Skip to main content
Erschienen in: Inflammation 2/2020

01.04.2020 | Original Article

Sevoflurane Post-treatment Upregulated miR-203 Expression to Attenuate Cerebral Ischemia-Reperfusion-Induced Neuroinflammation by Targeting MyD88

verfasst von: Huagen Zhong, Hui Chen, Changwei Gu

Erschienen in: Inflammation | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

To investigate the expression of miR-203 by sevoflurane treatment and its effect on neuroinflammation induced by cerebral ischemia-reperfusion. Rats were randomly divided into sham operation group (C), cerebral ischemia-reperfusion group (I/R), and sevoflurane treatment group (S). The neurological function score was evaluated. The area of cerebral infarction was evaluated by TTC staining. The expression of inflammatory factor in brain tissue was detected by ELISA. The apoptosis of neurons was detected by TUNEL. A miR-203 agonist and inhibitor treated the cerebral ischemia-reperfusion model. The luciferase assay verified whether miR-203 targeted MyD88. To further verify the relationship between miR-203 and MyD88, the I/R group was treated with MyD88 activator and inhibitor, and the mRNA expressions of miR-203 and MyD88 in brain tissue were detected by RT-PCR. Western blot was used to detect the expression of MyD88 protein in brain tissue, and the above experiment was repeated. Compared with the I/R group, miR-203 mRNA was significantly increased in brain tissue and the neurological function score, the area of cerebral infarction, the expression of inflammatory factor, and MyD88 mRNA were decreased in the S group (P < 0.05). After treatment of miR-203 agonist and inhibitor in the I/R group, overexpression of miR-203 could alleviate cerebral ischemia-reperfusion injury, and miR-203 inhibitor could aggravate cerebral ischemia-reperfusion injury. The miR-203 agonist could enhance the action of sevoflurane, and the miR-203 inhibitor could reverse the action of sevoflurane. miR-203 agonist treatment could inhibit the expression of MyD88 gene and protein and reduce the neuroinflammation induced by cerebral ischemia-reperfusion. The treatment of sevoflurane upregulated miR-203 expression, which targeted MyD88 and attenuate neuroinflammation induced by cerebral ischemia-reperfusion.
Literatur
1.
Zurück zum Zitat Wright, E.A., C.D. d’Esterre, L.B. Morrison, N. Cockburn, M. Kovacs, and T.Y. Lee. 2016. Absolute cerebral blood flow infarction threshold for 3-hour ischemia time determined with CT perfusion and 18F-FFMZ-PET imaging in a porcine model of cerebral ischemia. PLoS One 11 (6): e0158157.PubMedCentralCrossRef Wright, E.A., C.D. d’Esterre, L.B. Morrison, N. Cockburn, M. Kovacs, and T.Y. Lee. 2016. Absolute cerebral blood flow infarction threshold for 3-hour ischemia time determined with CT perfusion and 18F-FFMZ-PET imaging in a porcine model of cerebral ischemia. PLoS One 11 (6): e0158157.PubMedCentralCrossRef
2.
Zurück zum Zitat Gu, N., Y. Dong, Y. Tian, Z. Di, Z. Liu, M. Chang, et al. 2017. Anti-apoptotic and angiogenic effects of intelectin-1 in rat cerebral ischemia. Brain Research Bulletin 130: 27–35.CrossRef Gu, N., Y. Dong, Y. Tian, Z. Di, Z. Liu, M. Chang, et al. 2017. Anti-apoptotic and angiogenic effects of intelectin-1 in rat cerebral ischemia. Brain Research Bulletin 130: 27–35.CrossRef
3.
Zurück zum Zitat Ginsberg, M.D., and R. Busto. 1989. Rodent models of cerebral ischemia. Stroke 20 (12): 1627–1642.CrossRef Ginsberg, M.D., and R. Busto. 1989. Rodent models of cerebral ischemia. Stroke 20 (12): 1627–1642.CrossRef
4.
Zurück zum Zitat Siesjö, B.K. 1992. Pathophysiology and treatment of focal cerebral ischemia: Part I: pathophysiology. Journal of Neurosurgery 77 (2): 169–184.CrossRef Siesjö, B.K. 1992. Pathophysiology and treatment of focal cerebral ischemia: Part I: pathophysiology. Journal of Neurosurgery 77 (2): 169–184.CrossRef
5.
Zurück zum Zitat Braeuninger, S., C. Kleinschnitz, B. Nieswandt, and G. Stoll. 2012. Focal cerebral ischemia. Methods in Molecular Biology 788: 29–42.CrossRef Braeuninger, S., C. Kleinschnitz, B. Nieswandt, and G. Stoll. 2012. Focal cerebral ischemia. Methods in Molecular Biology 788: 29–42.CrossRef
6.
