Skip to main content
Erschienen in: BMC Pulmonary Medicine 1/2019

Open Access 01.12.2019 | Research article

Side lying during nebulisation can significantly improve apical deposition in healthy adults and adults with mild cystic fibrosis lung disease: a randomised crossover trial

verfasst von: Ruth L. Dentice, Mark R. Elkins, Jordan Verschuer, Stefan Eberl, Genevieve Dwyer, Peter T. P. Bye

Erschienen in: BMC Pulmonary Medicine | Ausgabe 1/2019

Abstract

Background

In people with and without Cystic Fibrosis (CF), does side lying during nebulisation change: the proportion of the dose loaded in the nebuliser that is deposited in the lungs; the uniformity of deposition throughout the lungs; or the apical drug density as a percentage of the drug density in the remaining lung? Do these effects differ depending on the degree of lung disease present?

Methods

A randomised crossover trial with concealed allocation, intention-to-treat analysis and blinded assessors, involving 39 adults: 13 healthy, 13 with mild CF lung disease (FEV1 > 80%pred), and 13 with more advanced CF lung disease (FEV1 < 80%pred). In random order, 4 mL of nebulised radioaerosol was inhaled in upright sitting and in alternate right and left side lying at 2-min intervals, for 20 min.

Results

Compared to sitting upright, lung deposition and the uniformity of deposition were not significantly altered by side lying in any of the three groups. In sitting, the density of the deposition was significantly less in the apical regions than in the rest of the lung in all participants. Side lying significantly improved apical deposition in healthy adults (MD, 13%; 95% CI, 7 to 19), and in minimal CF lung disease (MD, 4%; 95% CI, 1 to 7) but not in advanced disease (MD, 4%; 95% CI, − 2 to 9).

Conclusion

Alternating between right and left side lying during nebulisation significantly improves apical deposition in healthy adults and in adults with mild CF lung disease, without substantial detriment to overall deposition.

Trial registration

Retrospectively registered 4/7/2011.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12890-019-0886-7) contains supplementary material, which is available to authorized users.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
99mTc-DTPA
Technetium-99 m diethylene triamine penta-acetic acid
CF
Cystic Fibrosis
FEV1
Forced expiration in the first second
FVC
Forced vital capacity
MD
Mean difference

Background

The distribution of deposition of inhaled drugs is influenced by airflow. In sitting, tidal ventilation is preferentially to basal regions [1]. Nebulisation in sitting may under-dose the apical regions [2]. It has been hypothesised that inhalation in alternate side lying will improve homogeneity of drug deposition by dosing each lung (including its apex) when it is dependent [3]. Additionally, many people with Cystic Fibrosis (CF) prefer to nebulise in side lying due to comfort and convenience [4]. A recent study confirmed that the use of an alternate side-lying positioning strategy during inhalation therapy does not prolong nebulisation time [5].
There are however potential disadvantages of a side-lying strategy. Gravitational and biomechanical changes reduce lung volumes and compliance in side lying [6, 7]. Closing volume of the small airways equals or exceeds functional residual capacity as early as 44 years of age, in recumbent positions [8, 9]. Side lying can also decrease alertness [10], negatively impacting inspiratory flows and nebuliser technique. Finally, oropharyngeal pooling may increase the proportion of the loaded drug dose being swallowed in side lying compared to upright sitting. Thus any potential benefits of the side-lying strategy may be outweighed if less drug is deposited in the lungs. Investigation of the strategy’s effect on the pattern of drug deposition is therefore needed to guide clinical practice.
Progression of CF lung disease reduces both lung elasticity and airflow [11]. Therefore, it is possible that the effect of the side-lying strategy would be different in people with mild versus advanced lung disease. Accordingly the research questions were:
1.
In people with and without CF, does side lying during nebulisation change the proportion of the dose loaded in the nebuliser that is deposited in the lungs; the uniformity of deposition throughout the lungs; or the apical drug density as a percentage of the drug density in the remaining lung?
 
