically manifest as DAD, the histopathologic pattern of DAD is also seen in other types of lung injury. Hence, the serum HSP47 level might be a useful marker for other fatal and rapidly progressive fibrotic lung diseases which histologically manifest as DAD, regardless of etiology. Further investigations regarding the precise mechanisms involved are needed.
Some limitations to this study should be noted. First, the number of patients enrolled was small. Second, due to the small study population, the present study did not reveal whether serum HSP47 levels were correlated with disease severity or mortality. Third, it is not yet clear whether evaluation of sequential changes in HSP47 serum levels is useful to monitor disease progression and response to treatment. Fourth, it would be meaningful to evaluate serum levels of HSP47 in patients with acute respiratory distress syndrome (ARDS). According to our hypothesis, serum HSP47 levels might be elevated in patients with ARDS. A prospective multicenter study with a larger patient cohort, including ARDS patients, is planned in order to overcome the above-mentioned limitations of the present study.

Conclusions

In conclusion, this study demonstrated that serum HSP47 levels were elevated in patients with AIP. This finding suggests that the underlying fibrogenic mechanisms affecting HSP47 levels might differ between AIP and other IIP patients. Further studies involving larger patient cohorts are warranted to determine whether serum HSP47 is a useful disease marker of AIP.

Acknowledgements

The authors thank Mr. A. Yokoyama for excellent technical support. This study was supported in part by a research grant from Takeda Science Foundation, The Kato Memorial Trust for Nambyo Research, and JSPS KAKENHI Grant Number 25860649.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Competing interests

T. Kakugawa received a research grant from Takeda Science Foundation and the Kato Memorial Trust for Nambyo Research. T. Kakugawa and S. Yokota have a patent application pending for research related to this manuscript.

Authors’ contributions

TK made substantial contributions to the study conception and design. TK, NS, SH, SN and YI were involved in collecting clinical samples. SY made a substantial contribution to the determination of serum levels of HSP47 by ELISA. HK and YM made substantial contributions to the preparation of recombinant HSP47 protein. TK made a substantial contribution to the immunohistochemistry. TK and TH made pathological assessments. TK and MM were involved in statistical analysis. TK was involved in drafting the article. SY, YI, NS, HM, KN and SK were involved in revising the article critically for important intellectual content. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Literatur
2.
Zurück zum Zitat Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV, Cordier JF, Flaherty KR, Lasky JA, Lynch DA, Ryu JH, Swigris JJ, Wells AU, Ancochea J, Bouros D, Carvalho C, Costabel U, Ebina M, Hansell DM, Johkoh T, Kim DS, King TE, Kondoh Y, Myers J, Muller NL, Nicholson AG, Richeldi L, Selman M, Dudden RF: An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011, 183 (6): 788-824. 10.1164/rccm.2009-040GL.CrossRefPubMed Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV, Cordier JF, Flaherty KR, Lasky JA, Lynch DA, Ryu JH, Swigris JJ, Wells AU, Ancochea J, Bouros D, Carvalho C, Costabel U, Ebina M, Hansell DM, Johkoh T, Kim DS, King TE, Kondoh Y, Myers J, Muller NL, Nicholson AG, Richeldi L, Selman M, Dudden RF: An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011, 183 (6): 788-824. 10.1164/rccm.2009-040GL.CrossRefPubMed
3.
Zurück zum Zitat Hunninghake GW, Zimmerman MB, Schwartz DA, King TE, Lynch J, Hegele R, Waldron J, Colby T, Muller N, Lynch D, Galvin J, Gross B, Hogg J, Toews G, Helmers R, Cooper JA, Baughman R, Strange C, Millard M: Utility of a lung biopsy for the diagnosis of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2001, 164 (2): 193-196. 10.1164/ajrccm.164.2.2101090.CrossRefPubMed Hunninghake GW, Zimmerman MB, Schwartz DA, King TE, Lynch J, Hegele R, Waldron J, Colby T, Muller N, Lynch D, Galvin J, Gross B, Hogg J, Toews G, Helmers R, Cooper JA, Baughman R, Strange C, Millard M: Utility of a lung biopsy for the diagnosis of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2001, 164 (2): 193-196. 10.1164/ajrccm.164.2.2101090.CrossRefPubMed
4.
