Skip to main content
Erschienen in: Cancer Immunology, Immunotherapy 7/2007

01.07.2007 | Original Article

Small numbers of residual tumor cells at the site of primary inoculation are critical for anti-tumor immunity following challenge at a secondary location

verfasst von: Takashi Kakinuma, Hari Nadiminti, Anke S. Lonsdorf, Takashi Murakami, Bradford A. Perez, Hisataka Kobayashi, Steven E. Finkelstein, Gulnar Pothiawala, Yasmine Belkaid, Sam T. Hwang

Erschienen in: Cancer Immunology, Immunotherapy | Ausgabe 7/2007

Einloggen, um Zugang zu erhalten

Abstract

Luciferase-transduced B16 murine melanoma cells (luc-B16) inoculated in ear skin do not form tumors but prevent tumor formation by luc-B16 cells injected into the footpad. To determine the requirements for such immunity, we followed the fate of luc-B16 cells following ear injection. Surprisingly, small numbers of viable luc-B16 cells were detected in tumor-free mouse skin for up to 60 days post-inoculation. After 1 week, the number of Foxp3+CD4+CD25+ T cells (along with foxp3 mRNA expression) increased rapidly in the injected ear skin. Residual tumor cells in ears were reduced in mice treated with anti-CD25 mAb and in CD4-deficient mice, but increased in CD8-deficient mice. Strikingly, the loss of luc-B16 cells in the ear skin, either spontaneously or following amputation of the injected ear, resulted in significantly enhanced tumor formation by parental and luciferase-expressing B16 cells after footpad injection. These studies suggest that small numbers of tumor cells (possibly regulated by CD4+CD25+ regulatory T cells expressing Foxp3) are required for effective host anti-tumor responses at alternate inoculation sites.
Literatur
1.
Zurück zum Zitat Antony PA, Restifo NP (2002) Do CD4+ CD25+ immunoregulatory T cells hinder tumor immunotherapy? J Immunother 25:202–206PubMedCrossRef Antony PA, Restifo NP (2002) Do CD4+ CD25+ immunoregulatory T cells hinder tumor immunotherapy? J Immunother 25:202–206PubMedCrossRef
2.
Zurück zum Zitat Bashford E, Murray J, Haaland M (1908) Resistance and suceptibility to inoculated cancer. In: Bashford E (ed) Third scientific report on the investigations of the imperial cancer research fund. Taylor & Francis, London pp 359–397 Bashford E, Murray J, Haaland M (1908) Resistance and suceptibility to inoculated cancer. In: Bashford E (ed) Third scientific report on the investigations of the imperial cancer research fund. Taylor & Francis, London pp 359–397
3.
Zurück zum Zitat Belkaid Y, Hoffmann KF, Mendez S, Kamhawi S, Udey MC, Wynn TA et al (2001) The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J Exp Med 194:1497–1506PubMedCrossRef Belkaid Y, Hoffmann KF, Mendez S, Kamhawi S, Udey MC, Wynn TA et al (2001) The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J Exp Med 194:1497–1506PubMedCrossRef
4.
Zurück zum Zitat Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL (2002) CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420:502–507PubMedCrossRef Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL (2002) CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420:502–507PubMedCrossRef
5.
Zurück zum Zitat Butterfield LH, Ribas A, Dissette VB, Amarnani SN, Vu HT, Oseguera D et al (2003) Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin Cancer Res 9:998–1008PubMed Butterfield LH, Ribas A, Dissette VB, Amarnani SN, Vu HT, Oseguera D et al (2003) Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin Cancer Res 9:998–1008PubMed
6.
Zurück zum Zitat Coussens LM, Werb Z (2001) Inflammatory cells and cancer: think different! J Exp Med 193:F23–F26PubMedCrossRef Coussens LM, Werb Z (2001) Inflammatory cells and cancer: think different! J Exp Med 193:F23–F26PubMedCrossRef
7.
Zurück zum Zitat Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949PubMedCrossRef Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949PubMedCrossRef
8.
Zurück zum Zitat Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D et al (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633PubMedCrossRef Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D et al (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633PubMedCrossRef
9.
