Skip to main content
Erschienen in: Cardiovascular Toxicology 3/2018

08.05.2018

Serum miR-30c Level Predicted Cardiotoxicity in Non-small Cell Lung Cancer Patients Treated with Bevacizumab

verfasst von: Fang Zhou, Xike Lu, Xun Zhang

Erschienen in: Cardiovascular Toxicology | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

Cardiotoxicity is a common adverse effect induced by drug chemotherapy. miR-30c has been reported to be involved in the progress of heart diseases. In the present study, miR-30c was used to predict the cardiotoxicity in non-small cell lung cancer (NSCLC) patients treated with bevacizumab chemotherapy. Eighty NSCLC patients were included in this study. Serum miR-30c levels were detected at pre-chemotherapy, during-chemotherapy (the 2nd, 4th, and 8th week) and 1 month after chemotherapy. miR-30c expression was elevated with the duration of the chemotherapy cycle and decreased 1 month after chemotherapy. The correlation analysis showed that serum miR-30c levels were positively related to cardiotoxicity before chemotherapy and during chemotherapy. ROC curve analysis showed the values of AUC, sensitivity, and specificity for the level of miR-30c alteration (from pre-chemotherapy to during-chemotherapy) were 0.851, 0.720, and 0.860, respectively. Serum miR-30c level is elevated during bevacizumab chemotherapy, which is probably an early detection biomarker for predicting cardiotoxicity in NSCLC patients treated with drug chemotherapy.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Siegel, R., et al. (2014). Cancer statistics, 2014. CA: A Cancer Journal for Clinicians, 64(1), 9–29. Siegel, R., et al. (2014). Cancer statistics, 2014. CA: A Cancer Journal for Clinicians, 64(1), 9–29.
2.
Zurück zum Zitat Iyer, S., et al. (2014). The symptom burden of non-small cell lung cancer in the USA: A real-world cross-sectional study. Supportive Care in Cancer, 22(1), 181–187.CrossRefPubMed Iyer, S., et al. (2014). The symptom burden of non-small cell lung cancer in the USA: A real-world cross-sectional study. Supportive Care in Cancer, 22(1), 181–187.CrossRefPubMed
3.
Zurück zum Zitat Gridelli, C., et al. (2007). The role of bevacizumab in the treatment of non-small cell lung cancer: Current indications and future developments. The Oncologist, 12(10), 1183–1193.CrossRefPubMed Gridelli, C., et al. (2007). The role of bevacizumab in the treatment of non-small cell lung cancer: Current indications and future developments. The Oncologist, 12(10), 1183–1193.CrossRefPubMed
4.
Zurück zum Zitat Lauro, S., et al. (2014). The use of bevacizumab in non-small cell lung cancer: An update. Anticancer Research, 34(4), 1537–1545.PubMed Lauro, S., et al. (2014). The use of bevacizumab in non-small cell lung cancer: An update. Anticancer Research, 34(4), 1537–1545.PubMed
5.
Zurück zum Zitat Ding, L., et al. (2014). The efficacy and safety of pemetrexed plus bevacizumab in previously treated patients with advanced non-squamous non-small cell lung cancer (ns-NSCLC). Tumor Biology, 36(4), 2491–2499. Ding, L., et al. (2014). The efficacy and safety of pemetrexed plus bevacizumab in previously treated patients with advanced non-squamous non-small cell lung cancer (ns-NSCLC). Tumor Biology, 36(4), 2491–2499.
6.
Zurück zum Zitat Kruzliak, P., Novak, J., & Novak, M. (2014). Vascular endothelial growth factor inhibitor-induced hypertension: From pathophysiology to prevention and treatment based on long-acting nitric oxide donors. American Journal of Hypertension, 27(1), 3–13.CrossRefPubMed Kruzliak, P., Novak, J., & Novak, M. (2014). Vascular endothelial growth factor inhibitor-induced hypertension: From pathophysiology to prevention and treatment based on long-acting nitric oxide donors. American Journal of Hypertension, 27(1), 3–13.CrossRefPubMed