Zurück zum Zitat Stahel RA, Gilks WR, Lehmann HP, Schenker T: Third international workshop on lung tumor and differentiation antigens: overview of the results of the central data analysis. Int J Cancer Suppl. 1994, 8: 6-26.CrossRefPubMed Stahel RA, Gilks WR, Lehmann HP, Schenker T: Third international workshop on lung tumor and differentiation antigens: overview of the results of the central data analysis. Int J Cancer Suppl. 1994, 8: 6-26.CrossRefPubMed
5.
Zurück zum Zitat Kohno N, Kyoizumi S, Awaya Y, Fukuhara H, Yamakido M, Akiyama M: New serum indicator of interstitial pneumonitis activity: sialylated carbohydrate antigen KL-6. Chest. 1989, 96 (1): 68-73. 10.1378/chest.96.1.68.CrossRefPubMed Kohno N, Kyoizumi S, Awaya Y, Fukuhara H, Yamakido M, Akiyama M: New serum indicator of interstitial pneumonitis activity: sialylated carbohydrate antigen KL-6. Chest. 1989, 96 (1): 68-73. 10.1378/chest.96.1.68.CrossRefPubMed
6.
Zurück zum Zitat Yokoyama A, Kondo K, Nakajima M, Matsushima T, Takahashi T, Nishimura M, Bando M, Sugiyama Y, Totani Y, Ishizaki T, Ichiyasu H, Suga M, Hamada H, Kohno N: Prognostic value of circulating KL-6 in idiopathic pulmonary fibrosis. Respirology. 2006, 11 (2): 164-168. 10.1111/j.1440-1843.2006.00834.x.CrossRefPubMed Yokoyama A, Kondo K, Nakajima M, Matsushima T, Takahashi T, Nishimura M, Bando M, Sugiyama Y, Totani Y, Ishizaki T, Ichiyasu H, Suga M, Hamada H, Kohno N: Prognostic value of circulating KL-6 in idiopathic pulmonary fibrosis. Respirology. 2006, 11 (2): 164-168. 10.1111/j.1440-1843.2006.00834.x.CrossRefPubMed
7.
Zurück zum Zitat Greene KE, King TE, Kuroki Y, Bucher-Bartelson B, Hunninghake GW, Newman LS, Nagae H, Mason RJ: Serum surfactant proteins-A and -D as biomarkers in idiopathic pulmonary fibrosis. Eur Respir J. 2002, 19 (3): 439-446. 10.1183/09031936.02.00081102.CrossRefPubMed Greene KE, King TE, Kuroki Y, Bucher-Bartelson B, Hunninghake GW, Newman LS, Nagae H, Mason RJ: Serum surfactant proteins-A and -D as biomarkers in idiopathic pulmonary fibrosis. Eur Respir J. 2002, 19 (3): 439-446. 10.1183/09031936.02.00081102.CrossRefPubMed
8.
Zurück zum Zitat Takahashi H, Fujishima T, Koba H, Murakami S, Kurokawa K, Shibuya Y, Shiratori M, Kuroki Y, Abe S: Serum surfactant proteins A and D as prognostic factors in idiopathic pulmonary fibrosis and their relationship to disease extent. Am J Respir Crit Care Med. 2000, 162 (3 Pt 1): 1109-1114.CrossRefPubMed Takahashi H, Fujishima T, Koba H, Murakami S, Kurokawa K, Shibuya Y, Shiratori M, Kuroki Y, Abe S: Serum surfactant proteins A and D as prognostic factors in idiopathic pulmonary fibrosis and their relationship to disease extent. Am J Respir Crit Care Med. 2000, 162 (3 Pt 1): 1109-1114.CrossRefPubMed
9.
Zurück zum Zitat Kobayashi J, Kitamura S: KL-6: a serum marker for interstitial pneumonia. Chest. 1995, 108 (2): 311-315. 10.1378/chest.108.2.311.CrossRefPubMed Kobayashi J, Kitamura S: KL-6: a serum marker for interstitial pneumonia. Chest. 1995, 108 (2): 311-315. 10.1378/chest.108.2.311.CrossRefPubMed
10.