Zurück zum Zitat Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K et al (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90:3539–3543PubMedCrossRef Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K et al (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90:3539–3543PubMedCrossRef
10.
Zurück zum Zitat Dudley ME, Wunderlich J, Nishimura MI, Yu D, Yang JC, Topalian SL, et al. (2001) Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J Immunother 24:363–373PubMedCrossRef Dudley ME, Wunderlich J, Nishimura MI, Yu D, Yang JC, Topalian SL, et al. (2001) Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J Immunother 24:363–373PubMedCrossRef
11.
Zurück zum Zitat Ehrlich P (1906) Collected studies on immunity. Wiley, London Ehrlich P (1906) Collected studies on immunity. Wiley, London
12.
Zurück zum Zitat Fidler IJ (1973) Selection of successive tumour lines for metastasis. Nature (New Biol) 242:148–149 Fidler IJ (1973) Selection of successive tumour lines for metastasis. Nature (New Biol) 242:148–149
13.
Zurück zum Zitat Fontenot JD, Rudensky AY (2005) A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 6:331–337PubMedCrossRef Fontenot JD, Rudensky AY (2005) A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 6:331–337PubMedCrossRef
14.
Zurück zum Zitat Franco M, Bustuoabad OD, di Gianni PD, Goldman A, Pasqualini CD, Ruggiero RA (1996) A serum-mediated mechanism for concomitant resistance shared by immunogenic and non-immunogenic murine tumours. Br J Cancer 74:178–186PubMed Franco M, Bustuoabad OD, di Gianni PD, Goldman A, Pasqualini CD, Ruggiero RA (1996) A serum-mediated mechanism for concomitant resistance shared by immunogenic and non-immunogenic murine tumours. Br J Cancer 74:178–186PubMed
15.
Zurück zum Zitat Kobayashi H, Kawamoto S, Choyke PL, Sato N, Knopp MV, Star RA et al (2003) Comparison of dendrimer-based macromolecular contrast agents for dynamic micro-magnetic resonance lymphangiography. Magn Reson Med 50:758–766PubMedCrossRef Kobayashi H, Kawamoto S, Choyke PL, Sato N, Knopp MV, Star RA et al (2003) Comparison of dendrimer-based macromolecular contrast agents for dynamic micro-magnetic resonance lymphangiography. Magn Reson Med 50:758–766PubMedCrossRef
16.
Zurück zum Zitat Kobayashi H, Kawamoto S, Star RA, Waldmann TA, Tagaya Y, Brechbiel MW (2003) Micro-magnetic resonance lymphangiography in mice using a novel dendrimer-based magnetic resonance imaging contrast agent. Cancer Res 63:271–276PubMed Kobayashi H, Kawamoto S, Star RA, Waldmann TA, Tagaya Y, Brechbiel MW (2003) Micro-magnetic resonance lymphangiography in mice using a novel dendrimer-based magnetic resonance imaging contrast agent. Cancer Res 63:271–276PubMed
17.
Zurück zum Zitat Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS et al (1999) Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 5:677–685PubMedCrossRef Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS et al (1999) Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 5:677–685PubMedCrossRef
18.
Zurück zum Zitat Ljunggren HG, Karre K (1985) Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J Exp Med 162:1745–1759PubMedCrossRef Ljunggren HG, Karre K (1985) Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J Exp Med 162:1745–1759PubMedCrossRef
19.
Zurück zum Zitat Murakami T, Cardones AR, Finkelstein SE, Restifo NP, Klaunberg BA, Nestle FO et al (2003) Immune evasion by murine melanoma mediated through CC chemokine receptor-10. J Exp Med 198:1337–1347PubMedCrossRef Murakami T, Cardones AR, Finkelstein SE, Restifo NP, Klaunberg BA, Nestle FO et al (2003) Immune evasion by murine melanoma mediated through CC chemokine receptor-10. J Exp Med 198:1337–1347PubMedCrossRef
20.
Zurück zum Zitat Nagai H, Horikawa T, Hara I, Fukunaga A, Oniki S, Oka M et al (2004) In vivo elimination of CD25+ regulatory T cells leads to tumor rejection of B16F10 melanoma, when combined with interleukin-12 gene transfer. Exp Dermatol 13:613–620PubMedCrossRef Nagai H, Horikawa T, Hara I, Fukunaga A, Oniki S, Oka M et al (2004) In vivo elimination of CD25+ regulatory T cells leads to tumor rejection of B16F10 melanoma, when combined with interleukin-12 gene transfer. Exp Dermatol 13:613–620PubMedCrossRef
21.
