Skip to main content
Erschienen in: Urolithiasis 6/2010

01.12.2010 | SYMPOSIUM PAPER

Simulation of the effects of cavitation and anatomy in the shock path of model lithotripters

verfasst von: Jeff Krimmel, Tim Colonius, Michel Tanguay

Erschienen in: Urolithiasis | Ausgabe 6/2010

Einloggen, um Zugang zu erhalten

Abstract

We report on recent efforts to develop predictive models for the pressure and other flow variables in the focal region of shock wave lithotripters. Baseline simulations of three representative lithotripters (electrohydraulic, electromagnetic, and piezoelectric) compare favorably with in vitro experiments (in a water bath). We proceed to model and investigate how shock focusing is altered by the presence of material interfaces associated with different types of tissue encountered along the shock path, and by the presence of cavitation bubbles that are excited by tensile pressures associated with the focused shock wave. We use human anatomical data, but simplify the description by assuming that the tissue behaves as a fluid, and by assuming cylindrical symmetry along the shock path. Scattering by material interfaces is significant, and regions of high pressure amplitudes (both compressive and tensile) are generated almost 4 cm postfocus. Bubble dynamics generate secondary shocks whose strength depends on the density of bubbles and the pulse repetition frequency (PRF). At sufficiently large densities, the bubbles also attenuate the shock. Together with experimental evidence, the simulations suggest that high PRF may be counterproductive for stone comminution. Finally, we discuss how the lithotripter simulations can be used as input to more detailed physical models that attempt to characterize the mechanisms by which collapsing cavitation models erode stones, and by which shock waves and bubbles may damage tissue.
Fußnoten
1
An additional feature of the computational waveform is the gradual rise in pressure just following the main shock front. This feature is absent from experimental measurements, though it is observed in independent simulations of the HM3 [19]. The feature was confirmed to be independent of the grid resolution, and does not therefore appear to be an artifact of the numerical method. In a more detailed study [35], we attributed this wave feature to perfect axisymmetric focusing that increases the amplitude of the shock on axis and causes it to propagate (through nonlinearity) with higher speed, thus racing ahead of components of the compression front generated from portions of the wavefront that are arriving from off axis. Indeed, as the amplitude of the shock produced at F1 is reduced, this feature disappears and the sharp shock front is followed by an immediate expansion. We speculate that slight departures from strict axisymmetry in the real device may reduce the on-axis amplitude by a sufficient amount to delay the on-axis portion of the shock from getting ahead of the reflected components.
 
2
Our computations with the cloud cavitation model used a slightly different base numerical method than was described in the previous section, and only the HM3 geometry was considered. The details of the numerical method for this section are provided in a thesis [18], but we note here that sufficient resolution was used to ensure that various output quantities of interest were independent of the grid.
 
