Skip to main content
Erschienen in: Obesity Surgery 7/2019

21.03.2019 | Original Contributions

Sleeve Gastrectomy Rescuing the Altered Functional Connectivity of Lateral but Not Medial Hypothalamus in Subjects with Obesity

verfasst von: Panlong Li, Han Shan, Binbin Nie, Hua Liu, Guanglong Dong, Yulin Guo, Jin Du, Hongkai Gao, Lin Ma, Demin Li, Baoci Shan

Erschienen in: Obesity Surgery | Ausgabe 7/2019

Einloggen, um Zugang zu erhalten

Abstract

Background

Lateral and medial hypothalamus (LH and MH) play important roles in energy balance. Changed hypothalamic function has been found in subjects with obesity. However, the effect of bariatric surgery on the function of the two sub-regions has been poorly investigated.

Methods

Thirty-eight subjects with obesity and 34 age- and sex-matched normal-weight controls were included. Seventeen of the 38 subjects underwent laparoscopic sleeve gastrectomy. Functional magnetic resonance imaging data and metabolic parameters were collected to investigate functional connectivity networks of the two hypothalamic sub-regions as well as the influence of sleeve gastrectomy on the two networks in subjects with obesity.

Results

Compared to normal-weight controls, pre-surgical subjects had increased functional connectivity (FC) in the reward region (putamen) within the LH network, and increased FC in somatosensory cortical area (insula), as well as decreased FC in the cognitive control regions (prefrontal regions) within the MH network. After the surgery, post-surgical FC of the putamen within the LH network changed towards the patterns found in the control group. Furthermore, the changes in fasting glucose before and after the surgery were associated with the changes in FC of the putamen within the LH network.