Zurück zum Zitat Ohnishi H, Yokoyama A, Kondo K, Hamada H, Abe M, Nishimura K, Hiwada K, Kohno N: Comparative study of KL-6, surfactant protein-A, surfactant protein-D, and monocyte chemoattractant protein-1 as serum markers for interstitial lung diseases. Am J Respir Crit Care Med. 2002, 165 (3): 378-381. 10.1164/ajrccm.165.3.2107134.CrossRefPubMed Ohnishi H, Yokoyama A, Kondo K, Hamada H, Abe M, Nishimura K, Hiwada K, Kohno N: Comparative study of KL-6, surfactant protein-A, surfactant protein-D, and monocyte chemoattractant protein-1 as serum markers for interstitial lung diseases. Am J Respir Crit Care Med. 2002, 165 (3): 378-381. 10.1164/ajrccm.165.3.2107134.CrossRefPubMed
11.
Zurück zum Zitat Nakajima H, Harigai M, Hara M, Hakoda M, Tokuda H, Sakai F, Kamatani N, Kashiwazaki S: KL-6 as a novel serum marker for interstitial pneumonia associated with collagen diseases. J Rheumatol. 2000, 27 (5): 1164-1170.PubMed Nakajima H, Harigai M, Hara M, Hakoda M, Tokuda H, Sakai F, Kamatani N, Kashiwazaki S: KL-6 as a novel serum marker for interstitial pneumonia associated with collagen diseases. J Rheumatol. 2000, 27 (5): 1164-1170.PubMed
12.
Zurück zum Zitat Kinder BW, Brown KK, McCormack FX, Ix JH, Kervitsky A, Schwarz MI, King TE: Serum surfactant protein-A is a strong predictor of early mortality in idiopathic pulmonary fibrosis. Chest. 2009, 135 (6): 1557-1563. 10.1378/chest.08-2209.CrossRefPubMedPubMedCentral Kinder BW, Brown KK, McCormack FX, Ix JH, Kervitsky A, Schwarz MI, King TE: Serum surfactant protein-A is a strong predictor of early mortality in idiopathic pulmonary fibrosis. Chest. 2009, 135 (6): 1557-1563. 10.1378/chest.08-2209.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Al-Salmi QA, Walter JN, Colasurdo GN, Sockrider MM, Smith EO, Takahashi H, Fan LL: Serum KL-6 and surfactant proteins A and D in pediatric interstitial lung disease. Chest. 2005, 127 (1): 403-407. 10.1378/chest.127.1.403.CrossRefPubMed Al-Salmi QA, Walter JN, Colasurdo GN, Sockrider MM, Smith EO, Takahashi H, Fan LL: Serum KL-6 and surfactant proteins A and D in pediatric interstitial lung disease. Chest. 2005, 127 (1): 403-407. 10.1378/chest.127.1.403.CrossRefPubMed
14.
Zurück zum Zitat Nagata K, Saga S, Yamada KM: A major collagen-binding protein of chick embryo fibroblasts is a novel heat shock protein. J Cell Biol. 1986, 103 (1): 223-229. 10.1083/jcb.103.1.223.CrossRefPubMed Nagata K, Saga S, Yamada KM: A major collagen-binding protein of chick embryo fibroblasts is a novel heat shock protein. J Cell Biol. 1986, 103 (1): 223-229. 10.1083/jcb.103.1.223.CrossRefPubMed
15.
Zurück zum Zitat Nagai N, Hosokawa M, Itohara S, Adachi E, Matsushita T, Hosokawa N, Nagata K: Embryonic lethality of molecular chaperone hsp47 knockout mice is associated with defects in collagen biosynthesis. J Cell Biol. 2000, 150 (6): 1499-1506. 10.1083/jcb.150.6.1499.CrossRefPubMedPubMedCentral Nagai N, Hosokawa M, Itohara S, Adachi E, Matsushita T, Hosokawa N, Nagata K: Embryonic lethality of molecular chaperone hsp47 knockout mice is associated with defects in collagen biosynthesis. J Cell Biol. 2000, 150 (6): 1499-1506. 10.1083/jcb.150.6.1499.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Sauk JJ, Smith T, Norris K, Ferreira L: Hsp47 and the translation-translocation machinery cooperate in the production of alpha 1(I) chains of type I procollagen. J Biol Chem. 1994, 269 (6): 3941-3946.PubMed Sauk JJ, Smith T, Norris K, Ferreira L: Hsp47 and the translation-translocation machinery cooperate in the production of alpha 1(I) chains of type I procollagen. J Biol Chem. 1994, 269 (6): 3941-3946.PubMed
17.