2.
Do these effects differ depending on the degree of lung disease present?
 

Methods

A randomised crossover trial was undertaken to compare two positioning strategies during nebulised delivery of a radioaerosol on 2 days within 1 week, separated by at least one washout day. Adults with CF were recruited from the CF Clinic at Royal Prince Alfred Hospital, Sydney, Australia. Potential participants were excluded if they: had received a lung transplant, were colonised with Burkholderia cepacia complex, were not clinically stable; were pregnant; or had hepatomegaly, hepatosplenomegaly, current intestinal obstruction, or significant malignant, neurological or musculoskeletal comorbidities. Adults with CF were recruited in two strata: mild and advanced CF. Mild CF was defined as stable normal lung function with an FEV1 and FVC greater than 80% predicted and a normal FEV1:FVC ratio, plus minimal upper lobe damage evident on chest radiograph or, if available, on computerised tomographic (CT) scan of the lungs. Advanced CF was defined as stable abnormal (moderate to severe) lung function defined as FEV1 less than 80% predicted, with evidence of upper lobe damage on chest radiograph or, if available, on CT scan of the lungs. A third group of healthy adults with an FEV1 greater than 80% predicted were recruited from the staff of the hospital.
Testing appointments were scheduled at least 4 h after standard CF morning medications, and not within 1 h of a meal. On both days, participants performed spirometry1 in standing according to American Thoracic Society criteria [12]. Healthy participants and participants with mild CF lung disease were required to demonstrate an FEV1 greater than 80% predicted that day. Participants with CF were required to have maintained their FEV1 within 10% of their best value recorded as an outpatient within the preceding 6 months that day. Participants were then randomised, by flipping a coin, to one of two positioning regimens for their first day: upright sitting, which was maintained throughout the nebulisation period of 20 min; or alternate side lying, with alternation between left and right sides every 2 minutes during the nebulisation period of 20 min.
In an earlier study by our group [5], the two-minute turning regimen and the 20-min total inhalation period were shown to be appropriate to completely nebulise the loaded dose and to ensure equal total nebuliser output while in each side lying position. During the study inhalation periods, all participants were requested to adopt their allocated position and inhale slowly, with a slightly greater volume than at rest, maintaining a lip seal throughout. Inhalation breathing pattern was minimally coached to reflect the spontaneous nebulisation that occurs during unsupervised self-management. When participants returned for their second study day, they adopted the other positioning regimen. Participants with CF were requested to keep their medication regimen, chest physiotherapy and exercise constant during their entire study participation period.

Outcome measures

Radioaerosol inhalation

The standard study inhalation was 4 mL of normal saline mixed with 500 MBq of technetium-99 m diethylene triamine penta-acetic acid (99mTc-DTPA), delivered by an LC Star jet nebuliser (Pari, Germany)2 with mouthpiece and nose clip. Delivery of the aerosol was 20 min in duration on each occasion, which was sufficient to deliver a total activity of about 100 MBq. The nebuliser was shielded with a flexible, lead, wrap-around shield. A Y-piece was fitted to the mouthpiece and a filter applied to the expiratory arm to trap exhaled radiation. The nebuliser was driven with 6 L/min of air via the hospital wall supply and a calibrated flow meter.
The nebuliser with tubing, Y-piece and filter were weighed on an electronic balance3 before and after the 4 mL dose was loaded; and after the delivery period to allow estimation of the dose delivered to the participant and the residual volume in the nebuliser. The positioning methods adopted during inhalation are pictured in Fig. 1.

Imaging of deposition and blinded analysis

At the completion of the nebulisation, the participant was positioned supine and head first under a triple-head gamma camerad4. The camera performed a 20-min deposition scan, incorporating simultaneous emission and transmission acquisitions using a dynamic SPECT imaging protocol well established by our research group [1316]. Data from the transmission scan were used for attenuation correction of the emission data and also served to segment the three-dimensional margin of the lung fields in order to objectively assess the regional deposition of radioaerosol within the lungs (Fig. 2).
The scan also distinguished regional body deposition: oropharynx versus lungs versus stomach. These data were re-coded before being passed to the investigators to ensure blinding of the body position adopted during each study. For a total delivered activity of 100 MBq, for which approximately 50 to 70% deposits in the lungs, the effective dose to the subject equates to 1.0 to 1.5 mSv per inhalation, giving a total effective dose per participant of 2 to 3 mSv for the complete study. This is safely below the annual radiation dose constraint of 5 mSv per individual in any year for adult volunteers in biomedical research, as mandated by the NSW Radiation Control Regulation [17]. Research procedures were approved by the Ethics Committees of the Sydney Local Health District (RPAH Zone) and the Radiation Safety Officer before commencement. All participants provided written informed consent prior to participating in this study.