Literatur
1.
Zurück zum Zitat Cleveland RO, Sapozhnikov OA (2005) Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy. J Acoust Soc Am 118:2667–2676CrossRefPubMed Cleveland RO, Sapozhnikov OA (2005) Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy. J Acoust Soc Am 118:2667–2676CrossRefPubMed
2.
Zurück zum Zitat Sapozhnikov OA, Maxwell AD, McConaghy B, Bailey MR (2007) A mechanistic analysis of stone fracture in lithotripsy. J Acoust Soc Am 121:1190–1202CrossRefPubMed Sapozhnikov OA, Maxwell AD, McConaghy B, Bailey MR (2007) A mechanistic analysis of stone fracture in lithotripsy. J Acoust Soc Am 121:1190–1202CrossRefPubMed
3.
Zurück zum Zitat Crum LA (1988) Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL. J Urol 140:1587–1590PubMed Crum LA (1988) Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL. J Urol 140:1587–1590PubMed
4.
Zurück zum Zitat Sass W, Brünlich M, Dreyer H-P, Matura E, Forberth W, Priesmeyer H-G, Seifert J (1991) The mechanisms of stone disintegration by shock waves. Ultrasound Med Biol 17:239–243CrossRefPubMed Sass W, Brünlich M, Dreyer H-P, Matura E, Forberth W, Priesmeyer H-G, Seifert J (1991) The mechanisms of stone disintegration by shock waves. Ultrasound Med Biol 17:239–243CrossRefPubMed
5.
Zurück zum Zitat Zhu S, Cocks FH, Preminger GM, Zhong P (2002) The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound Med Biol 28:661–671CrossRefPubMed Zhu S, Cocks FH, Preminger GM, Zhong P (2002) The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound Med Biol 28:661–671CrossRefPubMed
6.
Zurück zum Zitat Pishchalnikov YA, Sapozhnikov OA, Bailey MR, Williams JC Jr, Cleveland RO, Colonius T, Crum LA, Evan AP, McAteer JA (2003) Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves. J Endourol 17:435–446CrossRefPubMed Pishchalnikov YA, Sapozhnikov OA, Bailey MR, Williams JC Jr, Cleveland RO, Colonius T, Crum LA, Evan AP, McAteer JA (2003) Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves. J Endourol 17:435–446CrossRefPubMed
7.
Zurück zum Zitat Lifshitz DA, Williams JC Jr, Sturtevant B, Connors BA, Evan AP, McAteer JA (1997) Quantitation of shock wave cavitation damage in vitro. Ultrasound Med Biol 23:461–471CrossRefPubMed Lifshitz DA, Williams JC Jr, Sturtevant B, Connors BA, Evan AP, McAteer JA (1997) Quantitation of shock wave cavitation damage in vitro. Ultrasound Med Biol 23:461–471CrossRefPubMed
8.
Zurück zum Zitat Evan P, Willis LR, McAteer JA, Bailey MR, Connors BA, Shao Y, Lingeman JE, Williams JC Jr, Fineberg NS, Crum LA (2002) Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in shock wave lithotripsy. J Urol 168:1556–1562CrossRefPubMed Evan P, Willis LR, McAteer JA, Bailey MR, Connors BA, Shao Y, Lingeman JE, Williams JC Jr, Fineberg NS, Crum LA (2002) Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in shock wave lithotripsy. J Urol 168:1556–1562CrossRefPubMed
9.
Zurück zum Zitat Sapozhnikov OA, Khokhlova VA, Bailey MR, Williams JC Jr, McAteer JA, Cleveland RO, Crum LA (2002) Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy. J Acoust Soc Am 112:1183–1195CrossRefPubMed Sapozhnikov OA, Khokhlova VA, Bailey MR, Williams JC Jr, McAteer JA, Cleveland RO, Crum LA (2002) Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy. J Acoust Soc Am 112:1183–1195CrossRefPubMed
10.
Zurück zum Zitat Bailey MR, Crum LA, Evan AP, McAteer JA, Williams JC Jr, Sapozhnikov OA, Cleveland RO, Colonius T (2003) Cavitation in shock wave lithotripsy, volume Cav03-OS-2-1-006 of fifth international symposium on cavitation, Osaka, Japan, 1–12 (CAV2003) Bailey MR, Crum LA, Evan AP, McAteer JA, Williams JC Jr, Sapozhnikov OA, Cleveland RO, Colonius T (2003) Cavitation in shock wave lithotripsy, volume Cav03-OS-2-1-006 of fifth international symposium on cavitation, Osaka, Japan, 1–12 (CAV2003)
11.
