Skip to main content
Erschienen in:

05.05.2024 | Review Article

Sociodemographic reporting in videomics research: a review of practices in otolaryngology - head and neck surgery

verfasst von: Yeo Eun Kim, Aisha Serpedin, Preethi Periyakoil, Daniel German, Anaïs Rameau

Erschienen in: European Archives of Oto-Rhino-Laryngology | Ausgabe 11/2024

Einloggen, um Zugang zu erhalten

Abstract

Objective

To assess reporting practices of sociodemographic data in Upper Aerodigestive Tract (UAT) videomics research in Otolaryngology-Head and Neck Surgery (OHNS).

Study design

Narrative review.

Methods

Four online research databases were searched for peer-reviewed articles on videomics and UAT endoscopy in OHNS, published since January 1, 2017. Title and abstract search, followed by a full-text screening was performed. Dataset audit criteria were determined by the MINIMAR reporting standards for patient demographic characteristics, in addition to gender and author affiliations.

Results

Of the 57 studies that were included, 37% reported any sociodemographic information on their dataset. Among these studies, all reported age, most reported sex (86%), two (10%) reported race, and one (5%) reported ethnicity and socioeconomic status. No studies reported gender. Most studies (84%) included at least one female author, and more than half of the studies (53%) had female first/senior authors, with no significant differences in the rate of sociodemographic reporting in studies with and without female authors (any female author: p = 0.2664; first/senior female author: p > 0.9999). Most studies based in the US reported at least one sociodemographic variable (79%), compared to those in Europe (24%) and in Asia (20%) (p = 0.0012). The rates of sociodemographic reporting in journals of different categories were as follows: clinical OHNS: 44%, clinical non-OHNS: 40%, technical: 42%, interdisciplinary: 10%.