Conclusions

The FC within the LH and MH networks were changed in subjects with obesity. Part of these altered FC was rescued after the surgery.
Literatur
1.
Zurück zum Zitat Withrow D, Alter DA. The economic burden of obesity worldwide: a systematic review of the direct costs of obesity. Obes Rev. 2011;12(2):131–41.CrossRefPubMed Withrow D, Alter DA. The economic burden of obesity worldwide: a systematic review of the direct costs of obesity. Obes Rev. 2011;12(2):131–41.CrossRefPubMed
2.
Zurück zum Zitat Rexford S, Ahima MAL. The health risk of obesity-better metrics imperative. Science. 2013;341:856–7.CrossRef Rexford S, Ahima MAL. The health risk of obesity-better metrics imperative. Science. 2013;341:856–7.CrossRef
3.
Zurück zum Zitat Schlögl H, Horstmann A, Villringer A, et al. Functional neuroimaging in obesity and the potential for development of novel treatments. Lancet Diabetes Endocrinol. 2016;4(8):695–705.CrossRefPubMed Schlögl H, Horstmann A, Villringer A, et al. Functional neuroimaging in obesity and the potential for development of novel treatments. Lancet Diabetes Endocrinol. 2016;4(8):695–705.CrossRefPubMed
4.
Zurück zum Zitat Volkow ND, Wise RA, Baler R. The dopamine motive system: implications for drug and food addiction. Nat Rev Neurosci. 2017 Nov 16;18(12):741–52.CrossRefPubMed Volkow ND, Wise RA, Baler R. The dopamine motive system: implications for drug and food addiction. Nat Rev Neurosci. 2017 Nov 16;18(12):741–52.CrossRefPubMed
5.
Zurück zum Zitat Kullmann S, Heni M, Linder K, et al. Resting-state functional connectivity of the human hypothalamus. Hum Brain Mapp. 2014;35(12):6088–96.CrossRefPubMed Kullmann S, Heni M, Linder K, et al. Resting-state functional connectivity of the human hypothalamus. Hum Brain Mapp. 2014;35(12):6088–96.CrossRefPubMed
6.
Zurück zum Zitat Cavadas C, Aveleira CA, Souza GF, et al. The pathophysiology of defective proteostasis in the hypothalamus—from obesity to ageing. Nat Rev Endocrinol. 2016;12(12):723–33.CrossRefPubMed Cavadas C, Aveleira CA, Souza GF, et al. The pathophysiology of defective proteostasis in the hypothalamus—from obesity to ageing. Nat Rev Endocrinol. 2016;12(12):723–33.CrossRefPubMed
7.
Zurück zum Zitat Hetherington AW, Ranson SW. Hypothalamic lesions and adiposity in the rat. Anat Rec. 1940;78(2):149–72.CrossRef Hetherington AW, Ranson SW. Hypothalamic lesions and adiposity in the rat. Anat Rec. 1940;78(2):149–72.CrossRef
8.
Zurück zum Zitat Bonnavion P, Mickelsen LE, Fujita A, et al. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol. 2016;594(22):6443–62.CrossRefPubMedPubMedCentral Bonnavion P, Mickelsen LE, Fujita A, et al. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol. 2016;594(22):6443–62.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Kempadoo KA, Tourino C, Cho SL, et al. Hypothalamic neurotensin projections promote reward by enhancing glutamate transmission in the VTA. J Neurosci. 2013;33(18):7618–26.CrossRefPubMedPubMedCentral Kempadoo KA, Tourino C, Cho SL, et al. Hypothalamic neurotensin projections promote reward by enhancing glutamate transmission in the VTA. J Neurosci. 2013;33(18):7618–26.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Baimel C, Bartlett SE, Chiou LC, et al. Orexin/hypocretin role in reward: implications for opioid and other addictions. Br J Pharmacol. 2015;172(2):334–48.CrossRefPubMed Baimel C, Bartlett SE, Chiou LC, et al. Orexin/hypocretin role in reward: implications for opioid and other addictions. Br J Pharmacol. 2015;172(2):334–48.CrossRefPubMed
11.
Zurück zum Zitat Cansell C, Denis RG, Joly-Amado A, et al. Arcuate AgRP neurons and the regulation of energy balance. Front Endocrinol (Lausanne). 2012;3:169.CrossRef Cansell C, Denis RG, Joly-Amado A, et al. Arcuate AgRP neurons and the regulation of energy balance. Front Endocrinol (Lausanne). 2012;3:169.CrossRef
12.
Zurück zum Zitat Konner AC, Klockener T, Bruning JC. Control of energy homeostasis by insulin and leptin: targeting the arcuate nucleus and beyond. Physiol Behav. 2009;97(5):632–8.CrossRefPubMed Konner AC, Klockener T, Bruning JC. Control of energy homeostasis by insulin and leptin: targeting the arcuate nucleus and beyond. Physiol Behav. 2009;97(5):632–8.CrossRefPubMed
13.