Zurück zum Zitat Geyikoglu, F., K. Koc, S. Colak, H.S. Erol, S. Cerig, B.K. Yardimci, O. Cakmak, M.B. Dortbudak, G. Eser, F. Aysin, N.S. Ozek, and S. Yildirim. 2019. Propolis and its combination with boric acid protect against ischemia/reperfusion-induced acute kidney injury by inhibiting oxidative stress, inflammation, DNA damage, and apoptosis in rats. Biological Trace Element Research 192 (2): 214–221.CrossRef Geyikoglu, F., K. Koc, S. Colak, H.S. Erol, S. Cerig, B.K. Yardimci, O. Cakmak, M.B. Dortbudak, G. Eser, F. Aysin, N.S. Ozek, and S. Yildirim. 2019. Propolis and its combination with boric acid protect against ischemia/reperfusion-induced acute kidney injury by inhibiting oxidative stress, inflammation, DNA damage, and apoptosis in rats. Biological Trace Element Research 192 (2): 214–221.CrossRef
7.
Zurück zum Zitat Xiao, A., R. Chen, M. Kang, and S. Tan. 2012. Heat-sensitive moxibustion attenuates the inflammation after focal cerebral ischemia/ reperfusion injury. Neural Regeneration Research 7 (33): 2600–2606.PubMedCentralPubMed Xiao, A., R. Chen, M. Kang, and S. Tan. 2012. Heat-sensitive moxibustion attenuates the inflammation after focal cerebral ischemia/ reperfusion injury. Neural Regeneration Research 7 (33): 2600–2606.PubMedCentralPubMed
8.
Zurück zum Zitat Cuzzocrea, S., D.P. Riley, A.P. Caputi, and D. Salvemini. 2001. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacological Reviews 53 (1): 135–159.PubMed Cuzzocrea, S., D.P. Riley, A.P. Caputi, and D. Salvemini. 2001. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacological Reviews 53 (1): 135–159.PubMed
9.
Zurück zum Zitat Szabó, C. 1996. The pathophysiological role of peroxynitrite in shock, inflammation, and ischemia-reperfusion injury. Shock (Augusta, Ga.)6 (2): 79–88.CrossRef Szabó, C. 1996. The pathophysiological role of peroxynitrite in shock, inflammation, and ischemia-reperfusion injury. Shock (Augusta, Ga.)6 (2): 79–88.CrossRef
10.
Zurück zum Zitat Kuang, X., L.-F. Wang, L. Yu, Y.-J. Li, Y.-N. Wang, Q. He, C. Chen, and J.R. du. 2014. Ligustilide ameliorates neuroinflammation and brain injury in focal cerebral ischemia/reperfusion rats: Involvement of inhibition of TLR4/peroxiredoxin 6 signaling. Free Radical Biology and Medicine 71: 165–175.CrossRef Kuang, X., L.-F. Wang, L. Yu, Y.-J. Li, Y.-N. Wang, Q. He, C. Chen, and J.R. du. 2014. Ligustilide ameliorates neuroinflammation and brain injury in focal cerebral ischemia/reperfusion rats: Involvement of inhibition of TLR4/peroxiredoxin 6 signaling. Free Radical Biology and Medicine 71: 165–175.CrossRef
11.
Zurück zum Zitat Amani, H., R. Habibey, F. Shokri, S.J. Hajmiresmail, O. Akhavan, A. Mashaghi, and H. Pazoki-Toroudi. 2019. Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling. Scientific Reports 9 (1): 6044.PubMedCentralCrossRef Amani, H., R. Habibey, F. Shokri, S.J. Hajmiresmail, O. Akhavan, A. Mashaghi, and H. Pazoki-Toroudi. 2019. Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling. Scientific Reports 9 (1): 6044.PubMedCentralCrossRef
12.
Zurück zum Zitat Singh, R.P., I. Massachi, S. Manickavel, S. Singh, N.P. Rao, S. Hasan, D.K. Mc Curdy, S. Sharma, D. Wong, B.H. Hahn, and H. Rehimi. 2013. The role of miRNA in inflammation and autoimmunity. Autoimmunity Reviews 12 (12): 1160–1165.CrossRef Singh, R.P., I. Massachi, S. Manickavel, S. Singh, N.P. Rao, S. Hasan, D.K. Mc Curdy, S. Sharma, D. Wong, B.H. Hahn, and H. Rehimi. 2013. The role of miRNA in inflammation and autoimmunity. Autoimmunity Reviews 12 (12): 1160–1165.CrossRef
13.
