Skip to main content
Erschienen in: Journal of Neural Transmission 8/2016

08.02.2016 | Psychiatry and Preclinical Psychiatric Studies - Review Article

SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond

verfasst von: Renata Basso Cupertino, Djenifer B. Kappel, Cibele Edom Bandeira, Jaqueline Bohrer Schuch, Bruna Santos da Silva, Diana Müller, Claiton Henrique Dotto Bau, Nina Roth Mota

Erschienen in: Journal of Neural Transmission | Ausgabe 8/2016

Einloggen, um Zugang zu erhalten

Abstract

Multiple biological processes throughout development require intracellular vesicular trafficking, where the SNARE (soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptors) complex plays a major role. The core proteins forming the SNARE complex are SNAP-25 (synaptosomal-associated protein 25), VAMP (vesicle-associated membrane protein) and Syntaxins, besides its regulatory proteins, such as Synaptotagmin. Genes encoding these proteins (SNAP25, VAMP1, VAMP2, STX1A, SYT1 and SYT2) have been studied in relation to psychiatric disorders susceptibility. Here, we review physiological aspects of SNARE complex and genetic association results reported for attention deficit hyperactivity disorder, both in children and adults, autism spectrum disorders, major depressive disorder, bipolar disorder and schizophrenia. Moreover, we included findings from expression, pharmacogenetics and animal model studies regarding these clinical phenotypes. The overall scenario depicted here suggests that the SNARE complex may exert distinct roles throughout development, with age-specific effects of genetic variants in psychiatric disorders. Such perspective should be considered in future studies regarding SNARE complex genes.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abrial E, Betourne A, Etievant A et al (2015) Protein kinase C inhibition rescues manic-like behaviors and hippocampal cell proliferation deficits in the sleep deprivation model of mania. Int J Neuropsychoph 18:1–11. doi:10.1093/ijnp/pyu031 CrossRef Abrial E, Betourne A, Etievant A et al (2015) Protein kinase C inhibition rescues manic-like behaviors and hippocampal cell proliferation deficits in the sleep deprivation model of mania. Int J Neuropsychoph 18:1–11. doi:10.​1093/​ijnp/​pyu031 CrossRef
Zurück zum Zitat Araque A, Li N, Doyle RT, Haydon PG (2000) SNARE protein-dependent glutamate release from astrocytes. J Neurosci 20:666–673PubMed Araque A, Li N, Doyle RT, Haydon PG (2000) SNARE protein-dependent glutamate release from astrocytes. J Neurosci 20:666–673PubMed
Zurück zum Zitat Barakauskas VE, Beasley CL, Barr AM et al (2010) A novel mechanism and treatment target for presynaptic abnormalities in specific striatal regions in schizophrenia. Neuropsychopharmacol 35(5):1226–1238CrossRef Barakauskas VE, Beasley CL, Barr AM et al (2010) A novel mechanism and treatment target for presynaptic abnormalities in specific striatal regions in schizophrenia. Neuropsychopharmacol 35(5):1226–1238CrossRef
Zurück zum Zitat Bark IC (1993) Structure of the chicken gene for SNAP-25 reveals duplicated exons encoding distinct isoforms of the protein. J Mol Biol 233:67–76PubMedCrossRef Bark IC (1993) Structure of the chicken gene for SNAP-25 reveals duplicated exons encoding distinct isoforms of the protein. J Mol Biol 233:67–76PubMedCrossRef
