Skip to main content
Erschienen in: Journal of Clinical Monitoring and Computing 6/2014

01.12.2014 | Original Research

Simulating physiological interactions in a hybrid system of mathematical models

verfasst von: Jörn Kretschmer, Thomas Haunsberger, Erick Drost, Edmund Koch, Knut Möller

Erschienen in: Journal of Clinical Monitoring and Computing | Ausgabe 6/2014

Einloggen, um Zugang zu erhalten

Abstract

Mathematical models can be deployed to simulate physiological processes of the human organism. Exploiting these simulations, reactions of a patient to changes in the therapy regime can be predicted. Based on these predictions, medical decision support systems (MDSS) can help in optimizing medical therapy. An MDSS designed to support mechanical ventilation in critically ill patients should not only consider respiratory mechanics but should also consider other systems of the human organism such as gas exchange or blood circulation. A specially designed framework allows combining three model families (respiratory mechanics, cardiovascular dynamics and gas exchange) to predict the outcome of a therapy setting. Elements of the three model families are dynamically combined to form a complex model system with interacting submodels. Tests revealed that complex model combinations are not computationally feasible. In most patients, cardiovascular physiology could be simulated by simplified models decreasing computational costs. Thus, a simplified cardiovascular model that is able to reproduce basic physiological behavior is introduced. This model purely consists of difference equations and does not require special algorithms to be solved numerically. The model is based on a beat-to-beat model which has been extended to react to intrathoracic pressure levels that are present during mechanical ventilation. The introduced reaction to intrathoracic pressure levels as found during mechanical ventilation has been tuned to mimic the behavior of a complex 19-compartment model. Tests revealed that the model is able to represent general system behavior comparable to the 19-compartment model closely. Blood pressures were calculated with a maximum deviation of 1.8 % in systolic pressure and 3.5 % in diastolic pressure, leading to a simulation error of 0.3 % in cardiac output. The gas exchange submodel being reactive to changes in cardiac output showed a resulting deviation of less than 0.1 %. Therefore, the proposed model is usable in combinations where cardiovascular simulation does not have to be detailed. Computing costs have been decreased dramatically by a factor 186 compared to a model combination employing the 19-compartment model.
Literatur
1.
Zurück zum Zitat The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef
2.
Zurück zum Zitat Ricard JD, Dreyfuss D, Saumon G. Ventilator-induced lung injury. Eur Respir J Suppl. 2003;42:2s–9s.CrossRefPubMed Ricard JD, Dreyfuss D, Saumon G. Ventilator-induced lung injury. Eur Respir J Suppl. 2003;42:2s–9s.CrossRefPubMed
3.
4.
Zurück zum Zitat Schranz C, Knöbel C, Kretschmer J, Zhao Z, Möller K. Hierarchical parameter identification in models of respiratory mechanics. IEEE Trans Biomed Eng. 2011;58(11):3234–41.CrossRefPubMed Schranz C, Knöbel C, Kretschmer J, Zhao Z, Möller K. Hierarchical parameter identification in models of respiratory mechanics. IEEE Trans Biomed Eng. 2011;58(11):3234–41.CrossRefPubMed
5.
Zurück zum Zitat Kretschmer J, Wahl A, Möller K. Dynamically generated models for medical decision support systems. Comput Biol Med. 2011;41:899–907.CrossRefPubMed Kretschmer J, Wahl A, Möller K. Dynamically generated models for medical decision support systems. Comput Biol Med. 2011;41:899–907.CrossRefPubMed
6.
Zurück zum Zitat Cuellar AA, Lloyd CM, Nielsen PF, Bullivant DP, Nickerson DP, Hunter PJ. An overview of CellML 1.1, a biological model description language. SIMULATION Trans Soc Model Simul Int. 2003;79(12):740–7.CrossRef Cuellar AA, Lloyd CM, Nielsen PF, Bullivant DP, Nickerson DP, Hunter PJ. An overview of CellML 1.1, a biological model description language. SIMULATION Trans Soc Model Simul Int. 2003;79(12):740–7.CrossRef
7.
Zurück zum Zitat Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics. 2003;19(4):524–31.CrossRefPubMed Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics. 2003;19(4):524–31.CrossRefPubMed
8.