Zurück zum Zitat Taguchi T, Razzaque MS: The collagen-specific molecular chaperone HSP47: is there a role in fibrosis?. Trends Mol Med. 2007, 13 (2): 45-53. 10.1016/j.molmed.2006.12.001.CrossRefPubMed Taguchi T, Razzaque MS: The collagen-specific molecular chaperone HSP47: is there a role in fibrosis?. Trends Mol Med. 2007, 13 (2): 45-53. 10.1016/j.molmed.2006.12.001.CrossRefPubMed
18.
Zurück zum Zitat Razzaque MS, Hossain MA, Kohno S, Taguchi T: Bleomycin-induced pulmonary fibrosis in rat is associated with increased expression of collagen-binding heat shock protein (HSP) 47. Virchows Arch. 1998, 432 (5): 455-460. 10.1007/s004280050191.CrossRefPubMed Razzaque MS, Hossain MA, Kohno S, Taguchi T: Bleomycin-induced pulmonary fibrosis in rat is associated with increased expression of collagen-binding heat shock protein (HSP) 47. Virchows Arch. 1998, 432 (5): 455-460. 10.1007/s004280050191.CrossRefPubMed
19.
Zurück zum Zitat Ishii H, Mukae H, Kakugawa T, Iwashita T, Kaida H, Fujii T, Hayashi T, Kadota J, Kohno S: Increased expression of collagen-binding heat shock protein 47 in murine bleomycin-induced pneumopathy. Am J Physiol Lung Cell Mol Physiol. 2003, 285 (4): L957-L963.CrossRefPubMed Ishii H, Mukae H, Kakugawa T, Iwashita T, Kaida H, Fujii T, Hayashi T, Kadota J, Kohno S: Increased expression of collagen-binding heat shock protein 47 in murine bleomycin-induced pneumopathy. Am J Physiol Lung Cell Mol Physiol. 2003, 285 (4): L957-L963.CrossRefPubMed
20.
Zurück zum Zitat Kakugawa T, Mukae H, Hishikawa Y, Ishii H, Sakamoto N, Ishimatsu Y, Fujii T, Koji T, Kohno S: Localization of HSP47 mRNA in murine bleomycin-induced pulmonary fibrosis. Virchows Arch. 2010, 456 (3): 309-315. 10.1007/s00428-009-0876-x.CrossRefPubMed Kakugawa T, Mukae H, Hishikawa Y, Ishii H, Sakamoto N, Ishimatsu Y, Fujii T, Koji T, Kohno S: Localization of HSP47 mRNA in murine bleomycin-induced pulmonary fibrosis. Virchows Arch. 2010, 456 (3): 309-315. 10.1007/s00428-009-0876-x.CrossRefPubMed
21.
Zurück zum Zitat Razzaque MS, Nazneen A, Taguchi T: Immunolocalization of collagen and collagen-binding heat shock protein 47 in fibrotic lung diseases. Mod Pathol. 1998, 11 (12): 1183-1188.PubMed Razzaque MS, Nazneen A, Taguchi T: Immunolocalization of collagen and collagen-binding heat shock protein 47 in fibrotic lung diseases. Mod Pathol. 1998, 11 (12): 1183-1188.PubMed
22.