Zurück zum Zitat Barr AM, Young CE, Phillips AG, Honer WG (2006) Selective effects of typical antipsychotic drugs on SNAP-25 and synaptophysin in the hippocampal trisynaptic pathway. Int J Neuropsychopharmacol 9:457–463. doi:10.1017/S1461145705006000 PubMedCrossRef Barr AM, Young CE, Phillips AG, Honer WG (2006) Selective effects of typical antipsychotic drugs on SNAP-25 and synaptophysin in the hippocampal trisynaptic pathway. Int J Neuropsychopharmacol 9:457–463. doi:10.​1017/​S146114570500600​0 PubMedCrossRef
Zurück zum Zitat Brookes K, Xu X, Chen W et al (2006) The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry 11:934–953. doi:10.1038/sj.mp.4001869 PubMedCrossRef Brookes K, Xu X, Chen W et al (2006) The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry 11:934–953. doi:10.​1038/​sj.​mp.​4001869 PubMedCrossRef
Zurück zum Zitat Carroll LS, Kendall K, O’Donovan MC et al (2009) Evidence that putative ADHD low risk alleles at SNAP25 may increase the risk of schizophrenia. Am J Med Genet B 150:893–899. doi:10.1002/ajmg.b.30915 CrossRef Carroll LS, Kendall K, O’Donovan MC et al (2009) Evidence that putative ADHD low risk alleles at SNAP25 may increase the risk of schizophrenia. Am J Med Genet B 150:893–899. doi:10.​1002/​ajmg.​b.​30915 CrossRef
Zurück zum Zitat Caspi A, Sugden K, Moffitt TE et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301(5631):386–389PubMedCrossRef Caspi A, Sugden K, Moffitt TE et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301(5631):386–389PubMedCrossRef
Zurück zum Zitat Contini V, Victor MM, Bertuzzi GP et al (2012) No significant association between genetic variants in 7 candidate genes and response to methylphenidate treatment in adult patients with ADHD. J Clin Psychopharmacol 32:820–823. doi:10.1097/JCP.0b013e318270e727 PubMedCrossRef Contini V, Victor MM, Bertuzzi GP et al (2012) No significant association between genetic variants in 7 candidate genes and response to methylphenidate treatment in adult patients with ADHD. J Clin Psychopharmacol 32:820–823. doi:10.​1097/​JCP.​0b013e318270e727​ PubMedCrossRef
Zurück zum Zitat Duric V, Banasr M, Stockmeier CA et al (2013) Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int J Neuropsychopharmacol 16:69–82PubMedCrossRef Duric V, Banasr M, Stockmeier CA et al (2013) Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int J Neuropsychopharmacol 16:69–82PubMedCrossRef
Zurück zum Zitat Elfving B, Bonefeld BE, Rosenberg R, Wegener G (2008) Differential expression of synaptic vesicle proteins after repeated electroconvulsive seizures in rat frontal cortex and hippocampus. Synapse 62:662–670. doi:10.1002/syn.20538 PubMedCrossRef Elfving B, Bonefeld BE, Rosenberg R, Wegener G (2008) Differential expression of synaptic vesicle proteins after repeated electroconvulsive seizures in rat frontal cortex and hippocampus. Synapse 62:662–670. doi:10.​1002/​syn.​20538 PubMedCrossRef
Zurück zum Zitat el-Husseini Ael-D, Bredt DS (2002) Protein palmitoylation: a regulator of neuronal development and function. Nat Rev Neurosci 3(10):791–780 el-Husseini Ael-D, Bredt DS (2002) Protein palmitoylation: a regulator of neuronal development and function. Nat Rev Neurosci 3(10):791–780
Zurück zum Zitat Etain B, Dumaine A, Mathieu F et al (2010) A SNAP25 promoter variant is associated with early-onset bipolar disorder and a high expression level in brain. Mol Psychiatry 15:748–755. doi:10.1038/mp.2008.148 Etain B, Dumaine A, Mathieu F et al (2010) A SNAP25 promoter variant is associated with early-onset bipolar disorder and a high expression level in brain. Mol Psychiatry 15:748–755. doi:10.​1038/​mp.​2008.​148