Zurück zum Zitat Pandit R, Omrani A, Luijendijk MC, et al. Melanocortin 3 receptor signaling in midbrain dopamine neurons increases the motivation for food reward. Neuropsychopharmacology. 2016;41(9):2241–51.CrossRefPubMedPubMedCentral Pandit R, Omrani A, Luijendijk MC, et al. Melanocortin 3 receptor signaling in midbrain dopamine neurons increases the motivation for food reward. Neuropsychopharmacology. 2016;41(9):2241–51.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Morton GJ, Cummings DE, Baskin DG, et al. Central nervous system control of food intake and body weight. Nature. 2006;443(7109):289–95.CrossRefPubMed Morton GJ, Cummings DE, Baskin DG, et al. Central nervous system control of food intake and body weight. Nature. 2006;443(7109):289–95.CrossRefPubMed
15.
Zurück zum Zitat Jastreboff AM, Sinha R, Arora J, et al. Altered brain response to drinking glucose and fructose in obese adolescents. Diabetes. 2016;65(7):1929–39.CrossRefPubMedPubMedCentral Jastreboff AM, Sinha R, Arora J, et al. Altered brain response to drinking glucose and fructose in obese adolescents. Diabetes. 2016;65(7):1929–39.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Heni M, Kullmann S, Ketterer C, et al. Differential effect of glucose ingestion on the neural processing of food stimuli in lean and overweight adults. Hum Brain Mapp. 2014;35(3):918–28.CrossRefPubMed Heni M, Kullmann S, Ketterer C, et al. Differential effect of glucose ingestion on the neural processing of food stimuli in lean and overweight adults. Hum Brain Mapp. 2014;35(3):918–28.CrossRefPubMed
17.
Zurück zum Zitat Frank S, Linder K, Kullmann S, et al. Fat intake modulates cerebral blood flow in homeostatic and gustatory brain areas in humans. Am J Clin Nutr. 2012;95(6):1342–9.CrossRefPubMed Frank S, Linder K, Kullmann S, et al. Fat intake modulates cerebral blood flow in homeostatic and gustatory brain areas in humans. Am J Clin Nutr. 2012;95(6):1342–9.CrossRefPubMed
18.
Zurück zum Zitat Roth CL, Eslamy H, Werny D, et al. Semiquantitative analysis of hypothalamic damage on MRI predicts risk for hypothalamic obesity. Obesity (Silver Spring). 2015;23(6):1226–33.CrossRef Roth CL, Eslamy H, Werny D, et al. Semiquantitative analysis of hypothalamic damage on MRI predicts risk for hypothalamic obesity. Obesity (Silver Spring). 2015;23(6):1226–33.CrossRef
19.
Zurück zum Zitat Thaler JP, Yi C-X, Schur EA, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122(1):153–62.CrossRef Thaler JP, Yi C-X, Schur EA, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122(1):153–62.CrossRef
20.
Zurück zum Zitat Carus-Cadavieco M, Gorbati M, Ye L, et al. Gamma oscillations organize top-down signalling to hypothalamus and enable food seeking. Nature. 2017;542(7640):232–6.CrossRefPubMed Carus-Cadavieco M, Gorbati M, Ye L, et al. Gamma oscillations organize top-down signalling to hypothalamus and enable food seeking. Nature. 2017;542(7640):232–6.CrossRefPubMed
21.
Zurück zum Zitat Lips MA, Wijngaarden MA, van der Grond J, et al. Resting-state functional connectivity of brain regions involved in cognitive control, motivation, and reward is enhanced in obese females. Am J Clin Nutr. 2014;100(2):524–31.CrossRefPubMed Lips MA, Wijngaarden MA, van der Grond J, et al. Resting-state functional connectivity of brain regions involved in cognitive control, motivation, and reward is enhanced in obese females. Am J Clin Nutr. 2014;100(2):524–31.CrossRefPubMed
22.
Zurück zum Zitat Sande-Lee S, Pereira FR, Cintra DE, et al. Partial reversibility of hypothalamic dysfunction and changes in brain activity after body mass reduction in obese subjects. Diabetes. 2011;60(6):1699–704.CrossRefPubMedPubMedCentral Sande-Lee S, Pereira FR, Cintra DE, et al. Partial reversibility of hypothalamic dysfunction and changes in brain activity after body mass reduction in obese subjects. Diabetes. 2011;60(6):1699–704.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Wijngaarden MA, Veer IM, Rombouts SA, et al. Obesity is marked by distinct functional connectivity in brain networks involved in food reward and salience. Behav Brain Res. 2015;287:127–34.CrossRefPubMed Wijngaarden MA, Veer IM, Rombouts SA, et al. Obesity is marked by distinct functional connectivity in brain networks involved in food reward and salience. Behav Brain Res. 2015;287:127–34.CrossRefPubMed
24.