Zurück zum Zitat Bailey MR, Pishchalnikov YA, Sapozhnikov OA, Cleveland RO, McAteer JA, Miller NA, Pishchalnikov IV, Connors BA, Crum LA, Evan AP (2005) Cavitation detection during shock-wave lithotripsy. Ultrasound Med Biol 31:1245–1256CrossRefPubMed Bailey MR, Pishchalnikov YA, Sapozhnikov OA, Cleveland RO, McAteer JA, Miller NA, Pishchalnikov IV, Connors BA, Crum LA, Evan AP (2005) Cavitation detection during shock-wave lithotripsy. Ultrasound Med Biol 31:1245–1256CrossRefPubMed
12.
Zurück zum Zitat Howard D, Sturtevant B (1997) In vitro study of the mechanical effects of shock-wave lithotripsy. Ultrasound Med Biol 23:1107–1122CrossRefPubMed Howard D, Sturtevant B (1997) In vitro study of the mechanical effects of shock-wave lithotripsy. Ultrasound Med Biol 23:1107–1122CrossRefPubMed
13.
Zurück zum Zitat Lokhandwalla M, Sturtevant B (2001) Mechanical haemolysis in shock wave lithotripsy (SWL): I. Analysis of cell deformation due to SWL flow-fields. Phys Med Biol 46:413–437CrossRefPubMed Lokhandwalla M, Sturtevant B (2001) Mechanical haemolysis in shock wave lithotripsy (SWL): I. Analysis of cell deformation due to SWL flow-fields. Phys Med Biol 46:413–437CrossRefPubMed
14.
Zurück zum Zitat Lokhandwalla M, McAteer JA, Williams JC Jr, Sturtevant B (2001) Mechanical haemolysis in shock wave lithotripsy (SWL): II. In vitro cell lysis due to shear. Phys Med Biol 46:1245–1264CrossRefPubMed Lokhandwalla M, McAteer JA, Williams JC Jr, Sturtevant B (2001) Mechanical haemolysis in shock wave lithotripsy (SWL): II. In vitro cell lysis due to shear. Phys Med Biol 46:1245–1264CrossRefPubMed
15.
Zurück zum Zitat Hamilton MF (1993) Transient axial solution for the reflection of a spherical wave from a concave ellipsoidal mirror. J Acoust Soc Am 93:1256–1266CrossRef Hamilton MF (1993) Transient axial solution for the reflection of a spherical wave from a concave ellipsoidal mirror. J Acoust Soc Am 93:1256–1266CrossRef
16.
Zurück zum Zitat Averkiou MA, Cleveland RO (1999) Modeling of an electrohydraulic lithotripter with the KZK equation. J Acoust Soc Am 106:102–112CrossRefPubMed Averkiou MA, Cleveland RO (1999) Modeling of an electrohydraulic lithotripter with the KZK equation. J Acoust Soc Am 106:102–112CrossRefPubMed
17.
Zurück zum Zitat Cates J, Sturtevant B (1997) Shock wave focusing using geometrical shock dynamics. Phys Fluids 9:3058–3068CrossRef Cates J, Sturtevant B (1997) Shock wave focusing using geometrical shock dynamics. Phys Fluids 9:3058–3068CrossRef
18.
Zurück zum Zitat Tanguay M (2004) Computation of bubbly cavitating flow in shock wave lithotripsy. PhD thesis, California Institute of Technology Tanguay M (2004) Computation of bubbly cavitating flow in shock wave lithotripsy. PhD thesis, California Institute of Technology
19.
Zurück zum Zitat Iloreta JI, Zhou Y, Sankin GN, Zhong P, Szeri AJ (2007) Assessment of shock wave lithotripters via cavitation potential. Phys Fluids 19:086103CrossRef Iloreta JI, Zhou Y, Sankin GN, Zhong P, Szeri AJ (2007) Assessment of shock wave lithotripters via cavitation potential. Phys Fluids 19:086103CrossRef
20.
Zurück zum Zitat Coleman, Saunders J, Preston R, Bacon D (1987) Pressure waveforms generated by a Dornier extracorporeal shock-wave lithotripter. Ultrasound Med Biol 13:651–657CrossRefPubMed Coleman, Saunders J, Preston R, Bacon D (1987) Pressure waveforms generated by a Dornier extracorporeal shock-wave lithotripter. Ultrasound Med Biol 13:651–657CrossRefPubMed
21.
Zurück zum Zitat Chitnis PV, Barbone PE, Cleveland RO (2008) Customization of the acoustic field produced by a piezoelectric array through inter-element delays. J Acoust Soc Am 123:4174–4185CrossRefPubMed Chitnis PV, Barbone PE, Cleveland RO (2008) Customization of the acoustic field produced by a piezoelectric array through inter-element delays. J Acoust Soc Am 123:4174–4185CrossRefPubMed
22.
Zurück zum Zitat Eisenmenger W, Du X, Tang C, Zhao S, Wang Y, Rong F, Dai D, Guan M, Qi A (2002) The first clinical results of ‘wide-focus and low-pressure’ ESWL. Ultrasound Med Biol 28:769–774CrossRefPubMed Eisenmenger W, Du X, Tang C, Zhao S, Wang Y, Rong F, Dai D, Guan M, Qi A (2002) The first clinical results of ‘wide-focus and low-pressure’ ESWL. Ultrasound Med Biol 28:769–774CrossRefPubMed