Zurück zum Zitat Fanous AH, Zhao Z, Van Den Oord EJCG et al (2010) Association study of SNAP25 and schizophrenia in Irish family and case-control samples. Am J Med Genet B 153:663–674 Fanous AH, Zhao Z, Van Den Oord EJCG et al (2010) Association study of SNAP25 and schizophrenia in Irish family and case-control samples. Am J Med Genet B 153:663–674
Zurück zum Zitat Fatemi SH, Earle JA, Stary JM et al (2001) Altered levels of the synaptosomal associated protein SNAP-25 in hippocampus of subjects with mood disorders and schizophrenia. NeuroReport 12:3257–3262PubMedCrossRef Fatemi SH, Earle JA, Stary JM et al (2001) Altered levels of the synaptosomal associated protein SNAP-25 in hippocampus of subjects with mood disorders and schizophrenia. NeuroReport 12:3257–3262PubMedCrossRef
Zurück zum Zitat Feldmann A, Winterstein C, White R et al (2009) Comprehensive analysis of expression, subcellular localization, and cognate pairing of SNARE proteins in oligodendrocytes. J Neurosci Res 87:1760–1772. doi:10.1002/jnr.22020 PubMedCrossRef Feldmann A, Winterstein C, White R et al (2009) Comprehensive analysis of expression, subcellular localization, and cognate pairing of SNARE proteins in oligodendrocytes. J Neurosci Res 87:1760–1772. doi:10.​1002/​jnr.​22020 PubMedCrossRef
Zurück zum Zitat Feng Y, Crosbie J, Wigg K et al (2005) The SNAP25 gene as a susceptibility gene contributing to attention-deficit hyperactivity disorder. Mol Psychiatry 10(11):998–1005PubMedCrossRef Feng Y, Crosbie J, Wigg K et al (2005) The SNAP25 gene as a susceptibility gene contributing to attention-deficit hyperactivity disorder. Mol Psychiatry 10(11):998–1005PubMedCrossRef
Zurück zum Zitat Forero DA, Arboleda GH, Vasquez R, Arboleda H (2009) Candidate genes involved in neural plasticity and the risk for attention-deficit hyperactivity disorder: a meta-analysis of 8 common variants. J Psychiatry Neurosci 34:361–366PubMedPubMedCentral Forero DA, Arboleda GH, Vasquez R, Arboleda H (2009) Candidate genes involved in neural plasticity and the risk for attention-deficit hyperactivity disorder: a meta-analysis of 8 common variants. J Psychiatry Neurosci 34:361–366PubMedPubMedCentral
Zurück zum Zitat Gadella BM, Evans JP (2011) Membrane fusions during mammalian fertilization. In: Dittmar T, Zänker KS (eds) Chapter 5—Cell fusion in health and disease, Springer, Netherlands 713: 65–80. doi:10.1007/978-94-007-0763-4_5 Gadella BM, Evans JP (2011) Membrane fusions during mammalian fertilization. In: Dittmar T, Zänker KS (eds) Chapter 5—Cell fusion in health and disease, Springer, Netherlands 713: 65–80. doi:10.​1007/​978-94-007-0763-4_​5
Zurück zum Zitat Gálvez JM, Forero DA, Fonseca DJ et al (2014) Evidence of association between SNAP25 gene and attention deficit hyperactivity disorder in a Latin American sample. Atten Deficit Hyperact Disord 6:19–23. doi:10.1007/s12402-013-0123-9 CrossRef Gálvez JM, Forero DA, Fonseca DJ et al (2014) Evidence of association between SNAP25 gene and attention deficit hyperactivity disorder in a Latin American sample. Atten Deficit Hyperact Disord 6:19–23. doi:10.​1007/​s12402-013-0123-9 CrossRef