Data analysis

The 3-dimensional map of the lung fields was divided into unit volumes (voxels). The amount of radioactivity in each voxel was calculated. The deposition fraction was calculated as the amount of radioactivity in the lung fields divided by the amount of radioactivity in the nebuliser before inhalation, with correction for radioactive decay. The standard deviation of the radioactivity across all voxels within the margins of the lung fields was used as an index of variability of the pattern of deposition for each participant (variability index). Lower values represent better uniformity of deposition. The ratio of apical:non-apical deposition of radioactivity was determined by the mean number of counts per voxel in the apical one third of the lung field divided by the mean number of counts per voxel in the basal two thirds of the lung field.
The prospectively registered primary outcome was the variability index described above. Our data from initial deposition scans in repeat mucociliary clearance studies in healthy participants indicates that the standard deviation of the uniformity index is 0.18 [18]. In the absence of an existing threshold, we nominated that a 15% improvement in the uniformity index would be the minimum difference that would make the side-lying strategy worthwhile. Adopting a significance level of 0.05 and power of 80%, it was determined, using a commercial sample size calculator5, that we would require a sample size of 13 in each of the three groups.
Paired t-tests were used to compare the effect of the two positioning regimens on the deposition fraction, variability index, and ratio of apical: non-apical deposition of radioactivity. Where the data were not normally distributed, a Mann-Whitney test replaced the paired t-test. Correlations between percent predicted FEV1 and deposition patterns were investigated with linear regression. Pair-wise independent t-tests were used to compare subgroups with respect to the effect of the positioning on the variability of deposition. All t-tests were reported as a mean difference with a 95% confidence interval.

Results

Flow of participants through the study

Thirty-nine participants were recruited and completed the study, 13 in each group as outlined in the flowchart in Fig. 3 and Table 1. For individual participant data, see Additional file 1.
Table 1
Study participants’ characteristics
Characteristic
Healthy
(n = 13)
Mild CF
(n = 13)
Advanced CF
(n = 13)
Age (y) mean ± SD
(range)
28 ± 5
(23 to 40)
27 ± 7
(19 to 41)
30 ± 6
(22 to 41)
FEV1 (% pred.) mean ± SD
(range)
104 ± 9
(92 to 119)
92 ± 10
(80 to 115)
48 ± 17
(25 to 78)
Gender (M:F)
6:7
6:7
7:6

Does side lying change the proportion of the dose loaded in the nebuliser that is deposited in the lungs?

In sitting, there was significantly greater lung deposition in mild CF compared to healthy participants mean difference (MD, 5%; 95% CI, 1 to 9). There was also significantly greater lung deposition in mild compared to advanced CF participants (MD, 5%; 95% CI, 1 to 9). The proportion of the dose loaded in the nebuliser that was deposited in the lungs was unaltered by side lying in any group Table 2. The distribution of drug deposition to lung, orophranyx and stomach was also unaltered by side-lying strategy (analyses not shown but raw data is available in the Additional file 1).
Table 2
Percentage of the loaded nebuliser dose that deposits in the lungs (mean ± SD), for the three participant groups in sitting and side lying
 
Healthy
(%)
Mild CF
(%)
Advanced CF
(%)
Sitting
11 ± 6
16 ± 5
11 ± 5
Side lying
11 ± 6
17 ± 5
11 ± 3

Does side lying change the uniformity of deposition throughout the lungs?

The uniformity index increased with increasing lung disease. The variability of the deposition was not significantly improved or worsened by the side-lying strategy in any of the three groups. The mean variability in lung deposition for each group in the two positioning regimens is presented in Table 3 below with representative scans obtained after the aerosol delivery in sitting in Fig. 4.
Table 3
The mean (±SD) variability in lung deposition measured as the standard deviation in counts of radioactivity per unit lung volume in sitting and side lying for the three participant groups, with representative scans of the group participants in sitting
SD counts per voxel
Healthy
Mild CF
Advanced CF
Sitting
1294 ± 920
1920 ± 851
2229 ± 774
Side lying
1250 ± 981
1980 ± 370
1892 ± 486

Does side lying change the apical drug density?