Zurück zum Zitat Thounaojam, M.C., D.K. Kaushik, and A. Basu. 2013. MicroRNAs in the brain: it’s regulatory role in neuroinflammation. Molecular Neurobiology 47 (3): 1034–1044.CrossRef Thounaojam, M.C., D.K. Kaushik, and A. Basu. 2013. MicroRNAs in the brain: it’s regulatory role in neuroinflammation. Molecular Neurobiology 47 (3): 1034–1044.CrossRef
14.
Zurück zum Zitat Lopez-Ramirez, M.A., D. Wu, G. Pryce, J.E. Simpson, A. Reijerkerk, J. King-Robson, O. Kay, H.E. de Vries, M.C. Hirst, B. Sharrack, D. Baker, D.K. Male, G.J. Michael, and I.A. Romero. 2014. MicroRNA-155 negatively affects blood–brain barrier function during neuroinflammation. The FASEB Journal 28 (6): 2551–2565.CrossRef Lopez-Ramirez, M.A., D. Wu, G. Pryce, J.E. Simpson, A. Reijerkerk, J. King-Robson, O. Kay, H.E. de Vries, M.C. Hirst, B. Sharrack, D. Baker, D.K. Male, G.J. Michael, and I.A. Romero. 2014. MicroRNA-155 negatively affects blood–brain barrier function during neuroinflammation. The FASEB Journal 28 (6): 2551–2565.CrossRef
15.
Zurück zum Zitat Yu, H., M. Wu, P. Zhao, Y. Huang, W. Wang, and W. Yin. 2015. Neuroprotective effects of viral overexpression of microRNA-22 in rat and cell models of cerebral ischemia-reperfusion injury. Journal of Cellular Biochemistry 116 (2): 233–241.CrossRef Yu, H., M. Wu, P. Zhao, Y. Huang, W. Wang, and W. Yin. 2015. Neuroprotective effects of viral overexpression of microRNA-22 in rat and cell models of cerebral ischemia-reperfusion injury. Journal of Cellular Biochemistry 116 (2): 233–241.CrossRef
16.
Zurück zum Zitat Yang, Z., L. Zhong, S. Zhong, R. Xian, and B. Yuan. 2015. miR-203 protects microglia mediated brain injury by regulating inflammatory responses via feedback to MyD88 in ischemia. Molecular Immunology 65 (2): 293–301.CrossRef Yang, Z., L. Zhong, S. Zhong, R. Xian, and B. Yuan. 2015. miR-203 protects microglia mediated brain injury by regulating inflammatory responses via feedback to MyD88 in ischemia. Molecular Immunology 65 (2): 293–301.CrossRef
17.
Zurück zum Zitat Wei, J., X. Huang, Z. Zhang, W. Jia, Z. Zhao, Y. Zhang, X. Liu, and G. Xu. 2013. MyD88 as a target of microRNA-203 in regulation of lipopolysaccharide or Bacille Calmette-Guerin induced inflammatory response of macrophage RAW264. 7 cells. Molecular Immunology 55 (3–4): 303–309.CrossRef Wei, J., X. Huang, Z. Zhang, W. Jia, Z. Zhao, Y. Zhang, X. Liu, and G. Xu. 2013. MyD88 as a target of microRNA-203 in regulation of lipopolysaccharide or Bacille Calmette-Guerin induced inflammatory response of macrophage RAW264. 7 cells. Molecular Immunology 55 (3–4): 303–309.CrossRef
18.
Zurück zum Zitat Preckel, B., W. Schlack, T. Comfere, D. Obal, H. Barthel, and V. Thämer. 1998. Effects of enflurane, isoflurane, sevoflurane and desflurane on reperfusion injury after regional myocardial ischaemia in the rabbit heart in vivo. British Journal of Anaesthesia 81 (6): 905–912.CrossRef Preckel, B., W. Schlack, T. Comfere, D. Obal, H. Barthel, and V. Thämer. 1998. Effects of enflurane, isoflurane, sevoflurane and desflurane on reperfusion injury after regional myocardial ischaemia in the rabbit heart in vivo. British Journal of Anaesthesia 81 (6): 905–912.CrossRef
19.
Zurück zum Zitat Annecke, T., D. Chappell, C. Chen, M. Jacob, U. Welsch, C. Sommerhoff, M. Rehm, P.F. Conzen, and B.F. Becker. 2010. Sevoflurane preserves the endothelial glycocalyx against ischaemia–reperfusion injury. British Journal of Anaesthesia 104 (4): 414–421.CrossRef Annecke, T., D. Chappell, C. Chen, M. Jacob, U. Welsch, C. Sommerhoff, M. Rehm, P.F. Conzen, and B.F. Becker. 2010. Sevoflurane preserves the endothelial glycocalyx against ischaemia–reperfusion injury. British Journal of Anaesthesia 104 (4): 414–421.CrossRef
20.