Zurück zum Zitat Gao Q, Liu L, Chen Y et al (2015) Synaptosome-related (SNARE) genes and their interactions contribute to the susceptibility and working memory of attention-deficit/hyperactivity disorder in males. Prog Neuro Psychopha Biol Psychiatry 57:132–139. doi:10.1016/j.pnpbp.2014.11.001 CrossRef Gao Q, Liu L, Chen Y et al (2015) Synaptosome-related (SNARE) genes and their interactions contribute to the susceptibility and working memory of attention-deficit/hyperactivity disorder in males. Prog Neuro Psychopha Biol Psychiatry 57:132–139. doi:10.​1016/​j.​pnpbp.​2014.​11.​001 CrossRef
Zurück zum Zitat Gil-Pisa I, Munarriz-Cuezva E, Ramos-Miguel A et al (2012) Regulation of munc18-1 and syntaxin-1A interactive partners in schizophrenia prefrontal cortex: down-regulation of munc18-1a isoform and 75 kDa SNARE complex after antipsychotic treatment. Int J Neuropsychopharmacol 15:573–588. doi:10.1017/S1461145711000861 PubMedCrossRef Gil-Pisa I, Munarriz-Cuezva E, Ramos-Miguel A et al (2012) Regulation of munc18-1 and syntaxin-1A interactive partners in schizophrenia prefrontal cortex: down-regulation of munc18-1a isoform and 75 kDa SNARE complex after antipsychotic treatment. Int J Neuropsychopharmacol 15:573–588. doi:10.​1017/​S146114571100086​1 PubMedCrossRef
Zurück zum Zitat Gonelle-Gispert C, Molinete M, Halban PA, Sadoul K (2000) Membrane localization and biological activity of SNAP-25 cysteine mutants in insulin-secreting cells. J Cell Sci 113:3197–3205PubMed Gonelle-Gispert C, Molinete M, Halban PA, Sadoul K (2000) Membrane localization and biological activity of SNAP-25 cysteine mutants in insulin-secreting cells. J Cell Sci 113:3197–3205PubMed
Zurück zum Zitat Gosso MF, de Geus EJC, van Belzen MJ et al (2006) The SNAP-25 gene is associated with cognitive ability: evidence from a family-based study in two independent Dutch cohorts. Mol Psychiatry 11:878–886. doi:10.1038/sj.mp.4001868 PubMedCrossRef Gosso MF, de Geus EJC, van Belzen MJ et al (2006) The SNAP-25 gene is associated with cognitive ability: evidence from a family-based study in two independent Dutch cohorts. Mol Psychiatry 11:878–886. doi:10.​1038/​sj.​mp.​4001868 PubMedCrossRef
Zurück zum Zitat Gosso MF, De Geus EJC, Polderman TJC et al (2008) Common variants underlying cognitive ability: further evidence for association between the SNAP-25 gene and cognition using a family-based study in two independent Dutch cohorts. Genes Brain Behav 7:355–364. doi:10.1111/j.1601-183X.2007.00359.x PubMedCrossRef Gosso MF, De Geus EJC, Polderman TJC et al (2008) Common variants underlying cognitive ability: further evidence for association between the SNAP-25 gene and cognition using a family-based study in two independent Dutch cohorts. Genes Brain Behav 7:355–364. doi:10.​1111/​j.​1601-183X.​2007.​00359.​x PubMedCrossRef
Zurück zum Zitat Greif KF, Asabere N, Lutz GJ et al (2013) Synaptotagmin-1 promotes the formation of axonal filopodia and branches along the developing axons of forebrain neurons. Dev Neurobiol 73:27–44. doi:10.1002/dneu.22033 PubMedCrossRef Greif KF, Asabere N, Lutz GJ et al (2013) Synaptotagmin-1 promotes the formation of axonal filopodia and branches along the developing axons of forebrain neurons. Dev Neurobiol 73:27–44. doi:10.​1002/​dneu.​22033 PubMedCrossRef