7.
Zurück zum Zitat Choueiri, T. K., et al. (2011). Congestive heart failure risk in patients with breast cancer treated with bevacizumab. Journal of Clinical Oncology, 29(6), 632–638.CrossRefPubMed Choueiri, T. K., et al. (2011). Congestive heart failure risk in patients with breast cancer treated with bevacizumab. Journal of Clinical Oncology, 29(6), 632–638.CrossRefPubMed
8.
Zurück zum Zitat Yeung, S. L., Lam, H. S., & Schooling, C. M. (2017). Vascular endothelial growth factor and ischemic heart disease risk: A mendelian randomization study. Journal of the American Heart Association, 6(8), e005619.CrossRef Yeung, S. L., Lam, H. S., & Schooling, C. M. (2017). Vascular endothelial growth factor and ischemic heart disease risk: A mendelian randomization study. Journal of the American Heart Association, 6(8), e005619.CrossRef
9.
Zurück zum Zitat Hueso, L., et al. (2017). Dynamics and implications of circulating anti-angiogenic VEGF-A165b isoform in patients with ST-elevation myocardial infarction. Scientific Reports, 7(1), 9962.CrossRefPubMedPubMedCentral Hueso, L., et al. (2017). Dynamics and implications of circulating anti-angiogenic VEGF-A165b isoform in patients with ST-elevation myocardial infarction. Scientific Reports, 7(1), 9962.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Wang, X., et al. (2017). Intratracheal administration of isosorbide dinitrate improves pulmonary artery pressure and ventricular remodeling in a rat model of heart failure following myocardial infarction. Experimental and Therapeutic Medicine, 14(2), 1399–1408.CrossRefPubMedPubMedCentral Wang, X., et al. (2017). Intratracheal administration of isosorbide dinitrate improves pulmonary artery pressure and ventricular remodeling in a rat model of heart failure following myocardial infarction. Experimental and Therapeutic Medicine, 14(2), 1399–1408.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Sandhu, H., & Maddock, H. (2014). Molecular basis of cancer-therapy-induced cardiotoxicity: Introducing microRNA biomarkers for early assessment of subclinical myocardial injury. Clinical Science, 126(6), 377–400.CrossRefPubMed Sandhu, H., & Maddock, H. (2014). Molecular basis of cancer-therapy-induced cardiotoxicity: Introducing microRNA biomarkers for early assessment of subclinical myocardial injury. Clinical Science, 126(6), 377–400.CrossRefPubMed
12.
Zurück zum Zitat Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.CrossRefPubMed Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.CrossRefPubMed
13.
Zurück zum Zitat Lawrence, P., & Ceccoli, J. (2017). Advances in the application and impact of MicroRNAs as therapies for skin disease. BioDrugs, 31(5), 423–438.CrossRef Lawrence, P., & Ceccoli, J. (2017). Advances in the application and impact of MicroRNAs as therapies for skin disease. BioDrugs, 31(5), 423–438.CrossRef
14.
Zurück zum Zitat Pallez, D., Gardes, J., & Pasquier, C. (2017). Prediction of miRNA-disease associations using an evolutionary tuned latent semantic analysis. Scientific Reports, 7(1), 10548.CrossRefPubMedPubMedCentral Pallez, D., Gardes, J., & Pasquier, C. (2017). Prediction of miRNA-disease associations using an evolutionary tuned latent semantic analysis. Scientific Reports, 7(1), 10548.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Hirt, M. N., et al. (2015). Deciphering the microRNA signature of pathological cardiac hypertrophy by engineered heart tissue- and sequencing-technology. Journal of Molecular and Cellular Cardiology, 81, 1–9.CrossRefPubMed Hirt, M. N., et al. (2015). Deciphering the microRNA signature of pathological cardiac hypertrophy by engineered heart tissue- and sequencing-technology. Journal of Molecular and Cellular Cardiology, 81, 1–9.CrossRefPubMed
