Skip to main content
main-content

12.03.2019 | Sleep Breathing Physiology and Disorders • Original Article | Ausgabe 4/2019

Sleep and Breathing 4/2019

Sleep staging from single-channel EEG with multi-scale feature and contextual information

Zeitschrift:
Sleep and Breathing > Ausgabe 4/2019
Autoren:
Kun Chen, Cheng Zhang, Jing Ma, Guangfa Wang, Jue Zhang
Wichtige Hinweise

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Purpose

Portable sleep monitoring devices with less-attached sensors and high-accuracy sleep staging methods can expedite sleep disorder diagnosis. The aim of this study was to propose a single-channel EEG sleep staging model, SleepStageNet, which extracts sleep EEG features by multi-scale convolutional neural networks (CNN) and then infers the type of sleep stages by capturing the contextual information between adjacent epochs using recurrent neural networks (RNN) and conditional random field (CRF).

Methods

To verify the feasibility of our model, two datasets, one composed by two different single-channel EEGs (Fpz-Cz and Pz-Oz) on 20 healthy people and one composed by a single-channel EEG (F4-M1) on 104 obstructive sleep apnea (OSA) patients with different severities, were examined. The corresponding sleep stages were scored as four states (wake, REM, light sleep, and deep sleep). The accuracy measures were obtained from epoch-by-epoch comparison between the model and PSG scorer, and the agreement between them was quantified with Cohen’s kappa (ҡ).

Results

Our model achieved superior performance with average accuracy (Fpz-Cz, 0.88; Pz-Oz, 0.85) and ҡ (Fpz-Cz, 0.82; Pz-Oz, 0.77) on the healthy people. Furthermore, we validated this model on the OSA patients with average accuracy (F4-M1, 0.80) and ҡ (F4-M1, 0.67). Our model significantly improved the accuracy and ҡ compared to previous methods.

Conclusions

The proposed SleepStageNet has proved feasible for assessment of sleep architecture among OSA patients using single-channel EEG. We suggest that this technological advancement could augment the current use of home sleep apnea testing.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2019

Sleep and Breathing 4/2019 Zur Ausgabe

Sleep Breathing Physiology and Disorders • Letter to the Editors

Finding a needle in the haystack—narcolepsy and obstructive sleep apnea

  1. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.

  2. Sie können e.Med Innere Medizin 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.

Neu im Fachgebiet Innere Medizin

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Innere Medizin und bleiben Sie gut informiert – ganz bequem per eMail.

© Springer Medizin 

Bildnachweise