If drug density was entirely uniform then the apical density per unit volume would be exactly the same as the drug density in the remaining lung per unit volume (100%). In sitting, the density of the deposition was significantly reduced in the apical regions in all groups, to approximately 40% of the density in the non-apical regions. The side-lying strategy significantly improved apical deposition in the healthy adults to 49 ± 14% (MD, 13%; 95% CI, 7 to 20), and in the adults with minimal CF lung disease to 47 ± 7% (MD, 4%; 95% CI, 1 to 7). The mean effect of the side-lying strategy in adults with advanced disease was similar, increasing from 41 ± 20% to 45 ± 21% with side lying, but the variability was greater so this was not statistically significant (95% CI, − 2 to 9) Table 4.
Table 4
The apical drug density per unit lung volume as a percentage of the drug density per unit lung volume in the remaining lung; for the three participant groups in sitting and side lying with the mean difference (%) and 95% confidence interval between the two positioning strategies
%
Healthy
Mild CF
Advanced CF
Sitting
36 ± 11
43 ± 8
41 ± 20
Side lying
49 ± 14
47 ± 7
45 ± 21
Mean Difference
95% CI
13
(7 to 19)
4
(1 to 7)
4
(−2 to 9)

Correlations between change in apical deposition and % predicted FEV1

The change in apical deposition in response to the repositioning from upright to side lying for nebulisation in relation to percent predicted FEV1 is represented in Fig. 5. There was no correlation between the change in apical deposition in response to the repositioning from upright to side lying for nebulisation and percent predicted FEV1 (R2 = 0.067).

Discussion

The percentage of the loaded nebuliser dose that deposited in the lungs was low for all participants, 11 to 16% are consistent with previous and current studies of jet nebulisers [2, 19, 20]. Healthy participants had significantly lower lung deposition than participants with mild CF in both positioning regimens. Participants with CF were very familiar with nebulised therapies in comparison to healthy naive participants who reported that 20 min of inhalation on a nebuliser was more challenging than they expected. The distribution of drug deposition to lung, orophranyx and stomach was unaltered by side-lying strategy.
In sitting, adults with advanced CF had almost twice as much variability in lung drug deposition compared to healthy adults of similar age. With increasing lung disease there is increasing variability in lung deposition of a nebulised drug. This finding is consistent with previous work involving deposition scanning in this patient population [3, 4, 2123]. The variability of deposition was not substantially altered by side lying in either group. Participants with advanced CF demonstrated the greatest response with a MD in the variability index of 337 (95% CI, − 186 to 860). This equates to a 7% change, which is half that of our proposed minimum clinically worthwhile difference of 15%; nevertheless, the positive trend provides further reassurance that taking a nebuliser in side lying does not substantially compromise drug deposition.
Statistically the side-lying positioning strategy can improve apical deposition. Our best estimate of the effect is a positive one in all three participant groups (Healthy: 13% better (95%CI: 7 to 19) Mild CF: 4% better (95%CI: 1 to 7) Advanced CF: 4% better (95%CI: − 2 to 9). It is difficult to estimate the clinical impact of this small shift of 4 % towards greater apical deposition in CF participants over the course of multiple nebulised drug doses. Permitting people with CF to have the flexibility to nebulise in side lying may improve treatment adherence in patients who prefer this regimen. The effect of regular use of this positioning regimen could be further examined in a longitudinal trial.
The side-lying strategy was only effective at reversing the deficiency in apical deposition in the subgroups of participants who had well preserved lung function. This suggests that the side-lying strategy may be more helpful in children with CF, or in respiratory conditions where lung function is well preserved, such as pneumocystis pneumonia [24].Additionally, the delivery rate of inhaled medications should be further investigated in mesh and adaptive delivery nebulisers and with drugs of greater viscosity.