16.
Zurück zum Zitat Hou, Y., et al. (2012). Beta-adrenoceptor regulates miRNA expression in rat heart. Medical Science Monitor, 18(8), BR309–BR314. Hou, Y., et al. (2012). Beta-adrenoceptor regulates miRNA expression in rat heart. Medical Science Monitor, 18(8), BR309–BR314.
17.
Zurück zum Zitat Bao, J. L., & Lin, L. (2014). MiR-155 and miR-148a reduce cardiac injury by inhibiting NF-kappaB pathway during acute viral myocarditis. European Review for Medical and Pharmacological Sciences, 18(16), 2349–2356.PubMed Bao, J. L., & Lin, L. (2014). MiR-155 and miR-148a reduce cardiac injury by inhibiting NF-kappaB pathway during acute viral myocarditis. European Review for Medical and Pharmacological Sciences, 18(16), 2349–2356.PubMed
18.
Zurück zum Zitat Lagos-Quintana, M., et al. (2002). Identification of tissue-specific microRNAs from mouse. Current Biology, 12(9), 735–739.CrossRefPubMed Lagos-Quintana, M., et al. (2002). Identification of tissue-specific microRNAs from mouse. Current Biology, 12(9), 735–739.CrossRefPubMed
19.
Zurück zum Zitat Abonnenc, M., et al. (2013). Extracellular matrix secretion by cardiac fibroblasts: Role of microRNA-29b and microRNA-30c. Circulation Research, 113(10), 1138–1147.CrossRefPubMed Abonnenc, M., et al. (2013). Extracellular matrix secretion by cardiac fibroblasts: Role of microRNA-29b and microRNA-30c. Circulation Research, 113(10), 1138–1147.CrossRefPubMed
20.
Zurück zum Zitat Yanaihara, N., et al. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 9(3), 189–198.CrossRefPubMed Yanaihara, N., et al. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 9(3), 189–198.CrossRefPubMed
21.
Zurück zum Zitat Panizo, S., et al. (2017) Regulation of miR-29b and miR-30c by vitamin D receptor activators contributes to attenuate uraemia-induced cardiac fibrosis. Nephrology Dialysis Transplantation, 32(11), 1831–1840CrossRef Panizo, S., et al. (2017) Regulation of miR-29b and miR-30c by vitamin D receptor activators contributes to attenuate uraemia-induced cardiac fibrosis. Nephrology Dialysis Transplantation, 32(11), 1831–1840CrossRef
22.
Zurück zum Zitat Martín, M., et al. (2009). Minimizing cardiotoxicity while optimizing treatment efficacy with trastuzumab: Review and expert recommendations. The Oncologist, 14(1), 1–11.CrossRefPubMed Martín, M., et al. (2009). Minimizing cardiotoxicity while optimizing treatment efficacy with trastuzumab: Review and expert recommendations. The Oncologist, 14(1), 1–11.CrossRefPubMed
23.
Zurück zum Zitat Cakmak, H., et al. (2017). Effects of sunitinib and bevacizumab on VEGF and miRNA levels on corneal neovascularization. Cutaneous and Ocular Toxicology, 37(2), 191–195. Cakmak, H., et al. (2017). Effects of sunitinib and bevacizumab on VEGF and miRNA levels on corneal neovascularization. Cutaneous and Ocular Toxicology, 37(2), 191–195.
24.
Zurück zum Zitat Ferrara, N., Hillan, K. J. & Novotny, W. (2005). Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochemical and Biophysical Research Communications, 333(2), 328–335.CrossRefPubMed Ferrara, N., Hillan, K. J. & Novotny, W. (2005). Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochemical and Biophysical Research Communications, 333(2), 328–335.CrossRefPubMed
25.
Zurück zum Zitat Giordano, F. J., et al. (2001). A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proceedings of the National Academy of Sciences of the United States of America, 98(10), 5780–5785. Giordano, F. J., et al. (2001). A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proceedings of the National Academy of Sciences of the United States of America, 98(10), 5780–5785.
26.