Conclusions

There is prevalent underreporting of sociodemographic information in OHNS videomics research utilizing UAT endoscopy. Routine reporting of sociodemographic information should be implemented for AI-based research to help minimize algorithmic biases that have been previously demonstrated.
Level of evidence: 4.
Literatur
1.
Zurück zum Zitat Hernandez-Boussard T, Bozkurt S, Ioannidis JPA, Shah NH (2020) MINIMAR (MINimum Information for Medical AI Reporting): Developing reporting standards for artificial intelligence in health care. J Am Med Inform Assoc 27(12):2011–2015PubMedPubMedCentralCrossRef Hernandez-Boussard T, Bozkurt S, Ioannidis JPA, Shah NH (2020) MINIMAR (MINimum Information for Medical AI Reporting): Developing reporting standards for artificial intelligence in health care. J Am Med Inform Assoc 27(12):2011–2015PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Bozkurt S, Cahan EM, Seneviratne MG, Sun R, Lossio-Ventura JA, Ioannidis JPA et al (2020) Reporting of demographic data and representativeness in machine learning models using electronic health records. J Am Med Inform Assoc 27(12):1878–1884PubMedPubMedCentralCrossRef Bozkurt S, Cahan EM, Seneviratne MG, Sun R, Lossio-Ventura JA, Ioannidis JPA et al (2020) Reporting of demographic data and representativeness in machine learning models using electronic health records. J Am Med Inform Assoc 27(12):1878–1884PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G (2018) Potential biases in machine learning algorithms using electronic health record data. JAMA Intern Med 178(11):1544–1547PubMedPubMedCentralCrossRef Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G (2018) Potential biases in machine learning algorithms using electronic health record data. JAMA Intern Med 178(11):1544–1547PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Chung H, Park C, Kang WS, Lee J (2021) Gender bias in artificial intelligence: severity prediction at an early stage of COVID-19. Front Physiol 12:778720PubMedPubMedCentralCrossRef Chung H, Park C, Kang WS, Lee J (2021) Gender bias in artificial intelligence: severity prediction at an early stage of COVID-19. Front Physiol 12:778720PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat SolansNoguero D, Ramírez-Cifuentes D, Ríssola EA, Freire A (2023) Gender bias when using artificial intelligence to assess anorexia nervosa on social media: data-driven study. J Med Internet Res 25:e45184CrossRef SolansNoguero D, Ramírez-Cifuentes D, Ríssola EA, Freire A (2023) Gender bias when using artificial intelligence to assess anorexia nervosa on social media: data-driven study. J Med Internet Res 25:e45184CrossRef
7.
Zurück zum Zitat Larrazabal AJ, Nieto N, Peterson V, Milone DH, Ferrante E (2020) Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis. Proc Natl Acad Sci USA 117(23):12592–12594PubMedPubMedCentralCrossRef Larrazabal AJ, Nieto N, Peterson V, Milone DH, Ferrante E (2020) Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis. Proc Natl Acad Sci USA 117(23):12592–12594PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Patel MA, Bock JM, Blumin JH, Friedland DR, Adams JA, Tong L et al (2022) Demographic differences in the treatment of unilateral vocal fold paralysis. Laryngoscope Investig Otolaryngol 7(6):1915–1921PubMedPubMedCentralCrossRef Patel MA, Bock JM, Blumin JH, Friedland DR, Adams JA, Tong L et al (2022) Demographic differences in the treatment of unilateral vocal fold paralysis. Laryngoscope Investig Otolaryngol 7(6):1915–1921PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Zhukhovitskaya A, Battaglia D, Khosla SM, Murry T, Sulica L (2015) Gender and age in benign vocal fold lesions. Laryngoscope 125(1):191–196PubMedCrossRef Zhukhovitskaya A, Battaglia D, Khosla SM, Murry T, Sulica L (2015) Gender and age in benign vocal fold lesions. Laryngoscope 125(1):191–196PubMedCrossRef
11.
Zurück zum Zitat Sampieri C, Baldini C, Azam MA, Moccia S, Mattos LS, Vilaseca I et al (2023) Artificial intelligence for upper aerodigestive tract endoscopy and laryngoscopy: a guide for physicians and state-of-the-art review. Otolaryngol Head Neck Surg 169(4):811–829PubMedCrossRef Sampieri C, Baldini C, Azam MA, Moccia S, Mattos LS, Vilaseca I et al (2023) Artificial intelligence for upper aerodigestive tract endoscopy and laryngoscopy: a guide for physicians and state-of-the-art review. Otolaryngol Head Neck Surg 169(4):811–829PubMedCrossRef
12.
Zurück zum Zitat Paderno A, Holsinger FC, Piazza C (2021) Videomics: bringing deep learning to diagnostic endoscopy. Curr Opin Otolaryngol Head Neck Surg 29(2):143–148PubMedCrossRef Paderno A, Holsinger FC, Piazza C (2021) Videomics: bringing deep learning to diagnostic endoscopy. Curr Opin Otolaryngol Head Neck Surg 29(2):143–148PubMedCrossRef