Zurück zum Zitat Hinkle W, Cordell M, Leibel R, et al. Effects of reduced weight maintenance and leptin repletion on functional connectivity of the hypothalamus in obese humans. PLoS One. 2012;8(3):e59114.CrossRef Hinkle W, Cordell M, Leibel R, et al. Effects of reduced weight maintenance and leptin repletion on functional connectivity of the hypothalamus in obese humans. PLoS One. 2012;8(3):e59114.CrossRef
25.
Zurück zum Zitat Halpern CH, Wolf JA, Bale TL, et al. Deep brain stimulation in the treatment of obesity. J Neurosurg. 2008;109(4):625–34.CrossRefPubMed Halpern CH, Wolf JA, Bale TL, et al. Deep brain stimulation in the treatment of obesity. J Neurosurg. 2008;109(4):625–34.CrossRefPubMed
26.
Zurück zum Zitat Whiting DM, Tomycz ND, Bailes J, et al. Lateral hypothalamic area deep brain stimulation for refractory obesity: a pilot study with preliminary data on safety, body weight, and energy metabolism. J Neurosurg. 2013;119(1):56–63.CrossRefPubMedPubMedCentral Whiting DM, Tomycz ND, Bailes J, et al. Lateral hypothalamic area deep brain stimulation for refractory obesity: a pilot study with preliminary data on safety, body weight, and energy metabolism. J Neurosurg. 2013;119(1):56–63.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Li P, Shan H, Liang S, et al. Sleeve gastrectomy recovering disordered brain function in subjects with obesity: a longitudinal fMRI study. Obes Surg. 2018;28:2421–8.CrossRefPubMed Li P, Shan H, Liang S, et al. Sleeve gastrectomy recovering disordered brain function in subjects with obesity: a longitudinal fMRI study. Obes Surg. 2018;28:2421–8.CrossRefPubMed
28.
Zurück zum Zitat Wiemerslage L, Zhou W, Olivo G, et al. A resting-state fMRI study of obese females between pre- and postprandial states before and after bariatric surgery. Eur J Neurosci. 2017;45(3):333–41.CrossRefPubMed Wiemerslage L, Zhou W, Olivo G, et al. A resting-state fMRI study of obese females between pre- and postprandial states before and after bariatric surgery. Eur J Neurosci. 2017;45(3):333–41.CrossRefPubMed
29.
Zurück zum Zitat Karlsson HK, Tuulari JJ, Tuominen L, et al. Weight loss after bariatric surgery normalizes brain opioid receptors in morbid obesity. Mol Psychiatry. 2016;21(8):1057–62.CrossRefPubMed Karlsson HK, Tuulari JJ, Tuominen L, et al. Weight loss after bariatric surgery normalizes brain opioid receptors in morbid obesity. Mol Psychiatry. 2016;21(8):1057–62.CrossRefPubMed
30.
Zurück zum Zitat Rullmann M, Preusser S, Poppitz S, et al. Gastric-bypass surgery induced widespread neural plasticity of the obese human brain. NeuroImage. 2018;172:853–63.CrossRefPubMed Rullmann M, Preusser S, Poppitz S, et al. Gastric-bypass surgery induced widespread neural plasticity of the obese human brain. NeuroImage. 2018;172:853–63.CrossRefPubMed
31.
Zurück zum Zitat Chao-Gan Y, Yu-Feng Z. DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci. 2010;4:13.PubMedPubMedCentral Chao-Gan Y, Yu-Feng Z. DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci. 2010;4:13.PubMedPubMedCentral
32.
Zurück zum Zitat Baroncini M, Jissendi P, Balland E, et al. MRI atlas of the human hypothalamus. NeuroImage. 2012;59(1):168–80.CrossRefPubMed Baroncini M, Jissendi P, Balland E, et al. MRI atlas of the human hypothalamus. NeuroImage. 2012;59(1):168–80.CrossRefPubMed
33.
Zurück zum Zitat Song XW, Dong ZY, Long XY, et al. REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One. 2011;6(9):e25031.CrossRefPubMedPubMedCentral Song XW, Dong ZY, Long XY, et al. REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One. 2011;6(9):e25031.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Chow S-C, Wang H, Shao J. Sample size calculations in clinical research. Second ed. London: CRC Press; 2007.CrossRef Chow S-C, Wang H, Shao J. Sample size calculations in clinical research. Second ed. London: CRC Press; 2007.CrossRef
35.
Zurück zum Zitat Marques-Iturria I, Scholtens LH, Garolera M, et al. Affected connectivity organization of the reward system structure in obesity. NeuroImage. 2015;111:100–6.CrossRefPubMed Marques-Iturria I, Scholtens LH, Garolera M, et al. Affected connectivity organization of the reward system structure in obesity. NeuroImage. 2015;111:100–6.CrossRefPubMed
36.