Zurück zum Zitat Guan L, Wang B, Chen Y et al (2009) A high-density single-nucleotide polymorphism screen of 23 candidate genes in attention deficit hyperactivity disorder: suggesting multiple susceptibility genes among Chinese Han population. Mol Psychiatry 14:546–554. doi:10.1038/sj.mp.4002139 PubMedCrossRef Guan L, Wang B, Chen Y et al (2009) A high-density single-nucleotide polymorphism screen of 23 candidate genes in attention deficit hyperactivity disorder: suggesting multiple susceptibility genes among Chinese Han population. Mol Psychiatry 14:546–554. doi:10.​1038/​sj.​mp.​4002139 PubMedCrossRef
Zurück zum Zitat Hess EJ, Jinnah HA, Kozak CA, Wilson MC (1992) Spontaneous locomotor hyperactivity in a mouse mutant with a deletion including the Snap gene on chromosome 2. J Neurosci 12:2865–2874PubMed Hess EJ, Jinnah HA, Kozak CA, Wilson MC (1992) Spontaneous locomotor hyperactivity in a mouse mutant with a deletion including the Snap gene on chromosome 2. J Neurosci 12:2865–2874PubMed
Zurück zum Zitat Hess EJ, Collins KA, Wilson MC (1996) Mouse model of hyperkinesis implicates SNAP-25 in behavioral regulation. J Neurosci 16(9):3104–3111PubMed Hess EJ, Collins KA, Wilson MC (1996) Mouse model of hyperkinesis implicates SNAP-25 in behavioral regulation. J Neurosci 16(9):3104–3111PubMed
Zurück zum Zitat Holt M, Varoqueaux F, Wiederhold K et al (2006) Identification of SNAP-47, a novel Qbc-SNARE with ubiquitous expression. J Biol Chem 281:17076–17083PubMedCrossRef Holt M, Varoqueaux F, Wiederhold K et al (2006) Identification of SNAP-47, a novel Qbc-SNARE with ubiquitous expression. J Biol Chem 281:17076–17083PubMedCrossRef
Zurück zum Zitat Jiang X, Wang J, Luo T et al (2009) Impaired hypothalamic-pituitary-adrenal axis and its feedback regulation in serotonin transporter knockout mice. Psychoneuroendocrino 34(3):317–331CrossRef Jiang X, Wang J, Luo T et al (2009) Impaired hypothalamic-pituitary-adrenal axis and its feedback regulation in serotonin transporter knockout mice. Psychoneuroendocrino 34(3):317–331CrossRef
Zurück zum Zitat Kawashima K, Kishi T, Ikeda M et al (2008) No association between tagging SNPs of SNARE complex genes (STX1A, VAMP2 and SNAP25) and schizophrenia in a Japanese population. Am J Med Genet Part B Neuropsychiatr Genet 147:1327–1331. doi:10.1002/ajmg.b.30781 CrossRef Kawashima K, Kishi T, Ikeda M et al (2008) No association between tagging SNPs of SNARE complex genes (STX1A, VAMP2 and SNAP25) and schizophrenia in a Japanese population. Am J Med Genet Part B Neuropsychiatr Genet 147:1327–1331. doi:10.​1002/​ajmg.​b.​30781 CrossRef
Zurück zum Zitat Kim JW, Biederman J, Arbeitman L et al (2007) Investigation of variation in SNAP-25 and ADHD and relationship to co-morbid major depressive disorder. Am J Med Genet Part B Neuropsychiatr Genet 144:781–790. doi:10.1002/ajmg.b.30522 CrossRef Kim JW, Biederman J, Arbeitman L et al (2007) Investigation of variation in SNAP-25 and ADHD and relationship to co-morbid major depressive disorder. Am J Med Genet Part B Neuropsychiatr Genet 144:781–790. doi:10.​1002/​ajmg.​b.​30522 CrossRef
Zurück zum Zitat Larra SA, Khan SAF (2014) Phylogenetic history analysis of Vamp gene family. J Public Heal Biol Sci 3(1):17–23 Larra SA, Khan SAF (2014) Phylogenetic history analysis of Vamp gene family. J Public Heal Biol Sci 3(1):17–23
Zurück zum Zitat Lasky-Su J, Anney RJL, Neale BM et al (2008) Genome-wide association scan of the time to onset of attention deficit hyperactivity disorder. Am J Med Genet Part B Neuropsychiatr Genet 147:1355–1358. doi:10.1002/ajmg.b.30869 CrossRef Lasky-Su J, Anney RJL, Neale BM et al (2008) Genome-wide association scan of the time to onset of attention deficit hyperactivity disorder. Am J Med Genet Part B Neuropsychiatr Genet 147:1355–1358. doi:10.​1002/​ajmg.​b.​30869 CrossRef