Zurück zum Zitat Li, X.-Q., X.-Z. Cao, J. Wang, B. Fang, W.-F. Tan, and H. Ma. 2014. Sevoflurane preconditioning ameliorates neuronal deficits by inhibiting microglial MMP-9 expression after spinal cord ischemia/reperfusion in rats. Molecular Brain 7 (1): 69.PubMedCentralCrossRef Li, X.-Q., X.-Z. Cao, J. Wang, B. Fang, W.-F. Tan, and H. Ma. 2014. Sevoflurane preconditioning ameliorates neuronal deficits by inhibiting microglial MMP-9 expression after spinal cord ischemia/reperfusion in rats. Molecular Brain 7 (1): 69.PubMedCentralCrossRef
21.
Zurück zum Zitat Sanders, R.D., and M. Maze. 2010. Neuroinflammation and postoperative cognitive dysfunction: can anaesthesia be therapeutic? European Journal of Anaesthesiology (EJA) 27 (1): 3–5.CrossRef Sanders, R.D., and M. Maze. 2010. Neuroinflammation and postoperative cognitive dysfunction: can anaesthesia be therapeutic? European Journal of Anaesthesiology (EJA) 27 (1): 3–5.CrossRef
22.
Zurück zum Zitat Xie, X.-J., D.-M. Fan, K. Xi, Y.-W. Chen, P.-W. Qi, Q.-H. Li, et al. 2017. Suppression of microRNA-135b-5p protects against myocardial ischemia/reperfusion injury by activating JAK2/STAT3 signaling pathway in mice during sevoflurane anesthesia. Bioscience Reports 37 (3): BSR20170186.PubMedCentralCrossRef Xie, X.-J., D.-M. Fan, K. Xi, Y.-W. Chen, P.-W. Qi, Q.-H. Li, et al. 2017. Suppression of microRNA-135b-5p protects against myocardial ischemia/reperfusion injury by activating JAK2/STAT3 signaling pathway in mice during sevoflurane anesthesia. Bioscience Reports 37 (3): BSR20170186.PubMedCentralCrossRef
23.
Zurück zum Zitat Zhao, H., W.G. Mayhan, and H. Sun. 2008. A modified suture technique produces consistent cerebral infarction in rats. Brain Research 1246: 158–166.PubMedCentralCrossRef Zhao, H., W.G. Mayhan, and H. Sun. 2008. A modified suture technique produces consistent cerebral infarction in rats. Brain Research 1246: 158–166.PubMedCentralCrossRef
24.
Zurück zum Zitat Shi, C., Y. Ding, F.Y.J. Jin, T. Li, J. Ma, L. Qiao, W.Z. Pan, and K.Z. Li. 2018. Effects of sevoflurane post-conditioning in cerebral ischemia-reperfusion injury via TLR4/NF-kappaB pathway in rats. European Review for Medical and Pharmacological Sciences 22 (6): 1770–1775.PubMed Shi, C., Y. Ding, F.Y.J. Jin, T. Li, J. Ma, L. Qiao, W.Z. Pan, and K.Z. Li. 2018. Effects of sevoflurane post-conditioning in cerebral ischemia-reperfusion injury via TLR4/NF-kappaB pathway in rats. European Review for Medical and Pharmacological Sciences 22 (6): 1770–1775.PubMed
25.
Zurück zum Zitat Sugimori, H., H. Yao, H. Ooboshi, S. Ibayashi, and M. Iida. 2004. Krypton laser-induced photothrombotic distal middle cerebral artery occlusion without craniectomy in mice. Brain Research Protocols13 (3): 189–196.CrossRef Sugimori, H., H. Yao, H. Ooboshi, S. Ibayashi, and M. Iida. 2004. Krypton laser-induced photothrombotic distal middle cerebral artery occlusion without craniectomy in mice. Brain Research Protocols13 (3): 189–196.CrossRef
26.
Zurück zum Zitat Jiang, Y., L. Li, X. Tan, B. Liu, Y. Zhang, and C. Li. 2015. miR-210 mediates vagus nerve stimulation-induced antioxidant stress and anti-apoptosis reactions following cerebral ischemia/reperfusion injury in rats. Journal of Neurochemistry 134 (1): 173–181.CrossRef Jiang, Y., L. Li, X. Tan, B. Liu, Y. Zhang, and C. Li. 2015. miR-210 mediates vagus nerve stimulation-induced antioxidant stress and anti-apoptosis reactions following cerebral ischemia/reperfusion injury in rats. Journal of Neurochemistry 134 (1): 173–181.CrossRef
27.
