Skip to main content
Erschienen in: Radiological Physics and Technology 1/2019

09.01.2019

Simulation of photon-counting detectors for conversion of dual-energy-subtracted computed tomography number to electron density

verfasst von: Masatoshi Saito

Erschienen in: Radiological Physics and Technology | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

For accurate tissue-inhomogeneity correction in radiotherapy treatment planning, the author previously proposed a conversion of the energy-subtracted computed tomography (CT) number to electron density (ΔHU–ρe conversion). The purpose of the present study was to provide a method for investigating the accuracy of a photon-counting detector (PCD) used in the ΔHU–ρe conversion by performing dual-energy CT image simulations of a PCD system with two energy bins. To optimize the tube voltage and threshold energy, the image noise and errors in ρe calibration were evaluated using three types of virtual phantoms: a 35-cm-diameter pure water phantom, 33-cm-diameter solid water surrogate phantom equipped with 16 inserts, and another solid water surrogate phantom with a 25-cm diameter. The third phantom was used to investigate the effect of the object’s size on the ρe-calibration accuracy of PCDs. Two different scenarios for the PCD energy response were considered, corresponding to the ideal and realistic cases. In addition, a simple correction method for improving the spectral separation of the dual energies in a realistic PCD was proposed to compensate for its performance loss. In the realistic PCD case, there exists a trade-off between the image noise and ρe-calibration errors. Furthermore, the weakest image noise was nearly twice that for the ideal case, and the ρe-calibration error did not reach practical levels for any threshold energy. Nevertheless, the proposed correction method is likely to decrease the ρe-calibration errors of a realistic PCD to the level of the ideal case, yielding more accurate ρe values that are less affected by object size variation.
Literatur
1.
Zurück zum Zitat Parker RP, Hobday PA, Cassell KJ. The direct use of CT numbers in radiotherapy dosage calculations for inhomogeneous media. Phys Med Biol. 1979;24(4):802–9.CrossRefPubMed Parker RP, Hobday PA, Cassell KJ. The direct use of CT numbers in radiotherapy dosage calculations for inhomogeneous media. Phys Med Biol. 1979;24(4):802–9.CrossRefPubMed
2.
Zurück zum Zitat Constantinou C, Harrington JC, DeWerd LA. An electron density calibration phantom for CT-based treatment planning computers. Med Phys. 1992;19(2):325–7.CrossRefPubMed Constantinou C, Harrington JC, DeWerd LA. An electron density calibration phantom for CT-based treatment planning computers. Med Phys. 1992;19(2):325–7.CrossRefPubMed
3.
Zurück zum Zitat Schneider U, Pedroni E, Lomax A. The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys Med Biol. 1996;41(1):111–24.CrossRefPubMed Schneider U, Pedroni E, Lomax A. The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys Med Biol. 1996;41(1):111–24.CrossRefPubMed
4.
Zurück zum Zitat du Plessis FCP, Willemse CA, Lotter MG, Goedhals L. The indirect use of CT numbers to establish material properties needed for Monte Carlo calculation of dose distributions in patients. Med Phys. 1998;25(7):1195–201.CrossRefPubMed du Plessis FCP, Willemse CA, Lotter MG, Goedhals L. The indirect use of CT numbers to establish material properties needed for Monte Carlo calculation of dose distributions in patients. Med Phys. 1998;25(7):1195–201.CrossRefPubMed
5.
Zurück zum Zitat Saito M. Potential of dual-energy subtraction for converting CT numbers to electron density based on a single linear relationship. Med Phys. 2012;39(4):2021–30.CrossRefPubMed Saito M. Potential of dual-energy subtraction for converting CT numbers to electron density based on a single linear relationship. Med Phys. 2012;39(4):2021–30.CrossRefPubMed