Zurück zum Zitat Mill J, Curran S, Kent L et al (2002) Association study of a SNAP-25 microsatellite and attention deficit hyperactivity disorder. Am J Med Genet Part B Neuropsychiatr Genet 114(3):269–271. doi:10.1002/ajmg.10253 CrossRef Mill J, Curran S, Kent L et al (2002) Association study of a SNAP-25 microsatellite and attention deficit hyperactivity disorder. Am J Med Genet Part B Neuropsychiatr Genet 114(3):269–271. doi:10.​1002/​ajmg.​10253 CrossRef
Zurück zum Zitat Mill J, Xu X, Ronald A et al (2005) Quantitative trait locus analysis of candidate gene alleles associated with attention deficit hyperactivity disorder (ADHD) in five genes: DRD4, DAT1, DRD5, SNAP-25, and 5HT1B. Am J Med Genet Part B Neuropsychiatr Genet 133(1):68–73. doi:10.1002/ajmg.b.30107 CrossRef Mill J, Xu X, Ronald A et al (2005) Quantitative trait locus analysis of candidate gene alleles associated with attention deficit hyperactivity disorder (ADHD) in five genes: DRD4, DAT1, DRD5, SNAP-25, and 5HT1B. Am J Med Genet Part B Neuropsychiatr Genet 133(1):68–73. doi:10.​1002/​ajmg.​b.​30107 CrossRef
Zurück zum Zitat Mothet J-P, Pollegioni L, Ouanounou G et al (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter d-serine. P Natl Acad Sci USA 102:5606–5611. doi:10.1073/pnas.0408483102 CrossRef Mothet J-P, Pollegioni L, Ouanounou G et al (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter d-serine. P Natl Acad Sci USA 102:5606–5611. doi:10.​1073/​pnas.​0408483102 CrossRef
Zurück zum Zitat Nagy G, Matti U, Nehring RB et al (2002) Protein kinase C-dependent phosphorylation of synaptosome-associated protein of 25 kDa at Ser187 potentiates vesicle recruitment. J Neurosci 22:9278–9286PubMed Nagy G, Matti U, Nehring RB et al (2002) Protein kinase C-dependent phosphorylation of synaptosome-associated protein of 25 kDa at Ser187 potentiates vesicle recruitment. J Neurosci 22:9278–9286PubMed
Zurück zum Zitat Osen-Sand A, Catsicas M, Staple JK et al (1993) Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Lett Nat 364:445–448. doi:10.1038/364445a0 CrossRef Osen-Sand A, Catsicas M, Staple JK et al (1993) Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Lett Nat 364:445–448. doi:10.​1038/​364445a0 CrossRef
Zurück zum Zitat Pozzi D, Condliffe S, Bozzi Y et al (2008) Activity-dependent phosphorylation of Ser187 is required for SNAP-25-negative modulation of neuronal voltage-gated calcium channels. Proc Natl Acad Sci USA 105:323–328. doi:10.1073/pnas.0706211105 PubMedCrossRef Pozzi D, Condliffe S, Bozzi Y et al (2008) Activity-dependent phosphorylation of Ser187 is required for SNAP-25-negative modulation of neuronal voltage-gated calcium channels. Proc Natl Acad Sci USA 105:323–328. doi:10.​1073/​pnas.​0706211105 PubMedCrossRef
Zurück zum Zitat Ravichandran V, Chawla A, Roche PA (1996) Identification of a novel syntaxin- and synaptobrevin/VAMP-binding protein, SNAP-23, expressed in non-neuronal tissues. J Biol Chem 271:13300–13303PubMedCrossRef Ravichandran V, Chawla A, Roche PA (1996) Identification of a novel syntaxin- and synaptobrevin/VAMP-binding protein, SNAP-23, expressed in non-neuronal tissues. J Biol Chem 271:13300–13303PubMedCrossRef