23.
Zurück zum Zitat Coleman J, Saunders JE, Crum LA, Dyson M (1987) Acoustic cavitation generated by an extracorporeal shockwave lithotripter. Ultrasound Med Biol 13:69–76CrossRefPubMed Coleman J, Saunders JE, Crum LA, Dyson M (1987) Acoustic cavitation generated by an extracorporeal shockwave lithotripter. Ultrasound Med Biol 13:69–76CrossRefPubMed
24.
Zurück zum Zitat Coleman, Choi M, Saunders J, Leighton T (1992) Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shock wave lithotripter. Ultrasound Med Biol 18:267–281CrossRefPubMed Coleman, Choi M, Saunders J, Leighton T (1992) Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shock wave lithotripter. Ultrasound Med Biol 18:267–281CrossRefPubMed
25.
Zurück zum Zitat Zhong P, Cioanta I, Cocks FH, Preminger GM (1997) Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy. J Acoust Soc Am 101:2940–2950CrossRefPubMed Zhong P, Cioanta I, Cocks FH, Preminger GM (1997) Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy. J Acoust Soc Am 101:2940–2950CrossRefPubMed
26.
Zurück zum Zitat Bailey MR, Blackstock DT, Cleveland RO, Crum LA (1998) Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. I acoustic fields. J Acoust Soc Am 104:2517–2524CrossRefPubMed Bailey MR, Blackstock DT, Cleveland RO, Crum LA (1998) Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. I acoustic fields. J Acoust Soc Am 104:2517–2524CrossRefPubMed
27.
Zurück zum Zitat Sokolov DL, Bailey MR, Crum LA (2001) Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field. J Acoust Soc Am 110:1685–1695CrossRefPubMed Sokolov DL, Bailey MR, Crum LA (2001) Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field. J Acoust Soc Am 110:1685–1695CrossRefPubMed
28.
Zurück zum Zitat Paterson RF, Lifshitz DA, Lingeman JE, Evan AP, Connors BA, Fineberg NS, Williams JC Jr, McAteer JA (2002) Stone fragmentation during shock wave lithotripsy is improved by slowing the shock wave rate: studies with a new animal model. J Urol 168:2211–2215CrossRefPubMed Paterson RF, Lifshitz DA, Lingeman JE, Evan AP, Connors BA, Fineberg NS, Williams JC Jr, McAteer JA (2002) Stone fragmentation during shock wave lithotripsy is improved by slowing the shock wave rate: studies with a new animal model. J Urol 168:2211–2215CrossRefPubMed
29.
Zurück zum Zitat Evan P, Willis LR, Lingeman JE, McAteer JA (1998) Renal trauma and the risk of long-term complications in shock wave lithotripsy. Nephron 78:1–8CrossRefPubMed Evan P, Willis LR, Lingeman JE, McAteer JA (1998) Renal trauma and the risk of long-term complications in shock wave lithotripsy. Nephron 78:1–8CrossRefPubMed
30.
Zurück zum Zitat Coleman AJ, Saunders JE (1993) A review of the physical properties and biological effects of the high amplitude acoustic field used in extracorporeal lithotripsy. Ultrasonics 31:75–89CrossRefPubMed Coleman AJ, Saunders JE (1993) A review of the physical properties and biological effects of the high amplitude acoustic field used in extracorporeal lithotripsy. Ultrasonics 31:75–89CrossRefPubMed
31.
Zurück zum Zitat Blomgren PM, Connors BA, Lingeman JE, Willis LR, Evan AP (1997) Quantitation of shock wave lithotripsy-induced lesion in small and large pig kidneys. Anat Rec 249:341–348CrossRefPubMed Blomgren PM, Connors BA, Lingeman JE, Willis LR, Evan AP (1997) Quantitation of shock wave lithotripsy-induced lesion in small and large pig kidneys. Anat Rec 249:341–348CrossRefPubMed
32.
Zurück zum Zitat Wood RW, Loomis A (1927) The physical and biological effects of high frequency sound-waves of great intensity. Philos Mag 4:417–436 Wood RW, Loomis A (1927) The physical and biological effects of high frequency sound-waves of great intensity. Philos Mag 4:417–436
33.
Zurück zum Zitat Ludwig GD (1950) The velocity of sound through tissues and the acoustic impedance of tissues. J Acoust Soc Am 22:862–866CrossRef Ludwig GD (1950) The velocity of sound through tissues and the acoustic impedance of tissues. J Acoust Soc Am 22:862–866CrossRef