13.
Zurück zum Zitat Zhang T, Bur AM, Kraft S, Kavookjian H, Renslo B, Chen X et al (2023) Gender, smoking history, and age prediction from laryngeal images. J Imaging. 9(6):109PubMedPubMedCentralCrossRef Zhang T, Bur AM, Kraft S, Kavookjian H, Renslo B, Chen X et al (2023) Gender, smoking history, and age prediction from laryngeal images. J Imaging. 9(6):109PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Collins GS, Dhiman P, Andaur Navarro CL, Ma J, Hooft L, Reitsma JB et al (2021) Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open 11(7):e048008PubMedPubMedCentralCrossRef Collins GS, Dhiman P, Andaur Navarro CL, Ma J, Hooft L, Reitsma JB et al (2021) Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open 11(7):e048008PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Sounderajah V, Ashrafian H, Golub RM, Shetty S, De Fauw J, Hooft L et al (2021) Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open 11(6):e047709PubMedPubMedCentralCrossRef Sounderajah V, Ashrafian H, Golub RM, Shetty S, De Fauw J, Hooft L et al (2021) Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open 11(6):e047709PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Tang X, Li X, Ding Y, Song M, Bu Y (2020) The pace of artificial intelligence innovations: speed, talent, and trial-and-error. J Informet 14(4):101094CrossRef Tang X, Li X, Ding Y, Song M, Bu Y (2020) The pace of artificial intelligence innovations: speed, talent, and trial-and-error. J Informet 14(4):101094CrossRef
17.
Zurück zum Zitat Pasick LJ, Yeakel H, Sataloff RT (2022) Sex bias in laryngology research and publishing. J Voice 36(3):389–395PubMedCrossRef Pasick LJ, Yeakel H, Sataloff RT (2022) Sex bias in laryngology research and publishing. J Voice 36(3):389–395PubMedCrossRef
18.
Zurück zum Zitat Dunham ME, Kong KA, McWhorter AJ, Adkins LK (2022) Optical biopsy: automated classification of airway endoscopic findings using a convolutional neural network. Laryngoscope 132(Suppl 4):S1-s8PubMed Dunham ME, Kong KA, McWhorter AJ, Adkins LK (2022) Optical biopsy: automated classification of airway endoscopic findings using a convolutional neural network. Laryngoscope 132(Suppl 4):S1-s8PubMed
19.
Zurück zum Zitat Yousef AM, Deliyski DD, Zacharias SRC, de Alarcon A, Orlikoff RF, Naghibolhosseini M (2022) A Deep learning approach for quantifying vocal fold dynamics during connected speech using laryngeal high-speed videoendoscopy. J Speech Lang Hear Res 65(6):2098–2113PubMedPubMedCentralCrossRef Yousef AM, Deliyski DD, Zacharias SRC, de Alarcon A, Orlikoff RF, Naghibolhosseini M (2022) A Deep learning approach for quantifying vocal fold dynamics during connected speech using laryngeal high-speed videoendoscopy. J Speech Lang Hear Res 65(6):2098–2113PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Moccia S, De Momi E, Guarnaschelli M, Savazzi M, Laborai A, Guastini L et al (2017) Confident texture-based laryngeal tissue classification for early stage diagnosis support. J Med Imaging 4(3):034502CrossRef Moccia S, De Momi E, Guarnaschelli M, Savazzi M, Laborai A, Guastini L et al (2017) Confident texture-based laryngeal tissue classification for early stage diagnosis support. J Med Imaging 4(3):034502CrossRef
21.
Zurück zum Zitat Moccia S, Vanone GO, Momi E, Laborai A, Guastini L, Peretti G et al (2018) Learning-based classification of informative laryngoscopic frames. Comput Methods Programs Biomed 158:21–30PubMedCrossRef Moccia S, Vanone GO, Momi E, Laborai A, Guastini L, Peretti G et al (2018) Learning-based classification of informative laryngoscopic frames. Comput Methods Programs Biomed 158:21–30PubMedCrossRef
22.
Zurück zum Zitat Yin L, Liu Y, Pei M, Li J, Wu M, Jia Y (2021) Laryngoscope8: laryngeal image dataset and classification of laryngeal disease based on attention mechanism. Pattern Recogn Lett 150:207–213CrossRef Yin L, Liu Y, Pei M, Li J, Wu M, Jia Y (2021) Laryngoscope8: laryngeal image dataset and classification of laryngeal disease based on attention mechanism. Pattern Recogn Lett 150:207–213CrossRef
23.
Zurück zum Zitat Laves MH, Bicker J, Kahrs LA, Ortmaier T (2019) A dataset of laryngeal endoscopic images with comparative study on convolution neural network-based semantic segmentation. Int J Comput Assist Radiol Surg 14(3):483–492PubMedCrossRef Laves MH, Bicker J, Kahrs LA, Ortmaier T (2019) A dataset of laryngeal endoscopic images with comparative study on convolution neural network-based semantic segmentation. Int J Comput Assist Radiol Surg 14(3):483–492PubMedCrossRef
24.
Zurück zum Zitat Li C, Jing B, Ke L, Li B, Xia W, He C et al (2018) Development and validation of an endoscopic images-based deep learning model for detection with nasopharyngeal malignancies. Cancer Commun 38(1):59CrossRef Li C, Jing B, Ke L, Li B, Xia W, He C et al (2018) Development and validation of an endoscopic images-based deep learning model for detection with nasopharyngeal malignancies. Cancer Commun 38(1):59CrossRef