Zurück zum Zitat Kakugawa T, Mukae H, Hayashi T, Ishii H, Nakayama S, Sakamoto N, Yoshioka S, Sugiyama K, Mine M, Mizuta Y, Kohno S: Expression of HSP47 in usual interstitial pneumonia and nonspecific interstitial pneumonia. Respir Res. 2005, 6: 57-10.1186/1465-9921-6-57.CrossRefPubMedPubMedCentral Kakugawa T, Mukae H, Hayashi T, Ishii H, Nakayama S, Sakamoto N, Yoshioka S, Sugiyama K, Mine M, Mizuta Y, Kohno S: Expression of HSP47 in usual interstitial pneumonia and nonspecific interstitial pneumonia. Respir Res. 2005, 6: 57-10.1186/1465-9921-6-57.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Kakugawa T, Yokota S, Ishimatsu Y, Hayashi T, Nakashima S, Hara S, Sakamoto N, Kubota H, Mine M, Matsuoka Y, Mukae H, Nagata K, Kohno S: Serum heat shock protein 47 levels are elevated in acute exacerbation of idiopathic pulmonary fibrosis. Cell Stress Chaperones. 2013, 18 (5): 581-590. 10.1007/s12192-013-0411-5.CrossRefPubMedPubMedCentral Kakugawa T, Yokota S, Ishimatsu Y, Hayashi T, Nakashima S, Hara S, Sakamoto N, Kubota H, Mine M, Matsuoka Y, Mukae H, Nagata K, Kohno S: Serum heat shock protein 47 levels are elevated in acute exacerbation of idiopathic pulmonary fibrosis. Cell Stress Chaperones. 2013, 18 (5): 581-590. 10.1007/s12192-013-0411-5.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Razzaque MS, Foster CS, Ahmed AR: Role of collagen-binding heat shock protein 47 and transforming growth factor-beta1 in conjunctival scarring in ocular cicatricial pemphigoid. Invest Ophthalmol Vis Sci. 2003, 44 (4): 1616-1621. 10.1167/iovs.02-0644.CrossRefPubMed Razzaque MS, Foster CS, Ahmed AR: Role of collagen-binding heat shock protein 47 and transforming growth factor-beta1 in conjunctival scarring in ocular cicatricial pemphigoid. Invest Ophthalmol Vis Sci. 2003, 44 (4): 1616-1621. 10.1167/iovs.02-0644.CrossRefPubMed
25.
Zurück zum Zitat Razzaque MS, Kumatori A, Harada T, Taguchi T: Coexpression of collagens and collagen-binding heat shock protein 47 in human diabetic nephropathy and IgA nephropathy. Nephron. 1998, 80 (4): 434-443. 10.1159/000045217.CrossRefPubMed Razzaque MS, Kumatori A, Harada T, Taguchi T: Coexpression of collagens and collagen-binding heat shock protein 47 in human diabetic nephropathy and IgA nephropathy. Nephron. 1998, 80 (4): 434-443. 10.1159/000045217.CrossRefPubMed
26.
Zurück zum Zitat Brown KE, Broadhurst KA, Mathahs MM, Brunt EM, Schmidt WN: Expression of HSP47, a collagen-specific chaperone, in normal and diseased human liver. Lab Invest. 2005, 85 (6): 789-797. 10.1038/labinvest.3700271.CrossRefPubMed Brown KE, Broadhurst KA, Mathahs MM, Brunt EM, Schmidt WN: Expression of HSP47, a collagen-specific chaperone, in normal and diseased human liver. Lab Invest. 2005, 85 (6): 789-797. 10.1038/labinvest.3700271.CrossRefPubMed
27.
Zurück zum Zitat Amenomori M, Mukae H, Sakamoto N, Kakugawa T, Hayashi T, Hara A, Hara S, Fujita H, Ishimoto H, Ishimatsu Y, Nagayasu T, Kohno S: HSP47 in lung fibroblasts is a predictor of survival in fibrotic nonspecific interstitial pneumonia. Respir Med. 2010, 104 (6): 895-901. 10.1016/j.rmed.2010.01.011.CrossRefPubMed Amenomori M, Mukae H, Sakamoto N, Kakugawa T, Hayashi T, Hara A, Hara S, Fujita H, Ishimoto H, Ishimatsu Y, Nagayasu T, Kohno S: HSP47 in lung fibroblasts is a predictor of survival in fibrotic nonspecific interstitial pneumonia. Respir Med. 2010, 104 (6): 895-901. 10.1016/j.rmed.2010.01.011.CrossRefPubMed
28.