Zurück zum Zitat Draganski B, Kherif F, Kloppel S, et al. Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci. 2008;28(28):7143–52.CrossRefPubMedPubMedCentral Draganski B, Kherif F, Kloppel S, et al. Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci. 2008;28(28):7143–52.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Drew Sayer R, Tamer Jr GG, Chen N, et al. Reproducibility assessment of brain responses to visual food stimuli in adults with overweight and obesity. Obesity (Silver Spring). 2016;24(10):2057–63.CrossRef Drew Sayer R, Tamer Jr GG, Chen N, et al. Reproducibility assessment of brain responses to visual food stimuli in adults with overweight and obesity. Obesity (Silver Spring). 2016;24(10):2057–63.CrossRef
38.
Zurück zum Zitat Jones KT, Woods C, Zhen J, et al. Effects of diet and insulin on dopamine transporter activity and expression in rat caudate-putamen, nucleus accumbens, and midbrain. J Neurochem. 2017;140(5):728–40.CrossRefPubMedPubMedCentral Jones KT, Woods C, Zhen J, et al. Effects of diet and insulin on dopamine transporter activity and expression in rat caudate-putamen, nucleus accumbens, and midbrain. J Neurochem. 2017;140(5):728–40.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Saper CB, Chou TC, Elmquist JK. The need to feed: homeostatic and hedonic control of eating. Neuron. 2002;36:1992–211.CrossRef Saper CB, Chou TC, Elmquist JK. The need to feed: homeostatic and hedonic control of eating. Neuron. 2002;36:1992–211.CrossRef
40.
Zurück zum Zitat Sano H, Yokoi M. Striatal medium spiny neurons terminate in a distinct region in the lateral hypothalamic area and do not directly innervate orexin/hypocretin- or melanin-concentrating hormone-containing neurons. J Neurosci. 2007;27(26):6948–55.CrossRefPubMedPubMedCentral Sano H, Yokoi M. Striatal medium spiny neurons terminate in a distinct region in the lateral hypothalamic area and do not directly innervate orexin/hypocretin- or melanin-concentrating hormone-containing neurons. J Neurosci. 2007;27(26):6948–55.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Domingos AI, Sordillo A, Dietrich MO, et al. Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar. Elife. 2013;2:e01462.CrossRefPubMedPubMedCentral Domingos AI, Sordillo A, Dietrich MO, et al. Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar. Elife. 2013;2:e01462.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat De Araujo IE, Rolls ET. Representation in the human brain of food texture and oral fat. J Neurosci. 2004;24(12):3086–93.CrossRefPubMed De Araujo IE, Rolls ET. Representation in the human brain of food texture and oral fat. J Neurosci. 2004;24(12):3086–93.CrossRefPubMed
44.
Zurück zum Zitat Simmons WK, Avery JA, Barcalow JC, et al. Keeping the body in mind: insula functional organization and functional connectivity integrate interoceptive, exteroceptive, and emotional awareness. Hum Brain Mapp. 2013;34(11):2944–58.CrossRefPubMed Simmons WK, Avery JA, Barcalow JC, et al. Keeping the body in mind: insula functional organization and functional connectivity integrate interoceptive, exteroceptive, and emotional awareness. Hum Brain Mapp. 2013;34(11):2944–58.CrossRefPubMed
45.
Zurück zum Zitat Mcguire JT, Botvinick MM. Prefrontal cortex, cognitive control, and the registration of decision costs. Proc Natl Acad Sci U S A. 2010;107(17):7922–6.CrossRefPubMedPubMedCentral Mcguire JT, Botvinick MM. Prefrontal cortex, cognitive control, and the registration of decision costs. Proc Natl Acad Sci U S A. 2010;107(17):7922–6.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Wright H, Li X, Fallon NB, et al. Differential effects of hunger and satiety on insular cortex and hypothalamic functional connectivity. Eur J Neurosci. 2016;43(9):1181–9.CrossRefPubMedPubMedCentral Wright H, Li X, Fallon NB, et al. Differential effects of hunger and satiety on insular cortex and hypothalamic functional connectivity. Eur J Neurosci. 2016;43(9):1181–9.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Geha P, Cecchi G, Todd Constable R, et al. Reorganization of brain connectivity in obesity. Hum Brain Mapp. 2017;38(3):1403–20.CrossRefPubMed Geha P, Cecchi G, Todd Constable R, et al. Reorganization of brain connectivity in obesity. Hum Brain Mapp. 2017;38(3):1403–20.CrossRefPubMed
48.
Zurück zum Zitat Moreno-Lopez L, Contreras-Rodriguez O, Soriano-Mas C, et al. Disrupted functional connectivity in adolescent obesity. Neuroimage Clin. 2016;12:262–8.CrossRefPubMedPubMedCentral Moreno-Lopez L, Contreras-Rodriguez O, Soriano-Mas C, et al. Disrupted functional connectivity in adolescent obesity. Neuroimage Clin. 2016;12:262–8.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Tuulari JJ, Karlsson HK, Antikainen O, et al. Bariatric surgery induces white and grey matter density recovery in the morbidly obese: a voxel-based morphometric study. Hum Brain Mapp. 2016;37(11):3745–56.CrossRef Tuulari JJ, Karlsson HK, Antikainen O, et al. Bariatric surgery induces white and grey matter density recovery in the morbidly obese: a voxel-based morphometric study. Hum Brain Mapp. 2016;37(11):3745–56.CrossRef