Zurück zum Zitat Ochsenbein AF, Sierro S, Odermatt B, Pericin M, Karrer U, Hermans J et al (2001) Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature 411:1058–1064PubMedCrossRef Ochsenbein AF, Sierro S, Odermatt B, Pericin M, Karrer U, Hermans J et al (2001) Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature 411:1058–1064PubMedCrossRef
22.
Zurück zum Zitat Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E (1999) Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 59:3128–3133PubMed Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E (1999) Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 59:3128–3133PubMed
23.
Zurück zum Zitat O’Reilly M, Rosenthal R, Sage E, Smith S, Holmgren L, Moses M et al (1993) The suppression of tumor metastases by a primary tumor. Surg Forum 44:474–478 O’Reilly M, Rosenthal R, Sage E, Smith S, Holmgren L, Moses M et al (1993) The suppression of tumor metastases by a primary tumor. Surg Forum 44:474–478
24.
Zurück zum Zitat Ribas A, Timmerman JM, Butterfield LH, Economou JS (2003) Determinant spreading and tumor responses after peptide-based cancer immunotherapy. Trends Immunol 24:58–61PubMedCrossRef Ribas A, Timmerman JM, Butterfield LH, Economou JS (2003) Determinant spreading and tumor responses after peptide-based cancer immunotherapy. Trends Immunol 24:58–61PubMedCrossRef
25.
26.
Zurück zum Zitat Saeki H, Moore AM, Brown MJ, Hwang ST (1999) Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J Immunol 162:2472–2475PubMed Saeki H, Moore AM, Brown MJ, Hwang ST (1999) Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J Immunol 162:2472–2475PubMed
27.
Zurück zum Zitat Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218PubMed Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218PubMed
28.
Zurück zum Zitat Sugarbaker E, Thornthwaite J, Ketcham A (1977) Inhibitor effect of a primary tumor on metastasis. In: Day S et al (eds) Progress in cancer research and therapy. Raven, New York pp 227–240 Sugarbaker E, Thornthwaite J, Ketcham A (1977) Inhibitor effect of a primary tumor on metastasis. In: Day S et al (eds) Progress in cancer research and therapy. Raven, New York pp 227–240
29.
Zurück zum Zitat Sutmuller RP, van Duivenvoorde LM, van Elsas A, Schumacher TN, Wildenberg ME, Allison JP et al (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 194:823–832PubMedCrossRef Sutmuller RP, van Duivenvoorde LM, van Elsas A, Schumacher TN, Wildenberg ME, Allison JP et al (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 194:823–832PubMedCrossRef
30.
Zurück zum Zitat Topalian SL, Solomon D, Rosenberg SA (1989) Tumor-specific cytolysis by lymphocytes infiltrating human melanomas. J Immunol 142:3714–3725PubMed Topalian SL, Solomon D, Rosenberg SA (1989) Tumor-specific cytolysis by lymphocytes infiltrating human melanomas. J Immunol 142:3714–3725PubMed
31.
Zurück zum Zitat Turk MJ, Guevara-Patino JA, Rizzuto GA, Engelhorn ME, Houghton AN (2004) Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med 200:771–782PubMedCrossRef Turk MJ, Guevara-Patino JA, Rizzuto GA, Engelhorn ME, Houghton AN (2004) Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med 200:771–782PubMedCrossRef
32.
Zurück zum Zitat Wiley H, Gonzalez EB, Maki W, Wu M, Hwang ST (2001) Expression of CC chemokine receptor-7 (CCR7) and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 93:1638–1643PubMedCrossRef Wiley H, Gonzalez EB, Maki W, Wu M, Hwang ST (2001) Expression of CC chemokine receptor-7 (CCR7) and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 93:1638–1643PubMedCrossRef
Metadaten
Titel
Small numbers of residual tumor cells at the site of primary inoculation are critical for anti-tumor immunity following challenge at a secondary location
verfasst von
Takashi Kakinuma
Hari Nadiminti
Anke S. Lonsdorf
Takashi Murakami
Bradford A. Perez
Hisataka Kobayashi
Steven E. Finkelstein
Gulnar Pothiawala
Yasmine Belkaid
Sam T. Hwang
Publikationsdatum
01.07.2007
Verlag
Springer-Verlag
Erschienen in
Cancer Immunology, Immunotherapy / Ausgabe 7/2007
Print ISSN: 0340-7004
Elektronische ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-006-0253-4

Weitere Artikel der Ausgabe 7/2007

Cancer Immunology, Immunotherapy 7/2007 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.