Zurück zum Zitat Yokota S, Kubota H, Matsuoka Y, Naitoh M, Hirata D, Minota S, Takahashi H, Fujii N, Nagata K: Prevalence of HSP47 antigen and autoantibodies to HSP47 in the sera of patients with mixed connective tissue disease. Biochem Biophys Res Commun. 2003, 303 (2): 413-418. 10.1016/S0006-291X(03)00352-8.CrossRefPubMed Yokota S, Kubota H, Matsuoka Y, Naitoh M, Hirata D, Minota S, Takahashi H, Fujii N, Nagata K: Prevalence of HSP47 antigen and autoantibodies to HSP47 in the sera of patients with mixed connective tissue disease. Biochem Biophys Res Commun. 2003, 303 (2): 413-418. 10.1016/S0006-291X(03)00352-8.CrossRefPubMed
29.
Zurück zum Zitat Collard HR, Calfee CS, Wolters PJ, Song JW, Hong SB, Brady S, Ishizaka A, Jones KD, King TE, Matthay MA, Kim DS: Plasma biomarker profiles in acute exacerbation of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2010, 299 (1): L3-L7. 10.1152/ajplung.90637.2008.CrossRefPubMedPubMedCentral Collard HR, Calfee CS, Wolters PJ, Song JW, Hong SB, Brady S, Ishizaka A, Jones KD, King TE, Matthay MA, Kim DS: Plasma biomarker profiles in acute exacerbation of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2010, 299 (1): L3-L7. 10.1152/ajplung.90637.2008.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Iwashita T, Kadota J, Naito S, Kaida H, Ishimatsu Y, Miyazaki M, Ozono Y, Kohno S: Involvement of collagen-binding heat shock protein 47 and procollagen type I synthesis in idiopathic pulmonary fibrosis: contribution of type II pneumocytes to fibrosis. Hum Pathol. 2000, 31 (12): 1498-1505. 10.1053/hupa.2000.20378.CrossRefPubMed Iwashita T, Kadota J, Naito S, Kaida H, Ishimatsu Y, Miyazaki M, Ozono Y, Kohno S: Involvement of collagen-binding heat shock protein 47 and procollagen type I synthesis in idiopathic pulmonary fibrosis: contribution of type II pneumocytes to fibrosis. Hum Pathol. 2000, 31 (12): 1498-1505. 10.1053/hupa.2000.20378.CrossRefPubMed
31.
Zurück zum Zitat Kakugawa T, Mukae H, Hayashi T, Ishii H, Abe K, Fujii T, Oku H, Miyazaki M, Kadota J, Kohno S: Pirfenidone attenuates expression of HSP47 in murine bleomycin-induced pulmonary fibrosis. Eur Respir J. 2004, 24 (1): 57-65. 10.1183/09031936.04.00120803.CrossRefPubMed Kakugawa T, Mukae H, Hayashi T, Ishii H, Abe K, Fujii T, Oku H, Miyazaki M, Kadota J, Kohno S: Pirfenidone attenuates expression of HSP47 in murine bleomycin-induced pulmonary fibrosis. Eur Respir J. 2004, 24 (1): 57-65. 10.1183/09031936.04.00120803.CrossRefPubMed
32.
Zurück zum Zitat Ware LB, Matthay MA: The acute respiratory distress syndrome. N Engl J Med. 2000, 342 (18): 1334-1349. 10.1056/NEJM200005043421806.CrossRefPubMed Ware LB, Matthay MA: The acute respiratory distress syndrome. N Engl J Med. 2000, 342 (18): 1334-1349. 10.1056/NEJM200005043421806.CrossRefPubMed
Metadaten
Titel
Serum heat shock protein 47 levels are elevated in acute interstitial pneumonia
verfasst von
Tomoyuki Kakugawa
Shin-ichi Yokota
Yuji Ishimatsu
Tomayoshi Hayashi
Shota Nakashima
Shintaro Hara
Noriho Sakamoto
Hiroshi Kubota
Mariko Mine
Yasuhiro Matsuoka
Hiroshi Mukae
Kazuhiro Nagata
Shigeru Kohno
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
BMC Pulmonary Medicine / Ausgabe 1/2014
Elektronische ISSN: 1471-2466
DOI
https://doi.org/10.1186/1471-2466-14-48

Weitere Artikel der Ausgabe 1/2014

BMC Pulmonary Medicine 1/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.