Zurück zum Zitat Liu, F., Z. Wang, Y. Qiu, M. Wei, C. Li, Y. Xie, L. Shen, Y. Huang, and C. Ma. 2017. Suppression of MyD88-dependent signaling alleviates neuropathic pain induced by peripheral nerve injury in the rat. Journal of Neuroinflammation 14 (1): 70.PubMedCentralCrossRef Liu, F., Z. Wang, Y. Qiu, M. Wei, C. Li, Y. Xie, L. Shen, Y. Huang, and C. Ma. 2017. Suppression of MyD88-dependent signaling alleviates neuropathic pain induced by peripheral nerve injury in the rat. Journal of Neuroinflammation 14 (1): 70.PubMedCentralCrossRef
28.
Zurück zum Zitat Nader, N.D., C.M. Li, W.Z. Khadra, R. Reedy, and A.L. Panos. 2004. Anesthetic myocardial protection with sevoflurane. Journal of Cardiothoracic and Vascular Anesthesia 18 (3): 269–274.CrossRef Nader, N.D., C.M. Li, W.Z. Khadra, R. Reedy, and A.L. Panos. 2004. Anesthetic myocardial protection with sevoflurane. Journal of Cardiothoracic and Vascular Anesthesia 18 (3): 269–274.CrossRef
29.
Zurück zum Zitat Jeyaseelan, K., K.Y. Lim, and A. Armugam. 2008. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39 (3): 959–966.CrossRef Jeyaseelan, K., K.Y. Lim, and A. Armugam. 2008. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39 (3): 959–966.CrossRef
30.
Zurück zum Zitat Tang, Y., J. Zheng, Y. Sun, Z. Wu, Z. Liu, and G. Huang. 2009. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. International Heart Journal 50 (3): 377–387.CrossRef Tang, Y., J. Zheng, Y. Sun, Z. Wu, Z. Liu, and G. Huang. 2009. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. International Heart Journal 50 (3): 377–387.CrossRef
31.
Zurück zum Zitat Victoni, T., F.R. Coelho, A.L. Soares, A. De Freitas, T. Secher, R. Guabiraba, et al. 2010. Local and remote tissue injury upon intestinal ischemia and reperfusion depends on the TLR/MyD88 signaling pathway. Medical Microbiology and Immunology 199 (1): 35–42.CrossRef Victoni, T., F.R. Coelho, A.L. Soares, A. De Freitas, T. Secher, R. Guabiraba, et al. 2010. Local and remote tissue injury upon intestinal ischemia and reperfusion depends on the TLR/MyD88 signaling pathway. Medical Microbiology and Immunology 199 (1): 35–42.CrossRef
32.
Zurück zum Zitat Fan, H., L. Li, X. Zhang, Y. Liu, C. Yang, Y. Yang, et al. 2009. Oxymatrine Downregulates TLR4, TLR2, MyD88, and NF-B and protects rat brains against focal ischemia. Mediators of Inflammation 2009. Fan, H., L. Li, X. Zhang, Y. Liu, C. Yang, Y. Yang, et al. 2009. Oxymatrine Downregulates TLR4, TLR2, MyD88, and NF-B and protects rat brains against focal ischemia. Mediators of Inflammation 2009.
33.
Zurück zum Zitat Feng, Y., H. Zhao, X. Xu, E.S. Buys, M.J. Raher, J.C. Bopassa, et al. 2008. Innate immune adaptor MyD88 mediates neutrophil recruitment and myocardial injury after ischemia-reperfusion in mice. American Journal of Physiology. Heart and Circulatory Physiology 295 (3): H1311–H1318.PubMedCentralCrossRef Feng, Y., H. Zhao, X. Xu, E.S. Buys, M.J. Raher, J.C. Bopassa, et al. 2008. Innate immune adaptor MyD88 mediates neutrophil recruitment and myocardial injury after ischemia-reperfusion in mice. American Journal of Physiology. Heart and Circulatory Physiology 295 (3): H1311–H1318.PubMedCentralCrossRef
Metadaten
Titel
Sevoflurane Post-treatment Upregulated miR-203 Expression to Attenuate Cerebral Ischemia-Reperfusion-Induced Neuroinflammation by Targeting MyD88
verfasst von
Huagen Zhong
Hui Chen
Changwei Gu
Publikationsdatum
01.04.2020
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2020
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01147-2

Weitere Artikel der Ausgabe 2/2020

Inflammation 2/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.