34.
Zurück zum Zitat Cleveland RO, Lifshitz DA, Connors BA, Evan AP, Willis LR, Crum LA (1998) In vivo pressure measurements of lithotripsy shock waves in pigs. Ultrasound Med Biol 24:293–306CrossRefPubMed Cleveland RO, Lifshitz DA, Connors BA, Evan AP, Willis LR, Crum LA (1998) In vivo pressure measurements of lithotripsy shock waves in pigs. Ultrasound Med Biol 24:293–306CrossRefPubMed
35.
Zurück zum Zitat Krimmel J (2010) Numerical simulation of wave focusing and scattering in shock wave lithotripsy. PhD thesis, California Institute of Technology Krimmel J (2010) Numerical simulation of wave focusing and scattering in shock wave lithotripsy. PhD thesis, California Institute of Technology
36.
Zurück zum Zitat Krimmel J, Colonius T (2010) Numerical simulation of shock focusing in shock wave lithotripsy. (in preparation) Krimmel J, Colonius T (2010) Numerical simulation of shock focusing in shock wave lithotripsy. (in preparation)
37.
Zurück zum Zitat Harlow F, Amsden AA (1971) Fluid dynamics. Technical Report LA-4700, Los Alamos Scientific Laboratory Harlow F, Amsden AA (1971) Fluid dynamics. Technical Report LA-4700, Los Alamos Scientific Laboratory
38.
Zurück zum Zitat Cole RH (1948) Underwater explosions, chap 2. Princeton University Press, Princeton, NJ Cole RH (1948) Underwater explosions, chap 2. Princeton University Press, Princeton, NJ
39.
Zurück zum Zitat Thompson PA (1972) Compressible-fluid dynamics, chap 2. McGraw–Hill, New York Thompson PA (1972) Compressible-fluid dynamics, chap 2. McGraw–Hill, New York
40.
Zurück zum Zitat Deiterding R (2003) Parallel adaptive simulation of multi-dimensional detonation structures. PhD thesis, Brandenburgische Technische Universtät, Cottbus Deiterding R (2003) Parallel adaptive simulation of multi-dimensional detonation structures. PhD thesis, Brandenburgische Technische Universtät, Cottbus
41.
Zurück zum Zitat Deiterding R (2005) Construction and application of an AMR algorithm for distributed memory computers. In: Plewa T, Linde T, Weirs VG (eds) Adaptive mesh refinement—theory and applications. Proceedings of the Chicago workshop on adaptive mesh refinement methods, Springer, Berlin, pp 361–372 Deiterding R (2005) Construction and application of an AMR algorithm for distributed memory computers. In: Plewa T, Linde T, Weirs VG (eds) Adaptive mesh refinement—theory and applications. Proceedings of the Chicago workshop on adaptive mesh refinement methods, Springer, Berlin, pp 361–372
42.
Zurück zum Zitat Deiterding R, Radovitzky R, Mauch SP, Noels L, Cummings JC, Meiron DI (2006) A virtual test facility for the efficient simulation of solid material response under strong shock and detonation wave loading. Eng Comput 22:325–347CrossRef Deiterding R, Radovitzky R, Mauch SP, Noels L, Cummings JC, Meiron DI (2006) A virtual test facility for the efficient simulation of solid material response under strong shock and detonation wave loading. Eng Comput 22:325–347CrossRef
43.
Zurück zum Zitat Sokolov DL, Bailey MR, Crum LA, Blomgren PM, Connors BA, Evan AP (2002) Prefocal alignment improves stone comminution in shockwave lithotripsy. J Endourol 16:709–715CrossRefPubMed Sokolov DL, Bailey MR, Crum LA, Blomgren PM, Connors BA, Evan AP (2002) Prefocal alignment improves stone comminution in shockwave lithotripsy. J Endourol 16:709–715CrossRefPubMed
44.
Zurück zum Zitat Cleveland RO, Bailey MR, Fineberg N, Hartenbaum B, Lokhandwalla M, McAteer JA, Sturtevant B (2000) Design and characterization of a research electrohydraulic lithotripter patterned after the Dornier HM3. Rev Sci Instrum 71:2514–2525CrossRef Cleveland RO, Bailey MR, Fineberg N, Hartenbaum B, Lokhandwalla M, McAteer JA, Sturtevant B (2000) Design and characterization of a research electrohydraulic lithotripter patterned after the Dornier HM3. Rev Sci Instrum 71:2514–2525CrossRef
45.
Zurück zum Zitat Brennen CE (2002) Fission of collapsing cavitation bubbles. J Fluid Mech 472:153–166CrossRef Brennen CE (2002) Fission of collapsing cavitation bubbles. J Fluid Mech 472:153–166CrossRef
