Skip to main content
Erschienen in:

12.08.2024 | Radiological Education

Simulation training in mammography with AI-generated images: a multireader study

verfasst von: Krithika Rangarajan, Veeramakali Vignesh Manivannan, Harpinder Singh, Amit Gupta, Hrithik Maheshwari, Rishparn Gogoi, Debashish Gogoi, Rupam Jyoti Das, Smriti Hari, Surabhi Vyas, Raju Sharma, Shivam Pandey, V. Seenu, Subhashis Banerjee, Vinay Namboodiri, Chetan Arora

Erschienen in: European Radiology | Ausgabe 2/2025

Einloggen, um Zugang zu erhalten

Abstract

Objectives

The interpretation of mammograms requires many years of training and experience. Currently, training in mammography, like the rest of diagnostic radiology, is through institutional libraries, books, and experience accumulated over time. We explore whether artificial Intelligence (AI)-generated images can help in simulation education and result in measurable improvement in performance of residents in training.

Methods

We developed a generative adversarial network (GAN) that was capable of generating mammography images with varying characteristics, such as size and density, and created a tool with which a user could control these characteristics. The tool allowed the user (a radiology resident) to realistically insert cancers within different regions of the mammogram. We then provided this tool to residents in training. Residents were randomized into a practice group and a non-practice group, and the difference in performance before and after practice with such a tool (in comparison to no intervention in the non-practice group) was assessed.

Results

Fifty residents participated in the study, 27 underwent simulation training, and 23 did not. There was a significant improvement in the sensitivity (7.43 percent, significant at p-value = 0.03), negative predictive value (5.05 percent, significant at p-value = 0.008) and accuracy (6.49 percent, significant at p-value = 0.01) among residents in the detection of cancer on mammograms after simulation training.

Conclusion

Our study shows the value of simulation training in diagnostic radiology and explores the potential of generative AI to enable such simulation training.

Clinical relevance statement

Using generative artificial intelligence, simulation training modules can be developed that can help residents in training by providing them with a visual impression of a variety of different cases.