Zurück zum Zitat Keating SM, Bornstein BJ, Finney A, Hucka M. SBMLToolbox: an SBML toolbox for MATLAB users. Bioinformatics. 2006;22(10):1275–7.CrossRefPubMed Keating SM, Bornstein BJ, Finney A, Hucka M. SBMLToolbox: an SBML toolbox for MATLAB users. Bioinformatics. 2006;22(10):1275–7.CrossRefPubMed
9.
Zurück zum Zitat Miller A, Marsh J, Reeve A, Garny A, Britten R, Halstead M, Cooper J, Nickerson D, Nielsen P. An overview of the CellML API and its implementation. BMC Bioinformatics. 2010;11(1):178.CrossRefPubMedPubMedCentral Miller A, Marsh J, Reeve A, Garny A, Britten R, Halstead M, Cooper J, Nickerson D, Nielsen P. An overview of the CellML API and its implementation. BMC Bioinformatics. 2010;11(1):178.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Beard DA, Neal ML, Tabesh-Saleki N, Thompson CT, Bassingthwaighte JB, Shimoyama M, Carlson BE. Multiscale modeling and data integration in the virtual physiological rat project. Ann Biomed Eng. 2012;40(11):2365–78.CrossRefPubMedPubMedCentral Beard DA, Neal ML, Tabesh-Saleki N, Thompson CT, Bassingthwaighte JB, Shimoyama M, Carlson BE. Multiscale modeling and data integration in the virtual physiological rat project. Ann Biomed Eng. 2012;40(11):2365–78.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Erson EZ, Cavusoglu MC. Design of a framework for modeling, integration and simulation of physiological models. Comput Methods Programs Biomed. 2012;107(3):524–37.CrossRefPubMed Erson EZ, Cavusoglu MC. Design of a framework for modeling, integration and simulation of physiological models. Comput Methods Programs Biomed. 2012;107(3):524–37.CrossRefPubMed
12.
Zurück zum Zitat Neal ML, Gennari JH, Arts T, Cook DL. Advances in semantic representation for multiscale biosimulation: a case study in merging models. Pac Symp Biocomput. 2009;304–315. Neal ML, Gennari JH, Arts T, Cook DL. Advances in semantic representation for multiscale biosimulation: a case study in merging models. Pac Symp Biocomput. 2009;304–315.
13.
Zurück zum Zitat Kretschmer J, Möller K. A hierarchical model family of cardiovascular dynamics. In: Jobbágy Á, editors. 5th European conference of the international federation for medical and biological engineering. Vol. 37. Budapest, Hungary: Springer; 2011. p. 295–298. Kretschmer J, Möller K. A hierarchical model family of cardiovascular dynamics. In: Jobbágy Á, editors. 5th European conference of the international federation for medical and biological engineering. Vol. 37. Budapest, Hungary: Springer; 2011. p. 295–298.
14.
Zurück zum Zitat Parlikar T, Verghese G. A simple cycle-averaged model for cardiovascular dynamics. Conf Proc IEEE Eng Med Biol Soc. 2005;5:5490–4.PubMed Parlikar T, Verghese G. A simple cycle-averaged model for cardiovascular dynamics. Conf Proc IEEE Eng Med Biol Soc. 2005;5:5490–4.PubMed
15.
Zurück zum Zitat Leaning MS, Pullen HE, Carson ER, Finkelstein L. Modelling a complex biological system: the human cardiovascular system—1. Methodology and model description. T I Meas Control. 1983;5(2):71–86.CrossRef Leaning MS, Pullen HE, Carson ER, Finkelstein L. Modelling a complex biological system: the human cardiovascular system—1. Methodology and model description. T I Meas Control. 1983;5(2):71–86.CrossRef
16.
Zurück zum Zitat Smith BW, Chase JG, Nokes RI, Shaw GM, Wake G. Minimal haemodynamic system model including ventricular interaction and valve dynamics. Med Eng Phys. 2004;26(2):131–9.CrossRefPubMed Smith BW, Chase JG, Nokes RI, Shaw GM, Wake G. Minimal haemodynamic system model including ventricular interaction and valve dynamics. Med Eng Phys. 2004;26(2):131–9.CrossRefPubMed
17.
Zurück zum Zitat Danielsen M, Ottesen JT. A cardiovascular model. In: Ottesen JT, et al., editors. Applied mathematical models in human physiology. Philadelphia: Society for Industrial and Applied Mathematics; 2004. p. 113–26. Danielsen M, Ottesen JT. A cardiovascular model. In: Ottesen JT, et al., editors. Applied mathematical models in human physiology. Philadelphia: Society for Industrial and Applied Mathematics; 2004. p. 113–26.
18.
Zurück zum Zitat Liang F, Liu H. Simulation of hemodynamic responses to the valsalva maneuver: an integrative computational model of the cardiovascular system and the autonomic nervous system. J Physiol Sci. 2006;56(1):45–65.CrossRefPubMed Liang F, Liu H. Simulation of hemodynamic responses to the valsalva maneuver: an integrative computational model of the cardiovascular system and the autonomic nervous system. J Physiol Sci. 2006;56(1):45–65.CrossRefPubMed