Zurück zum Zitat Roberts S, Keers R, Lester KJ et al (2015) HPA axis related genes and response to psychological therapies: genetics and epigenetics. Depress Anxiety 32(12):861–870PubMedCrossRef Roberts S, Keers R, Lester KJ et al (2015) HPA axis related genes and response to psychological therapies: genetics and epigenetics. Depress Anxiety 32(12):861–870PubMedCrossRef
Zurück zum Zitat Saito S, Takahashi N, Ishihara R et al (2007) Association study between vesicle-associated membrane protein 2 gene polymorphisms and fluvoxamine response in Japanese major depressive patients. Neuropsychobiology 54:226–230. doi:10.1159/000100777 CrossRef Saito S, Takahashi N, Ishihara R et al (2007) Association study between vesicle-associated membrane protein 2 gene polymorphisms and fluvoxamine response in Japanese major depressive patients. Neuropsychobiology 54:226–230. doi:10.​1159/​000100777 CrossRef
Zurück zum Zitat Smith TD, Adams MM, Gallagher M et al (2000) Circuit-specific alterations in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats. J Neurosci 20:6587–6593PubMed Smith TD, Adams MM, Gallagher M et al (2000) Circuit-specific alterations in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats. J Neurosci 20:6587–6593PubMed
Zurück zum Zitat Sokolov BP, Tcherepanov AA, Haroutunian V, Davis KL (2000) Levels of mRNAs encoding synaptic veiscle and synaptic plasma membrane proteins in the temporal cortex of elderly schizophrenia patients. Biol Psychiatry 48:184–196PubMedCrossRef Sokolov BP, Tcherepanov AA, Haroutunian V, Davis KL (2000) Levels of mRNAs encoding synaptic veiscle and synaptic plasma membrane proteins in the temporal cortex of elderly schizophrenia patients. Biol Psychiatry 48:184–196PubMedCrossRef
Zurück zum Zitat Sommer JU, Schmitt A, Heck M et al (2010) Differential expression of presynaptic genes in a rat model of postnatal hypoxia: relevance to schizophrenia. Eur Arch Psychiatry Clin Neurosci 260:S81–S89. doi:10.1007/s00406-010-0159-1 PubMedCrossRef Sommer JU, Schmitt A, Heck M et al (2010) Differential expression of presynaptic genes in a rat model of postnatal hypoxia: relevance to schizophrenia. Eur Arch Psychiatry Clin Neurosci 260:S81–S89. doi:10.​1007/​s00406-010-0159-1 PubMedCrossRef
Zurück zum Zitat Spellman I, Müller N, Musil R et al (2008) Associations of SNAP-25 polymorphisms with cognitive dysfunctions in Caucasian patients with schizophrenia during a brief trail of treatment with atypical antipsychotics. Eur Arch Psy Clin N 258(6):335–344. doi:10.1007/s00406-007-0800-9 CrossRef Spellman I, Müller N, Musil R et al (2008) Associations of SNAP-25 polymorphisms with cognitive dysfunctions in Caucasian patients with schizophrenia during a brief trail of treatment with atypical antipsychotics. Eur Arch Psy Clin N 258(6):335–344. doi:10.​1007/​s00406-007-0800-9 CrossRef
Zurück zum Zitat Steegmaier M, Yang B, Yoo JS et al (1998) Three novel proteins of the syntaxin/SNAP-25 Family. J Biol Chem 273:34171–34179PubMedCrossRef Steegmaier M, Yang B, Yoo JS et al (1998) Three novel proteins of the syntaxin/SNAP-25 Family. J Biol Chem 273:34171–34179PubMedCrossRef
Zurück zum Zitat Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic ˚ resolution exocytosis at 2.4A. Nature 395:347–353. doi:10.1038/26412 PubMedCrossRef Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic ˚ resolution exocytosis at 2.4A. Nature 395:347–353. doi:10.​1038/​26412 PubMedCrossRef