Conclusion

There is no negative impact on lung deposition if adults with CF nebulise in alternate side lying. Adults with CF have almost twice as much variability in the density of nebulised drug deposition across the lung fields compared to healthy adults, which is unaltered with inhalation in side lying. Positioning in side lying can improve apical deposition in healthy lungs and to a lesser extent in mild CF lung disease. Given many patients prefer to nebulise in side lying due to comfort and convenience, permitting nebulisation in side lying may improve treatment adherence without adversely affecting deposition, provided side lying on each side is given equal time.

Acknowledgements

The authors are grateful to the participants at Royal Prince Alfred Hospital for their involvement.
The Sydney Local Health District (RPAH Zone) Ethics Committee approved this study (X09–0017/18, HREC/09/RPAH/25). All participants gave written informed consent before data collection began and also consented to publication of the de-identified data.
Consent has been obtained in written form from the individual in Fig. 1 for inclusion of this material in this publication, as confirmed by the authors.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Fußnoten
1
Easy-One, NDD Medical Technologies, Andover, USA
 
2
LC plus nebuliser, Pari, Hamburg, Germany
 
3
1206MP Scale, Sartorius, Cambridge, UK
 
4
Trionix XLT Triple Head Gamma Camera, Trionix, Twinsburg, USA
 
5
PS Power & Sample Size Calculator, Visual Components, Lake Orion, USA.
 
Literatur
1.
Zurück zum Zitat Amis TC, Jones HA, Hughes JM. Effect of posture on inter-regional distribution of pulmonary perfusion and VA/Q ratios in man. Respir Physiol. 1984;56(2):169–82.CrossRef Amis TC, Jones HA, Hughes JM. Effect of posture on inter-regional distribution of pulmonary perfusion and VA/Q ratios in man. Respir Physiol. 1984;56(2):169–82.CrossRef
2.
Zurück zum Zitat Laube BL, Links JM, LaFrance ND, Wagner HNJ, Rosenstein BJ. Homogeneity of bronchopulmonary distribution of 99mTc aerosol in normal subjects and in cystic fibrosis patients. Chest. 1989;95(4):822–30.CrossRef Laube BL, Links JM, LaFrance ND, Wagner HNJ, Rosenstein BJ. Homogeneity of bronchopulmonary distribution of 99mTc aerosol in normal subjects and in cystic fibrosis patients. Chest. 1989;95(4):822–30.CrossRef
3.
Zurück zum Zitat Laube BL, Jashnani R, Dalby RN, Zeitlin PL. Targeting aerosol deposition in patients with cystic fibrosis: effects of alterations in particle size and inspiratory flow rate. Chest. 2000;118(4):1069–76.CrossRef Laube BL, Jashnani R, Dalby RN, Zeitlin PL. Targeting aerosol deposition in patients with cystic fibrosis: effects of alterations in particle size and inspiratory flow rate. Chest. 2000;118(4):1069–76.CrossRef
4.
Zurück zum Zitat Wilson DM, Burniston E, Parkin MA, Smye S, Robinson P, Littlewood J. Improvement of nebulised antibiotic delivery in cystic fibrosis. Arch Dis Child. 1999;80(4):348–52.CrossRef Wilson DM, Burniston E, Parkin MA, Smye S, Robinson P, Littlewood J. Improvement of nebulised antibiotic delivery in cystic fibrosis. Arch Dis Child. 1999;80(4):348–52.CrossRef
5.
Zurück zum Zitat Dentice RL, Elkins MR, Dwyer GM, Bye PTP. The use of an alternate side lying positioning strategy during inhalation therapy does not prolong nebulisation time in adults with cystic fibrosis: a randomised crossover trial. BMC Pulm Med. 2018;18(1):3.CrossRef Dentice RL, Elkins MR, Dwyer GM, Bye PTP. The use of an alternate side lying positioning strategy during inhalation therapy does not prolong nebulisation time in adults with cystic fibrosis: a randomised crossover trial. BMC Pulm Med. 2018;18(1):3.CrossRef