19.
Zurück zum Zitat Luo C, Ware D, Zwischenberger J, Clark J. Using a Human Cardiopulmonary Model to Study and Predict Normal and Diseased Ventricular Mechanics, Septal Interaction, and Atrio-Ventricular Blood Flow Patterns. Cardiovasc Eng Int J. 2007;7(1):17–31.CrossRef Luo C, Ware D, Zwischenberger J, Clark J. Using a Human Cardiopulmonary Model to Study and Predict Normal and Diseased Ventricular Mechanics, Septal Interaction, and Atrio-Ventricular Blood Flow Patterns. Cardiovasc Eng Int J. 2007;7(1):17–31.CrossRef
20.
Zurück zum Zitat Fontecave Jallon J, Abdulhay E, Calabrese P, Baconnier P, Gumery P-Y. A model of mechanical interactions between heart and lungs. Philos Trans A Math Phys Eng Sci. 2009;367(1908):4741–57.CrossRefPubMed Fontecave Jallon J, Abdulhay E, Calabrese P, Baconnier P, Gumery P-Y. A model of mechanical interactions between heart and lungs. Philos Trans A Math Phys Eng Sci. 2009;367(1908):4741–57.CrossRefPubMed
21.
Zurück zum Zitat Beneken JEW, De Wit B. A physical approach to haemodynamic aspects of the human cardiovascular system. In: Reeve EB, Guyton AC, editors. Physical bases of circulatory transport. Philadelphia: W. B. Saunders; 1967. Beneken JEW, De Wit B. A physical approach to haemodynamic aspects of the human cardiovascular system. In: Reeve EB, Guyton AC, editors. Physical bases of circulatory transport. Philadelphia: W. B. Saunders; 1967.
22.
Zurück zum Zitat deBoer RW, Karemaker JM, Strackee J. Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am J Physiol. 1987;253(3 Pt 2):H680–9. deBoer RW, Karemaker JM, Strackee J. Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am J Physiol. 1987;253(3 Pt 2):H680–9.
23.
Zurück zum Zitat Salvi P. Pulse waves: how vascular hemodynamics affects blood pressure. Milan: Springer; 2012.CrossRef Salvi P. Pulse waves: how vascular hemodynamics affects blood pressure. Milan: Springer; 2012.CrossRef
24.
Zurück zum Zitat Benallal H, Busso T. Analysis of end-tidal and arterial PCO2 gradients using a breathing model. Eur J Appl Physiol. 2000;83(4–5):402–8.CrossRefPubMed Benallal H, Busso T. Analysis of end-tidal and arterial PCO2 gradients using a breathing model. Eur J Appl Physiol. 2000;83(4–5):402–8.CrossRefPubMed
25.
Zurück zum Zitat Chiari L, Avanzolini G, Ursino M. A comprehensive simulator of the human respiratory system: validation with experimental and simulated data. Ann Biomed Eng. 1997;25(6):985–99.CrossRefPubMed Chiari L, Avanzolini G, Ursino M. A comprehensive simulator of the human respiratory system: validation with experimental and simulated data. Ann Biomed Eng. 1997;25(6):985–99.CrossRefPubMed
26.
Zurück zum Zitat Kretschmer J, Schranz C, Knöbel C, Wingender J, Koch E, Möller K. Efficient computation of interacting model systems. J Biomed Inform. 2013;46(3):401–9.CrossRefPubMed Kretschmer J, Schranz C, Knöbel C, Wingender J, Koch E, Möller K. Efficient computation of interacting model systems. J Biomed Inform. 2013;46(3):401–9.CrossRefPubMed
27.
Zurück zum Zitat Lagarias J, Reeds J, Wright M, Wright P. Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optim. 1998;9(1):112–47.CrossRef Lagarias J, Reeds J, Wright M, Wright P. Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optim. 1998;9(1):112–47.CrossRef
28.
Zurück zum Zitat Pizov R, Cohen M, Weiss Y, Segal E, Cotev S, Perel A. Positive end-expiratory pressure-induced hemodynamic changes are reflected in the arterial pressure waveform. Crit Care Med. 1996;24(8):1381–7.CrossRefPubMed Pizov R, Cohen M, Weiss Y, Segal E, Cotev S, Perel A. Positive end-expiratory pressure-induced hemodynamic changes are reflected in the arterial pressure waveform. Crit Care Med. 1996;24(8):1381–7.CrossRefPubMed
Metadaten
Titel
Simulating physiological interactions in a hybrid system of mathematical models
verfasst von
Jörn Kretschmer
Thomas Haunsberger
Erick Drost
Edmund Koch
Knut Möller
Publikationsdatum
01.12.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Clinical Monitoring and Computing / Ausgabe 6/2014
Print ISSN: 1387-1307
Elektronische ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-013-9502-1

Weitere Artikel der Ausgabe 6/2014

Journal of Clinical Monitoring and Computing 6/2014 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.