Zurück zum Zitat Hong, I. H., & Park, S. P. (2017). Quantitative physiological measurements to evaluate the response of antivascular endothelial growth factor treatment in patients with neovascular diseases. Indian Journal of Ophthalmology, 65(7), 559–568.CrossRefPubMedPubMedCentral Hong, I. H., & Park, S. P. (2017). Quantitative physiological measurements to evaluate the response of antivascular endothelial growth factor treatment in patients with neovascular diseases. Indian Journal of Ophthalmology, 65(7), 559–568.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Deuse, T., et al. (2009). Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction. Circulation, 120(11 Suppl), S247–S254. Deuse, T., et al. (2009). Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction. Circulation, 120(11 Suppl), S247–S254.
28.
Zurück zum Zitat Liu, X., et al. (2016). miR-30c regulates proliferation, apoptosis and differentiation via the Shh signaling pathway in P19 cells. Experimental & Molecular Medicine, 48(7), e248.CrossRef Liu, X., et al. (2016). miR-30c regulates proliferation, apoptosis and differentiation via the Shh signaling pathway in P19 cells. Experimental & Molecular Medicine, 48(7), e248.CrossRef
29.
Zurück zum Zitat Gu, Y., et al. (2013). miR-30b and miR-30c expression predicted response to tyrosine kinase inhibitors as first line treatment in non-small cell lung cancer. Chinese Medical Journal, 126(23), 4435–4439.PubMed Gu, Y., et al. (2013). miR-30b and miR-30c expression predicted response to tyrosine kinase inhibitors as first line treatment in non-small cell lung cancer. Chinese Medical Journal, 126(23), 4435–4439.PubMed
30.
Zurück zum Zitat Jentzsch, C., et al. (2012). A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes. Journal of Molecular and Cellular Cardiology, 52(1), 13–20.CrossRefPubMed Jentzsch, C., et al. (2012). A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes. Journal of Molecular and Cellular Cardiology, 52(1), 13–20.CrossRefPubMed
31.
Zurück zum Zitat Irani, S., & Hussain, M. M. (2015). Role of microRNA-30c in lipid metabolism, adipogenesis, cardiac remodeling and cancer. Current Opinion in Lipidology, 26(2), 139–146.CrossRefPubMed Irani, S., & Hussain, M. M. (2015). Role of microRNA-30c in lipid metabolism, adipogenesis, cardiac remodeling and cancer. Current Opinion in Lipidology, 26(2), 139–146.CrossRefPubMed
32.
Zurück zum Zitat Sayed, D., et al. (2007). MicroRNAs play an essential role in the development of cardiac hypertrophy. Circulation Research, 100(3), 416–424.CrossRefPubMed Sayed, D., et al. (2007). MicroRNAs play an essential role in the development of cardiac hypertrophy. Circulation Research, 100(3), 416–424.CrossRefPubMed
33.
Zurück zum Zitat Duisters, R.F., et al. (2009). miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circulation Research, 104(2), 170–178.CrossRefPubMed Duisters, R.F., et al. (2009). miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circulation Research, 104(2), 170–178.CrossRefPubMed
34.
Zurück zum Zitat Chino, H., et al. (2016). Cardiogenic syncope possibly related to bevacizumab-containing combination chemotherapy for advanced non-small cell lung cancer. Journal of Thoracic Disease, 8(9), 2646–2650.CrossRefPubMedPubMedCentral Chino, H., et al. (2016). Cardiogenic syncope possibly related to bevacizumab-containing combination chemotherapy for advanced non-small cell lung cancer. Journal of Thoracic Disease, 8(9), 2646–2650.CrossRefPubMedPubMedCentral
Metadaten
Titel
Serum miR-30c Level Predicted Cardiotoxicity in Non-small Cell Lung Cancer Patients Treated with Bevacizumab
verfasst von
Fang Zhou
Xike Lu
Xun Zhang
Publikationsdatum
08.05.2018
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 3/2018
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-018-9457-z

Weitere Artikel der Ausgabe 3/2018

Cardiovascular Toxicology 3/2018 Zur Ausgabe