46.
Zurück zum Zitat Zhang D, Prosperetti A (1994) Ensemble phase-averaged equations for bubbly flows. Phys Fluids 6:2956–2970CrossRef Zhang D, Prosperetti A (1994) Ensemble phase-averaged equations for bubbly flows. Phys Fluids 6:2956–2970CrossRef
47.
Zurück zum Zitat Biesheuvel A, van Wijngaarden L (1984) Two-phase flow equations for a dilute dispersion of gas bubbles in liquid. J Fluid Mech 148:301–318CrossRef Biesheuvel A, van Wijngaarden L (1984) Two-phase flow equations for a dilute dispersion of gas bubbles in liquid. J Fluid Mech 148:301–318CrossRef
48.
Zurück zum Zitat Gilmore FR (1952) The growth or collapse of a spherical bubble in a viscous compressible liquid, Technical Report 26-4, California Institute of Technology Gilmore FR (1952) The growth or collapse of a spherical bubble in a viscous compressible liquid, Technical Report 26-4, California Institute of Technology
49.
Zurück zum Zitat Pishchalnikov YA, McAteer JA, Williams JC Jr (2008) Effect of firing rate on the performance of shock wave lithotripters. BJU Int 102:1681–1686CrossRefPubMed Pishchalnikov YA, McAteer JA, Williams JC Jr (2008) Effect of firing rate on the performance of shock wave lithotripters. BJU Int 102:1681–1686CrossRefPubMed
50.
Zurück zum Zitat Matula TJ, Hilmo PR, Storey BD, Szeri AJ (2002) Radial response of individual bubbles subjected to shock wave lithotripsy pulses in vitro. Phys Fluids 14:913–921CrossRef Matula TJ, Hilmo PR, Storey BD, Szeri AJ (2002) Radial response of individual bubbles subjected to shock wave lithotripsy pulses in vitro. Phys Fluids 14:913–921CrossRef
52.
Zurück zum Zitat Yang X, Cleveland RO (2005) Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging. J Acoust Soc Am 117:113–123CrossRefPubMed Yang X, Cleveland RO (2005) Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging. J Acoust Soc Am 117:113–123CrossRefPubMed
53.
Zurück zum Zitat Freund JB, Colonius T, Evan AP (2007) A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy. Ultrasound Med Biol 33:1495–1503CrossRefPubMed Freund JB, Colonius T, Evan AP (2007) A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy. Ultrasound Med Biol 33:1495–1503CrossRefPubMed
54.
Zurück zum Zitat Cleveland R, Luo H, Willaims J (2007) Stress waves in human kidney stones: shear dominates spall in shock wave lithotripsy. J Urol 177:415 Cleveland R, Luo H, Willaims J (2007) Stress waves in human kidney stones: shear dominates spall in shock wave lithotripsy. J Urol 177:415
55.
Zurück zum Zitat Johnsen E, Colonius T (2006) Implementation of WENO schemes in compressible multicomponent flow problems. J Comput Phys 219:715–732CrossRef Johnsen E, Colonius T (2006) Implementation of WENO schemes in compressible multicomponent flow problems. J Comput Phys 219:715–732CrossRef
56.
Zurück zum Zitat Johnsen E, Colonius T (2008) Shock-induced collapse of a gas bubble in shockwave lithotripsy. J Acoust Soc Am 124:2011–2020CrossRefPubMed Johnsen E, Colonius T (2008) Shock-induced collapse of a gas bubble in shockwave lithotripsy. J Acoust Soc Am 124:2011–2020CrossRefPubMed
Metadaten
Titel
Simulation of the effects of cavitation and anatomy in the shock path of model lithotripters
verfasst von
Jeff Krimmel
Tim Colonius
Michel Tanguay
Publikationsdatum
01.12.2010
Verlag
Springer-Verlag
Erschienen in
Urolithiasis / Ausgabe 6/2010
Print ISSN: 2194-7228
Elektronische ISSN: 2194-7236
DOI
https://doi.org/10.1007/s00240-010-0332-z

Weitere Artikel der Ausgabe 6/2010

Urolithiasis 6/2010 Zur Ausgabe

Neu im Fachgebiet Urologie

19.04.2024 | EAU 2024 | Kongressbericht | Nachrichten

Ureterstriktur: Innovative OP-Technik bewährt sich

19.04.2024 | EAU 2024 | Kongressbericht | Nachrichten

Prostatakarzinom: EU initiiert neues Screeningkonzept

19.04.2024 | EAU 2024 | Kongressbericht | Nachrichten

Blasenkarzinom – Biomarker statt Zytologie?

Update Urologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.