50.
Zurück zum Zitat Frank S, Wilms B, Veit R, et al. Altered brain activity in severely obese women may recover after Roux-en Y gastric bypass surgery. Int J Obes. 2014;38(3):341–8.CrossRef Frank S, Wilms B, Veit R, et al. Altered brain activity in severely obese women may recover after Roux-en Y gastric bypass surgery. Int J Obes. 2014;38(3):341–8.CrossRef
51.
Zurück zum Zitat Spitznagel MB, Hawkins M, Alosco M, et al. Neurocognitive effects of obesity and bariatric surgery. Eur Eat Disord Rev. 2015;23(6):488–95.CrossRefPubMed Spitznagel MB, Hawkins M, Alosco M, et al. Neurocognitive effects of obesity and bariatric surgery. Eur Eat Disord Rev. 2015;23(6):488–95.CrossRefPubMed
52.
Zurück zum Zitat Guillemot-Legris O, Muccioli GG. Obesity-induced neuroinflammation: beyond the hypothalamus. Trends Neurosci. 2017;40(4):237–53.CrossRefPubMed Guillemot-Legris O, Muccioli GG. Obesity-induced neuroinflammation: beyond the hypothalamus. Trends Neurosci. 2017;40(4):237–53.CrossRefPubMed
53.
Zurück zum Zitat Chiappetta S, Schaack HM, Wolnerhannsen B, et al. The impact of obesity and metabolic surgery on chronic inflammation. Obes Surg. 2018;28(10):3028–40.CrossRefPubMed Chiappetta S, Schaack HM, Wolnerhannsen B, et al. The impact of obesity and metabolic surgery on chronic inflammation. Obes Surg. 2018;28(10):3028–40.CrossRefPubMed
54.
Zurück zum Zitat Ochner CN, Gibson C, Shanik M, et al. Changes in neurohormonal gut peptides following bariatric surgery. Int J Obes. 2011;35(2):153–66.CrossRef Ochner CN, Gibson C, Shanik M, et al. Changes in neurohormonal gut peptides following bariatric surgery. Int J Obes. 2011;35(2):153–66.CrossRef
55.
Zurück zum Zitat Anderson B, Switzer NJ, Almamar A, et al. The impact of laparoscopic sleeve gastrectomy on plasma ghrelin levels: a systematic review. Obes Surg. 2013 Sep;23(9):1476–80.CrossRefPubMed Anderson B, Switzer NJ, Almamar A, et al. The impact of laparoscopic sleeve gastrectomy on plasma ghrelin levels: a systematic review. Obes Surg. 2013 Sep;23(9):1476–80.CrossRefPubMed
56.
Zurück zum Zitat Churm R, Davies JS, Stephens JW, et al. Ghrelin function in human obesity and type 2 diabetes: a concise review. Obes Rev. 2017;18(2):140–8.CrossRefPubMed Churm R, Davies JS, Stephens JW, et al. Ghrelin function in human obesity and type 2 diabetes: a concise review. Obes Rev. 2017;18(2):140–8.CrossRefPubMed
57.
Zurück zum Zitat Malik S, McGlone F, Bedrossian D, et al. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 2008;7(5):400–9.CrossRef Malik S, McGlone F, Bedrossian D, et al. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 2008;7(5):400–9.CrossRef
58.
Zurück zum Zitat Bruce AS, Bruce JM, Ness AR, et al. A comparison of functional brain changes associated with surgical versus behavioral weight loss. Obesity (Silver Spring). 2014;22(2):337–43.CrossRef Bruce AS, Bruce JM, Ness AR, et al. A comparison of functional brain changes associated with surgical versus behavioral weight loss. Obesity (Silver Spring). 2014;22(2):337–43.CrossRef
59.
Zurück zum Zitat Ness A, Bruce J, Bruce A, et al. Pre-surgical cortical activation to food pictures is associated with weight loss following bariatric surgery. Surg Obes Relat Dis. 2014;10(6):1188–95.CrossRefPubMed Ness A, Bruce J, Bruce A, et al. Pre-surgical cortical activation to food pictures is associated with weight loss following bariatric surgery. Surg Obes Relat Dis. 2014;10(6):1188–95.CrossRefPubMed
Metadaten
Titel
Sleeve Gastrectomy Rescuing the Altered Functional Connectivity of Lateral but Not Medial Hypothalamus in Subjects with Obesity
verfasst von
Panlong Li
Han Shan
Binbin Nie
Hua Liu
Guanglong Dong
Yulin Guo
Jin Du
Hongkai Gao
Lin Ma
Demin Li
Baoci Shan
Publikationsdatum
21.03.2019
Verlag
Springer US
Erschienen in
Obesity Surgery / Ausgabe 7/2019
Print ISSN: 0960-8923
Elektronische ISSN: 1708-0428
DOI
https://doi.org/10.1007/s11695-019-03822-7

Weitere Artikel der Ausgabe 7/2019

Obesity Surgery 7/2019 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.