25.
Zurück zum Zitat Ay B, Turker C, Emre E, Ay K, Aydin G (2022) Automated classification of nasal polyps in endoscopy video-frames using handcrafted and CNN features. Comput Biol Med 147:105725PubMedCrossRef Ay B, Turker C, Emre E, Ay K, Aydin G (2022) Automated classification of nasal polyps in endoscopy video-frames using handcrafted and CNN features. Comput Biol Med 147:105725PubMedCrossRef
26.
Zurück zum Zitat Gómez P, Kist AM, Schlegel P, Berry DA, Chhetri DK, Dürr S et al (2020) BAGLS, a multihospital benchmark for automatic glottis segmentation. Sci Data 7(1):186PubMedPubMedCentralCrossRef Gómez P, Kist AM, Schlegel P, Berry DA, Chhetri DK, Dürr S et al (2020) BAGLS, a multihospital benchmark for automatic glottis segmentation. Sci Data 7(1):186PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat He Y, Cheng Y, Huang Z, Xu W, Hu R, Cheng L et al (2021) A deep convolutional neural network-based method for laryngeal squamous cell carcinoma diagnosis. Ann Transl Med 9(24):1797PubMedPubMedCentralCrossRef He Y, Cheng Y, Huang Z, Xu W, Hu R, Cheng L et al (2021) A deep convolutional neural network-based method for laryngeal squamous cell carcinoma diagnosis. Ann Transl Med 9(24):1797PubMedPubMedCentralCrossRef
28.
29.
Zurück zum Zitat Gonçalves TM, Martins RHG, Adriana BBP (2018) Transmission electron microscopy of the presbylarynx in the process of voice aging. J Voice 32(1):3–7PubMedCrossRef Gonçalves TM, Martins RHG, Adriana BBP (2018) Transmission electron microscopy of the presbylarynx in the process of voice aging. J Voice 32(1):3–7PubMedCrossRef
30.
Zurück zum Zitat Han SS, Kim MS, Lim W, Park GH, Park I, Chang SE (2018) Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J Invest Dermatol 138(7):1529–1538PubMedCrossRef Han SS, Kim MS, Lim W, Park GH, Park I, Chang SE (2018) Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J Invest Dermatol 138(7):1529–1538PubMedCrossRef
31.
Zurück zum Zitat Shin JY, Truong MT (2015) Racial disparities in laryngeal cancer treatment and outcome: a population-based analysis of 24,069 patients. Laryngoscope 125(7):1667–1674PubMedCrossRef Shin JY, Truong MT (2015) Racial disparities in laryngeal cancer treatment and outcome: a population-based analysis of 24,069 patients. Laryngoscope 125(7):1667–1674PubMedCrossRef
32.
Zurück zum Zitat Zuniga SA, Lango MN (2018) Effect of rural and urban geography on larynx cancer incidence and survival. Laryngoscope 128(8):1874–1880PubMedCrossRef Zuniga SA, Lango MN (2018) Effect of rural and urban geography on larynx cancer incidence and survival. Laryngoscope 128(8):1874–1880PubMedCrossRef
33.
Zurück zum Zitat Hou W-H, Daly ME, Lee NY, Farwell DG, Luu Q, Chen AM (2012) Racial disparities in the use of voice preservation therapy for locally advanced laryngeal cancer. Arch Otolaryngol Head Neck Surg 138(7):644–649PubMedCrossRef Hou W-H, Daly ME, Lee NY, Farwell DG, Luu Q, Chen AM (2012) Racial disparities in the use of voice preservation therapy for locally advanced laryngeal cancer. Arch Otolaryngol Head Neck Surg 138(7):644–649PubMedCrossRef
34.
Zurück zum Zitat Fullmer T, Wilde DC, Shi JW, Wagner T, Skinner H, Eicher SA et al (2020) Demographic and tumor characteristic impact on laryngeal cancer outcomes in a minority underserved patient population. Otolaryngol Head Neck Surg 162(6):888–896PubMedCrossRef Fullmer T, Wilde DC, Shi JW, Wagner T, Skinner H, Eicher SA et al (2020) Demographic and tumor characteristic impact on laryngeal cancer outcomes in a minority underserved patient population. Otolaryngol Head Neck Surg 162(6):888–896PubMedCrossRef
35.
Zurück zum Zitat Feit NZ, Wang Z, Demetres MR, Drenis S, Andreadis K, Rameau A (2022) Healthcare disparities in laryngology: a scoping review. Laryngoscope 132(2):375–390PubMedCrossRef Feit NZ, Wang Z, Demetres MR, Drenis S, Andreadis K, Rameau A (2022) Healthcare disparities in laryngology: a scoping review. Laryngoscope 132(2):375–390PubMedCrossRef
36.
Zurück zum Zitat Vyas DA, Eisenstein LG, Jones DS (2020) Hidden in plain sight—reconsidering the use of race correction in clinical algorithms. N Engl J Med 383(9):874–882PubMedCrossRef Vyas DA, Eisenstein LG, Jones DS (2020) Hidden in plain sight—reconsidering the use of race correction in clinical algorithms. N Engl J Med 383(9):874–882PubMedCrossRef
38.
Zurück zum Zitat Cardenas-Iniguez C, Gonzalez MR (2024) Recommendations for the responsible use and communication of race and ethnicity in neuroimaging research. Nat Neurosci 22:1–4 Cardenas-Iniguez C, Gonzalez MR (2024) Recommendations for the responsible use and communication of race and ethnicity in neuroimaging research. Nat Neurosci 22:1–4