6.
Zurück zum Zitat Hough A. The effect of posture on lung function. Physiotherapy. 1984;70:101–4.PubMed Hough A. The effect of posture on lung function. Physiotherapy. 1984;70:101–4.PubMed
7.
Zurück zum Zitat Castile R, Mead J, Jackson A, Wohl ME, Stokes D. Effects of posture on flow volume curve configuration in normal humans. J Appl Physiol. 1982;53:1175–83.CrossRef Castile R, Mead J, Jackson A, Wohl ME, Stokes D. Effects of posture on flow volume curve configuration in normal humans. J Appl Physiol. 1982;53:1175–83.CrossRef
8.
Zurück zum Zitat Leblanc P, Ruff F, Milic-Emili J. Effects of age and body position on airway closure in man. J Appl Physiol. 1970;28:448–51.CrossRef Leblanc P, Ruff F, Milic-Emili J. Effects of age and body position on airway closure in man. J Appl Physiol. 1970;28:448–51.CrossRef
9.
Zurück zum Zitat McCarthy DS, Spencer R, Greene R, Milic-Emili J. Measurement of ‘closing volume’ as a simple and sensitive test for early detection of small airway disease. Am J Med. 1972;52:747–53.CrossRef McCarthy DS, Spencer R, Greene R, Milic-Emili J. Measurement of ‘closing volume’ as a simple and sensitive test for early detection of small airway disease. Am J Med. 1972;52:747–53.CrossRef
10.
Zurück zum Zitat Hahn-Winslow E. Cardiovascular consequences of bed rest. Heart Lung. 1985;14:236–46. Hahn-Winslow E. Cardiovascular consequences of bed rest. Heart Lung. 1985;14:236–46.
11.
Zurück zum Zitat Elkins M, Bye P. Mucociliary clearance and cystic fibrosis. In: Hamid Q, Shannon J, Martin J, editors. Physiologic basis of respiratory disease. New York: B. Decker; 2005. p. 417–28. Elkins M, Bye P. Mucociliary clearance and cystic fibrosis. In: Hamid Q, Shannon J, Martin J, editors. Physiologic basis of respiratory disease. New York: B. Decker; 2005. p. 417–28.
12.
Zurück zum Zitat American Thoracic Society. Standardization of spirometry: 1994 update. Am J Resp Crit Care Med. 1995;152:1107–36.CrossRef American Thoracic Society. Standardization of spirometry: 1994 update. Am J Resp Crit Care Med. 1995;152:1107–36.CrossRef
13.
Zurück zum Zitat Eberl S, Daviskas E, Constable C, Young I. Aerosol deposition and clearance measurement: a novel technique using dynamic SPET. Eur J Nucl Med Mol Imaging. 2001;28(9):1365–72.CrossRef Eberl S, Daviskas E, Constable C, Young I. Aerosol deposition and clearance measurement: a novel technique using dynamic SPET. Eur J Nucl Med Mol Imaging. 2001;28(9):1365–72.CrossRef
14.
Zurück zum Zitat Eberl S, Chan HK, Daviskas E. SPECT imaging for Radioaerosol deposition and clearance studies. J Aerosol Med. 2006;19(1):8–20.CrossRef Eberl S, Chan HK, Daviskas E. SPECT imaging for Radioaerosol deposition and clearance studies. J Aerosol Med. 2006;19(1):8–20.CrossRef
15.
Zurück zum Zitat Glover W, Chan HK, Eberl S, Daviskas E, Anderson S. Lung deposition of mannitol powder aerosol in healthy subjects. J Aerosol Med. 2006;19(4):522–32.CrossRef Glover W, Chan HK, Eberl S, Daviskas E, Anderson S. Lung deposition of mannitol powder aerosol in healthy subjects. J Aerosol Med. 2006;19(4):522–32.CrossRef
16.
Zurück zum Zitat Glover W, Chan HK, Eberl S, Daviskas E, Verschuer J. Effect of particle size of dry powder mannitol on the lung deposition in healthy volunteers. Int J Pharm. 2008;349(1):314–22.CrossRef Glover W, Chan HK, Eberl S, Daviskas E, Verschuer J. Effect of particle size of dry powder mannitol on the lung deposition in healthy volunteers. Int J Pharm. 2008;349(1):314–22.CrossRef
17.
Zurück zum Zitat Radiation Control Regulation NSW legislation wbsite. 2013. Radiation Control Regulation NSW legislation wbsite. 2013.