Zurück zum Zitat Tachikawa H, Harada S, Kawanishi Y et al (2001) Polymorphism of the 5-upstream region of the human SNAP-25 gene: an association analysis with schizophrenia. Neuropsychobiology 43(3):131–133PubMedCrossRef Tachikawa H, Harada S, Kawanishi Y et al (2001) Polymorphism of the 5-upstream region of the human SNAP-25 gene: an association analysis with schizophrenia. Neuropsychobiology 43(3):131–133PubMedCrossRef
Zurück zum Zitat Theiler K, Varnum DS, Stevens LC (1978) Development of Dickie’s small eye, a mutantion in the house mouse. Anat Embryol 155(1):81PubMedCrossRef Theiler K, Varnum DS, Stevens LC (1978) Development of Dickie’s small eye, a mutantion in the house mouse. Anat Embryol 155(1):81PubMedCrossRef
Zurück zum Zitat Tordjman S, Anderson GM, Cohen D et al (2013) Presence of autism, hyperserotonemia, and severe expressive language impairment in Williams-Beuren syndrome. Molecular Autism. doi:10.1186/2040-2392-4-29 Tordjman S, Anderson GM, Cohen D et al (2013) Presence of autism, hyperserotonemia, and severe expressive language impairment in Williams-Beuren syndrome. Molecular Autism. doi:10.​1186/​2040-2392-4-29
Zurück zum Zitat Wang Q, Wang Y, Ji W et al (2015) SNAP25 is associated with schizophrenia and major depressive disorder in the han chinese population. J Clin Psychiatry. doi:10.4088/JCP.13m08962 Wang Q, Wang Y, Ji W et al (2015) SNAP25 is associated with schizophrenia and major depressive disorder in the han chinese population. J Clin Psychiatry. doi:10.​4088/​JCP.​13m08962
Zurück zum Zitat Wu YJ, Tejero R, Arancillo M et al (2015) Syntaxin 1B is important for mouse postnatal survival and proper synaptic function at the mouse neuromuscular junctions. J Neurophysiol 114(4):2404–2417. doi:10.1152/jn.00577.2015 PubMedCrossRef Wu YJ, Tejero R, Arancillo M et al (2015) Syntaxin 1B is important for mouse postnatal survival and proper synaptic function at the mouse neuromuscular junctions. J Neurophysiol 114(4):2404–2417. doi:10.​1152/​jn.​00577.​2015 PubMedCrossRef
Zurück zum Zitat Yamada M, Takahashi K, Tsunoda M et al (2002) Differential expression of VAMP2/synaptobrevin-2 after antidepressant and electroconvulsive treatment in rat frontal cortex. Pharmacogenomics J 2:377–382. doi:10.1038/sj.tpj.6500135 PubMedCrossRef Yamada M, Takahashi K, Tsunoda M et al (2002) Differential expression of VAMP2/synaptobrevin-2 after antidepressant and electroconvulsive treatment in rat frontal cortex. Pharmacogenomics J 2:377–382. doi:10.​1038/​sj.​tpj.​6500135 PubMedCrossRef
Zurück zum Zitat Yamamori S, Itakura M, Sugaya D et al (2011) Differential expression of SNAP-25 family proteins in the mouse brain. J Comp Neurol 519:916–932PubMedCrossRef Yamamori S, Itakura M, Sugaya D et al (2011) Differential expression of SNAP-25 family proteins in the mouse brain. J Comp Neurol 519:916–932PubMedCrossRef
Metadaten
Titel
SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond
verfasst von
Renata Basso Cupertino
Djenifer B. Kappel
Cibele Edom Bandeira
Jaqueline Bohrer Schuch
Bruna Santos da Silva
Diana Müller
Claiton Henrique Dotto Bau
Nina Roth Mota
Publikationsdatum
08.02.2016
Verlag
Springer Vienna
Erschienen in
Journal of Neural Transmission / Ausgabe 8/2016
Print ISSN: 0300-9564
Elektronische ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-016-1514-9

Weitere Artikel der Ausgabe 8/2016

Journal of Neural Transmission 8/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.