Skip to main content
main-content

16.03.2016 | Original Article | Ausgabe 6/2016

International Journal of Computer Assisted Radiology and Surgery 6/2016

Single-view X-ray depth recovery: toward a novel concept for image-guided interventions

Zeitschrift:
International Journal of Computer Assisted Radiology and Surgery > Ausgabe 6/2016
Autoren:
Shadi Albarqouni, Ulrich Konrad, Lichao Wang, Nassir Navab, Stefanie Demirci
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s11548-016-1360-0) contains supplementary material, which is available to authorized users.

Abstract

Purpose

X-ray imaging is widely used for guiding minimally invasive surgeries. Despite ongoing efforts in particular toward advanced visualization incorporating mixed reality concepts, correct depth perception from X-ray imaging is still hampered due to its projective nature.

Methods

In this paper, we introduce a new concept for predicting depth information from single-view X-ray images. Patient-specific training data for depth and corresponding X-ray attenuation information are constructed using readily available preoperative 3D image information. The corresponding depth model is learned employing a novel label-consistent dictionary learning method incorporating atlas and spatial prior constraints to allow for efficient reconstruction performance.

Results

We have validated our algorithm on patient data acquired for different anatomy focus (abdomen and thorax). Of 100 image pairs per each of 6 experimental instances, 80 images have been used for training and 20 for testing. Depth estimation results have been compared to ground truth depth values.

Conclusion

We have achieved around \(4.40\,\%\,\pm \,2.04\) and \(11.47\,\%\,\pm \,2.27\) mean squared error on abdomen and thorax datasets, respectively, and visual results of our proposed method are very promising. We have therefore presented a new concept for enhancing depth perception for image-guided interventions.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der Fachzeitschriften, inklusive eines Print-Abos.

Weitere Produktempfehlungen anzeigen
Zusatzmaterial
Supplementary material 1 (mp4 25715 KB)
11548_2016_1360_MOESM1_ESM.mp4
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2016

International Journal of Computer Assisted Radiology and Surgery 6/2016Zur Ausgabe

Guest Editorial

Preface

  1. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.

  2. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.