18.
Zurück zum Zitat Brown JS, Zeman KL, Bennett WD. Regional deposition of coarse particles and ventilation distribution in healthy subjects and patients with cystic fibrosis. J Aerosol Med. 2001;14(4):443–54.CrossRef Brown JS, Zeman KL, Bennett WD. Regional deposition of coarse particles and ventilation distribution in healthy subjects and patients with cystic fibrosis. J Aerosol Med. 2001;14(4):443–54.CrossRef
19.
Zurück zum Zitat Laube BL, Geller DE, Lin T-C, Dalby RN, Diener-West M, Zeitlin PL. Positive expiratory pressure changes aerosol distribution in patients with cystic fibrosis. Respir Care. 2005;50(11):1438–44.PubMed Laube BL, Geller DE, Lin T-C, Dalby RN, Diener-West M, Zeitlin PL. Positive expiratory pressure changes aerosol distribution in patients with cystic fibrosis. Respir Care. 2005;50(11):1438–44.PubMed
20.
Zurück zum Zitat Pritchard JN, Hatley RH, Denyer J, Hollen DV. Mesh nebulizers have become the first choice for new nebulized pharmaceutical drug developments. Ther Deliv. 2018;9(2):121–36.CrossRef Pritchard JN, Hatley RH, Denyer J, Hollen DV. Mesh nebulizers have become the first choice for new nebulized pharmaceutical drug developments. Ther Deliv. 2018;9(2):121–36.CrossRef
21.
Zurück zum Zitat Fauroux B, Itti E, Pigeot J, Isabey D, Meignan M, Ferry G, Lofaso F, Willemot J-M, Clement A, Harf A. Optimization of Aerosol Deposition by Pressure Support in Children with Cystic Fibrosis: An Experimental and Clinical Study. Am J Respir Crit Care Med. 2000;162(6):2265–2271.CrossRef Fauroux B, Itti E, Pigeot J, Isabey D, Meignan M, Ferry G, Lofaso F, Willemot J-M, Clement A, Harf A. Optimization of Aerosol Deposition by Pressure Support in Children with Cystic Fibrosis: An Experimental and Clinical Study. Am J Respir Crit Care Med. 2000;162(6):2265–2271.CrossRef
22.
Zurück zum Zitat Robinson M, Regnis JA, Bailey DL, King M, Bautovich GJ, Bye PT. Effect of hypertonic saline, amiloride, and cough on mucociliary clearance in patients with cystic fibrosis. Am J Resp Crit Care Med. 1996;153(5):1503–9.CrossRef Robinson M, Regnis JA, Bailey DL, King M, Bautovich GJ, Bye PT. Effect of hypertonic saline, amiloride, and cough on mucociliary clearance in patients with cystic fibrosis. Am J Resp Crit Care Med. 1996;153(5):1503–9.CrossRef
23.
Zurück zum Zitat Robinson M, Hemming AL, Regnis JA, et al. Effect of increasing doses of hypertonic saline on mucociliary clearance in patients with cystic fibrosis. Thorax. 1997;52(10):900–3.CrossRef Robinson M, Hemming AL, Regnis JA, et al. Effect of increasing doses of hypertonic saline on mucociliary clearance in patients with cystic fibrosis. Thorax. 1997;52(10):900–3.CrossRef
24.
Zurück zum Zitat O’Doherty MJ, Thomas SH, Page CJ, Bradbeer C, Nunan TO, Bateman NT. Does inhalation in the supine position increase deposition in the upper part of the lung? Chest. 1990;97:1343–8.CrossRef O’Doherty MJ, Thomas SH, Page CJ, Bradbeer C, Nunan TO, Bateman NT. Does inhalation in the supine position increase deposition in the upper part of the lung? Chest. 1990;97:1343–8.CrossRef
Metadaten
Titel
Side lying during nebulisation can significantly improve apical deposition in healthy adults and adults with mild cystic fibrosis lung disease: a randomised crossover trial
verfasst von
Ruth L. Dentice
Mark R. Elkins
Jordan Verschuer
Stefan Eberl
Genevieve Dwyer
Peter T. P. Bye
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Pulmonary Medicine / Ausgabe 1/2019
Elektronische ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-019-0886-7

Weitere Artikel der Ausgabe 1/2019

BMC Pulmonary Medicine 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.