6.
Zurück zum Zitat Tsukihara M, Noto Y, Hayakawa T, Saito M. Conversion of the energy-subtracted CT number to electron density based on a single linear relationship: an experimental verification using a clinical dual-source CT scanner. Phys Med Biol. 2013;58(9):N135–44.CrossRefPubMed Tsukihara M, Noto Y, Hayakawa T, Saito M. Conversion of the energy-subtracted CT number to electron density based on a single linear relationship: an experimental verification using a clinical dual-source CT scanner. Phys Med Biol. 2013;58(9):N135–44.CrossRefPubMed
7.
Zurück zum Zitat Tsukihara M, Noto Y, Sasamoto R, Hayakawa T, Saito M. Initial implementation of the conversion from the energy-subtracted CT number to electron density in tissue inhomogeneity corrections: an anthropomorphic phantom study of radiotherapy treatment planning. Med Phys. 2015;42(3):1378–88.CrossRefPubMed Tsukihara M, Noto Y, Sasamoto R, Hayakawa T, Saito M. Initial implementation of the conversion from the energy-subtracted CT number to electron density in tissue inhomogeneity corrections: an anthropomorphic phantom study of radiotherapy treatment planning. Med Phys. 2015;42(3):1378–88.CrossRefPubMed
8.
Zurück zum Zitat Landry G, Parodi K, Wildberger JE, Verhaegen F. Deriving concentrations of oxygen and carbon in human tissues using single- and dual-energy CT for ion therapy applications. Phys Med Biol. 2013;58(15):5029–48.CrossRefPubMed Landry G, Parodi K, Wildberger JE, Verhaegen F. Deriving concentrations of oxygen and carbon in human tissues using single- and dual-energy CT for ion therapy applications. Phys Med Biol. 2013;58(15):5029–48.CrossRefPubMed
9.
Zurück zum Zitat Hünemohr N, Krauss B, Tremmel C, Ackermann B, Jäkel O, Greilich S. Experimental verification of ion stopping power prediction from dual energy CT data in tissue surrogates. Phys Med Biol. 2014;59(1):83–96.CrossRefPubMed Hünemohr N, Krauss B, Tremmel C, Ackermann B, Jäkel O, Greilich S. Experimental verification of ion stopping power prediction from dual energy CT data in tissue surrogates. Phys Med Biol. 2014;59(1):83–96.CrossRefPubMed
10.
Zurück zum Zitat Primak AN, Giraldo JCR, Liu X, Yu L, McCollough CH. Improved dual-energy material discrimination for dual-source CT by means of additional spectral filtration. Med Phys. 2009;36(4):1359–69.CrossRefPubMedPubMedCentral Primak AN, Giraldo JCR, Liu X, Yu L, McCollough CH. Improved dual-energy material discrimination for dual-source CT by means of additional spectral filtration. Med Phys. 2009;36(4):1359–69.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Taguchi K. Energy-sensitive photon counting detector-based X-ray computed tomography. Radiol Phys Technol. 2017;10(1):8–22.CrossRefPubMed Taguchi K. Energy-sensitive photon counting detector-based X-ray computed tomography. Radiol Phys Technol. 2017;10(1):8–22.CrossRefPubMed
13.
Zurück zum Zitat Faby S, Kuchenbecker S, Sawall S, Simons D, Schlemmer H-P, Lell M, Kachelrieß M. Performance of today’s dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: a simulation study. Med Phys. 2015;42(10):4349–66.CrossRefPubMed Faby S, Kuchenbecker S, Sawall S, Simons D, Schlemmer H-P, Lell M, Kachelrieß M. Performance of today’s dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: a simulation study. Med Phys. 2015;42(10):4349–66.CrossRefPubMed
14.
Zurück zum Zitat Saito M, Tsukihara M. Technical Note: Exploring the limit for the conversion of energy-subtracted CT number to electron density for high-atomic-number materials. Med Phys. 2014;41(7):071701.CrossRefPubMed Saito M, Tsukihara M. Technical Note: Exploring the limit for the conversion of energy-subtracted CT number to electron density for high-atomic-number materials. Med Phys. 2014;41(7):071701.CrossRefPubMed
15.