Key Points

  • Generative networks can produce diagnostic imaging with specific characteristics, potentially useful for training residents.
  • Training with generating images improved residents’ mammographic diagnostic abilities.
  • Development of a game-like interface that exploits these networks can result in improvement in performance over a short training period.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Whang JS, Baker SR, Patel R, Luk L, Castro A 3rd (2013) The causes of medical malpractice suits against radiologists in the United States. Radiology 266:548–554CrossRefPubMed Whang JS, Baker SR, Patel R, Luk L, Castro A 3rd (2013) The causes of medical malpractice suits against radiologists in the United States. Radiology 266:548–554CrossRefPubMed
2.
Zurück zum Zitat Nodine CF, Kundel HL, Mello-Thoms C et al (1999) How experience and training influence mammography expertise. Acad Radiol 6:575–585CrossRefPubMed Nodine CF, Kundel HL, Mello-Thoms C et al (1999) How experience and training influence mammography expertise. Acad Radiol 6:575–585CrossRefPubMed
3.
Zurück zum Zitat Lamb LR, Mohallem Fonseca M, Verma R, Seely JM (2020) Missed breast cancer: effects of subconscious bias and lesion characteristics. Radiographics 40:941–960CrossRefPubMed Lamb LR, Mohallem Fonseca M, Verma R, Seely JM (2020) Missed breast cancer: effects of subconscious bias and lesion characteristics. Radiographics 40:941–960CrossRefPubMed
4.
Zurück zum Zitat Cook DA, Hatala R, Brydges R et al (2011) Technology-enhanced simulation for health professions education: a systematic review and meta-analysis. JAMA 306:978–988CrossRefPubMed Cook DA, Hatala R, Brydges R et al (2011) Technology-enhanced simulation for health professions education: a systematic review and meta-analysis. JAMA 306:978–988CrossRefPubMed
5.
Zurück zum Zitat Weinberger SE, Pereira AG, Iobst WF, Mechaber AJ, Bronze MS, Alliance for Academic Internal Medicine Education Redesign Task Force II (2010) Competency-based education and training in internal medicine. Ann Intern Med 153:751–756CrossRefPubMed Weinberger SE, Pereira AG, Iobst WF, Mechaber AJ, Bronze MS, Alliance for Academic Internal Medicine Education Redesign Task Force II (2010) Competency-based education and training in internal medicine. Ann Intern Med 153:751–756CrossRefPubMed
8.
Zurück zum Zitat Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2:37–52CrossRef Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2:37–52CrossRef
9.
Zurück zum Zitat Bhalla D, Ramachandran A, Rangarajan K, Dhanakshirur R, Banerjee S, Arora C (2023) Basic principles of AI simplified for a medical practitioner: pearls and pitfalls in evaluating AI algorithms. Curr Probl Diagn Radiol 52:47–55CrossRefPubMed Bhalla D, Ramachandran A, Rangarajan K, Dhanakshirur R, Banerjee S, Arora C (2023) Basic principles of AI simplified for a medical practitioner: pearls and pitfalls in evaluating AI algorithms. Curr Probl Diagn Radiol 52:47–55CrossRefPubMed
10.
Zurück zum Zitat Amisha, Malik P, Pathania M, Rathaur VK (2019) Overview of artificial intelligence in medicine. J Fam Med Prim Care 8:2328–2331CrossRef Amisha, Malik P, Pathania M, Rathaur VK (2019) Overview of artificial intelligence in medicine. J Fam Med Prim Care 8:2328–2331CrossRef
11.
Zurück zum Zitat Chen Y, Yang XH, Wei Z et al (2022) Generative adversarial networks in medical image augmentation: a review. Comput Biol Med 144:105382CrossRefPubMed Chen Y, Yang XH, Wei Z et al (2022) Generative adversarial networks in medical image augmentation: a review. Comput Biol Med 144:105382CrossRefPubMed
12.
Zurück zum Zitat Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H (2018) GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321:321–331CrossRef Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H (2018) GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321:321–331CrossRef
13.
Zurück zum Zitat Qin Z, Liu Z, Zhu P, Ling W (2022) Style transfer in conditional GANs for cross-modality synthesis of brain magnetic resonance images. Comput Biol Med 148:105928CrossRefPubMed Qin Z, Liu Z, Zhu P, Ling W (2022) Style transfer in conditional GANs for cross-modality synthesis of brain magnetic resonance images. Comput Biol Med 148:105928CrossRefPubMed
15.
Zurück zum Zitat Lewis SJ, Borecky N, Li T, Barron ML, Brennan P, Trieu PDY (2023) Radiologist self-training: a study of cancer detection when reading mammograms at work clinics or workshops. J Cancer Educ 38:571–577CrossRefPubMed Lewis SJ, Borecky N, Li T, Barron ML, Brennan P, Trieu PDY (2023) Radiologist self-training: a study of cancer detection when reading mammograms at work clinics or workshops. J Cancer Educ 38:571–577CrossRefPubMed
16.
Zurück zum Zitat Poot JD, Chetlen AL (2016) A simulation screening mammography module created for instruction and assessment: radiology residents vs national benchmarks. Acad Radiol 23:1454–1462CrossRefPubMed Poot JD, Chetlen AL (2016) A simulation screening mammography module created for instruction and assessment: radiology residents vs national benchmarks. Acad Radiol 23:1454–1462CrossRefPubMed
17.
Zurück zum Zitat Chen PH, Roth H, Galperin-Aizenberg M, Ruutiainen AT, Gefter W, Cook TS (2017) Improving abnormality detection on chest radiography using game-like reinforcement mechanics. Acad Radiol 24:1428–1435CrossRefPubMed Chen PH, Roth H, Galperin-Aizenberg M, Ruutiainen AT, Gefter W, Cook TS (2017) Improving abnormality detection on chest radiography using game-like reinforcement mechanics. Acad Radiol 24:1428–1435CrossRefPubMed
18.
Zurück zum Zitat Østergaard ML, Rue Nielsen K, Albrecht-Beste E, Kjær Ersbøll A, Konge L, Bachmann Nielsen M (2019) Simulator training improves ultrasound scanning performance on patients: a randomized controlled trial. Eur Radiol 29:3210–3218CrossRefPubMed Østergaard ML, Rue Nielsen K, Albrecht-Beste E, Kjær Ersbøll A, Konge L, Bachmann Nielsen M (2019) Simulator training improves ultrasound scanning performance on patients: a randomized controlled trial. Eur Radiol 29:3210–3218CrossRefPubMed
Metadaten
Titel
Simulation training in mammography with AI-generated images: a multireader study
verfasst von
Krithika Rangarajan
Veeramakali Vignesh Manivannan
Harpinder Singh
Amit Gupta
Hrithik Maheshwari
Rishparn Gogoi
Debashish Gogoi
Rupam Jyoti Das
Smriti Hari
Surabhi Vyas
Raju Sharma
Shivam Pandey
V. Seenu
Subhashis Banerjee
Vinay Namboodiri
Chetan Arora
Publikationsdatum
12.08.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 2/2025
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-024-11005-x

Neu im Fachgebiet Radiologie

Röntgen-Thorax oder LDCT fürs Lungenscreening nach HNSCC?

Personen, die an einem Plattenepithelkarzinom im Kopf-Hals-Bereich erkrankt sind, haben ein erhöhtes Risiko für Metastasen oder zweite Primärmalignome der Lunge. Eine Studie hat untersucht, wie die radiologische Überwachung aussehen sollte.

Statine: Was der G-BA-Beschluss für Praxen bedeutet

Nach dem G-BA-Beschluss zur erweiterten Verordnungsfähigkeit von Lipidsenkern rechnet die DEGAM mit 200 bis 300 neuen Dauerpatienten pro Praxis. Im Interview erläutert Präsidiumsmitglied Erika Baum, wie Hausärztinnen und Hausärzte am besten vorgehen.

Brustdichte nicht mit Multivitaminpräparat-Einnahme assoziiert

Der regelmäßige Gebrauch von Nahrungsergänzungsmitteln scheint nicht die mammografische Brustdichte zu erhöhen. In einer US-amerikanischen Studie jedenfalls ließ sich ein derartiger Zusammenhang nicht bestätigen.

Erhöhte Suizidrate unter US-Ärztinnen

Während der Arztberuf Männer eher vor Suizid schützt, erhöht er das Risiko bei Frauen – zumindest in den USA: Die Suizidinzidenz unter Ärztinnen ist um die Hälfte höher als unter Frauen mit anderen Berufen. Männliche Ärzte töten sich dennoch wesentlich häufiger selbst als weibliche.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.