Zurück zum Zitat Saito M. Optimized low-kV spectrum of dual-energy CT equipped with high-kV tin filtration for electron density measurements. Med Phys. 2011;38(6):2850–8.CrossRefPubMed Saito M. Optimized low-kV spectrum of dual-energy CT equipped with high-kV tin filtration for electron density measurements. Med Phys. 2011;38(6):2850–8.CrossRefPubMed
16.
Zurück zum Zitat Cranley K, Gilmore BJ, Fogarty GWA, Deponds L. Catalog of diagnostic X-ray spectra and other data (IPEM report no. 78). York: IPEM Publications; 1997. Cranley K, Gilmore BJ, Fogarty GWA, Deponds L. Catalog of diagnostic X-ray spectra and other data (IPEM report no. 78). York: IPEM Publications; 1997.
17.
Zurück zum Zitat Harpen MD. A simple theorem relating noise and patient dose in computed tomography. Med Phys. 1999;26(11):2231–4.CrossRefPubMed Harpen MD. A simple theorem relating noise and patient dose in computed tomography. Med Phys. 1999;26(11):2231–4.CrossRefPubMed
18.
Zurück zum Zitat Schlomka JP, Roessl E, Dorscheid R, Dill S, Martens G, Istel T, Bäumer C, Herrmann C, Steadman R, Zeitler G, Livne A, Proksa R. Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys Med Biol. 2008;53(15):4031–47.CrossRefPubMed Schlomka JP, Roessl E, Dorscheid R, Dill S, Martens G, Istel T, Bäumer C, Herrmann C, Steadman R, Zeitler G, Livne A, Proksa R. Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys Med Biol. 2008;53(15):4031–47.CrossRefPubMed
19.
Zurück zum Zitat Cammin J, Xu J, Barber WC, Iwanczyk JS, Hartsough NE, Taguchi K. A cascaded model of spectral distortions due to spectral response effects and pulse pileup effects in a photon-counting X-ray detector for CT. Med Phys. 2014;41(4):041905.CrossRefPubMedPubMedCentral Cammin J, Xu J, Barber WC, Iwanczyk JS, Hartsough NE, Taguchi K. A cascaded model of spectral distortions due to spectral response effects and pulse pileup effects in a photon-counting X-ray detector for CT. Med Phys. 2014;41(4):041905.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat International Committee on Radiation Units and Measurements. Photon, electron, proton, and neutron interaction data for body tissues (ICRU Report 46), Bethesda; 1992. International Committee on Radiation Units and Measurements. Photon, electron, proton, and neutron interaction data for body tissues (ICRU Report 46), Bethesda; 1992.
21.
Zurück zum Zitat Bazalova M, Carrier J-F, Beaulieu L, Verhaegen F. Dual-energy CT-based material extraction for tissue segmentation in Monte Carlo dose calculations. Phys Med Biol. 2008;53(9):2439–56.CrossRefPubMed Bazalova M, Carrier J-F, Beaulieu L, Verhaegen F. Dual-energy CT-based material extraction for tissue segmentation in Monte Carlo dose calculations. Phys Med Biol. 2008;53(9):2439–56.CrossRefPubMed
22.
Zurück zum Zitat Berger MJ, Hubbell JH. XCOM: photon cross-sections on a personal computer. Gaithersburg: NBSIR; 1987. pp. 87–3597. Berger MJ, Hubbell JH. XCOM: photon cross-sections on a personal computer. Gaithersburg: NBSIR; 1987. pp. 87–3597.
23.
Zurück zum Zitat Zhou H, Boone JM. Monte Carlo evaluation of CTDI∞ in infinitely long cylinders of water, polyethylene and PMMA with diameters from 10 mm to 500 mm. Med Phys. 2008;35(6):2424–31.CrossRefPubMedPubMedCentral Zhou H, Boone JM. Monte Carlo evaluation of CTDI in infinitely long cylinders of water, polyethylene and PMMA with diameters from 10 mm to 500 mm. Med Phys. 2008;35(6):2424–31.CrossRefPubMedPubMedCentral
Metadaten
Titel
Simulation of photon-counting detectors for conversion of dual-energy-subtracted computed tomography number to electron density
verfasst von
Masatoshi Saito
Publikationsdatum
09.01.2019
Verlag
Springer Singapore
Erschienen in
Radiological Physics and Technology / Ausgabe 1/2019
Print ISSN: 1865-0333
Elektronische ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-018-00497-0

Weitere Artikel der Ausgabe 1/2019

Radiological Physics and Technology 1/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.