40.
Zurück zum Zitat Balestra C, Fleischer L (2018) Diversity statistics in the OECD: How do OECD countries collect data on ethnic, racial and indigenous identity? OECD Statistics Working Papers, No. 2018/09, OECD Publishing, Paris. https://doi.org/10.1787/89bae654-en Balestra C, Fleischer L (2018) Diversity statistics in the OECD: How do OECD countries collect data on ethnic, racial and indigenous identity? OECD Statistics Working Papers, No. 2018/09, OECD Publishing, Paris. https://​doi.​org/​10.​1787/​89bae654-en
41.
Zurück zum Zitat Siegfried G, Örjan H, Richard P, Denny V (2006) Education, income, and occupational class cannot be used interchangeably in social epidemiology: empirical evidence against a common practice. J Epidemiol Community Health 60(9):804CrossRef Siegfried G, Örjan H, Richard P, Denny V (2006) Education, income, and occupational class cannot be used interchangeably in social epidemiology: empirical evidence against a common practice. J Epidemiol Community Health 60(9):804CrossRef
42.
Zurück zum Zitat Trinidad S, Brokamp C, MorHuertas A, Beck AF, Riley CL, Rasnick E, Falcone R, Kotagal M (2022) Use of area-based socioeconomic deprivation indices: a scoping review and qualitative analysis. Health Aff 41(12):1804–11CrossRef Trinidad S, Brokamp C, MorHuertas A, Beck AF, Riley CL, Rasnick E, Falcone R, Kotagal M (2022) Use of area-based socioeconomic deprivation indices: a scoping review and qualitative analysis. Health Aff 41(12):1804–11CrossRef
43.
Zurück zum Zitat Heidari S, Babor TF, De Castro P, Tort S, Curno M (2016) Sex and gender equity in research: rationale for the SAGER guidelines and recommended use. Res Integr Peer Rev 1:2PubMedPubMedCentralCrossRef Heidari S, Babor TF, De Castro P, Tort S, Curno M (2016) Sex and gender equity in research: rationale for the SAGER guidelines and recommended use. Res Integr Peer Rev 1:2PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Clayton JA, Tannenbaum C (2016) Reporting sex, gender, or both in clinical research? JAMA 316(18):1863–1864PubMedCrossRef Clayton JA, Tannenbaum C (2016) Reporting sex, gender, or both in clinical research? JAMA 316(18):1863–1864PubMedCrossRef
45.
Zurück zum Zitat Brunings JW, Schepens JJ, Peutz-Kootstra CJ, Kross KW (2013) The expression of estrogen and progesterone receptors in the human larynx. J Voice 27(3):376–380PubMedCrossRef Brunings JW, Schepens JJ, Peutz-Kootstra CJ, Kross KW (2013) The expression of estrogen and progesterone receptors in the human larynx. J Voice 27(3):376–380PubMedCrossRef
46.
Zurück zum Zitat Dwyer CD, Schneider SL, Gutierrez D, Rosen CA (2023) Gender-affirming voice surgery: considerations for surgical intervention. Semin Speech Lang 44(2):76–89PubMedCrossRef Dwyer CD, Schneider SL, Gutierrez D, Rosen CA (2023) Gender-affirming voice surgery: considerations for surgical intervention. Semin Speech Lang 44(2):76–89PubMedCrossRef
48.
Zurück zum Zitat Fazal M, Oles N, Beckham SW, Wang J, Noyes M, Twose C et al (2023) Sociodemographics of patient populations undergoing gender-affirming surgery: a systematic review of all cohort studies. Transgend Health 8(3):213–219PubMedPubMedCentralCrossRef Fazal M, Oles N, Beckham SW, Wang J, Noyes M, Twose C et al (2023) Sociodemographics of patient populations undergoing gender-affirming surgery: a systematic review of all cohort studies. Transgend Health 8(3):213–219PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat National Institutes of Health (2015) Consideration of sex as a biological variable in NIH-funded research. Notice NOT-OD-15-102, 2015. National Institutes of Health, Bethesda National Institutes of Health (2015) Consideration of sex as a biological variable in NIH-funded research. Notice NOT-OD-15-102, 2015. National Institutes of Health, Bethesda
50.
Zurück zum Zitat Stephenson ED, Farzal Z, Kilpatrick LA et al (2019) Sex bias in basic science and translational otolaryngology research. Laryngoscope 129:613–618PubMedCrossRef Stephenson ED, Farzal Z, Kilpatrick LA et al (2019) Sex bias in basic science and translational otolaryngology research. Laryngoscope 129:613–618PubMedCrossRef
51.
Zurück zum Zitat Xiao N, Mansukhani NA, De Oliveira DFM, Kibbe MR (2018) Association of author gender with sex bias in surgical research. JAMA Surg 153(7):663–670PubMedPubMedCentralCrossRef Xiao N, Mansukhani NA, De Oliveira DFM, Kibbe MR (2018) Association of author gender with sex bias in surgical research. JAMA Surg 153(7):663–670PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Fang CH, Barinsky GL, Gray ST, Baredes S, Chandrasekhar SS, Eloy JA (2021) Diversifying researchers and funding in otolaryngology. Otolaryngol Clin North Am 54(3):653–663PubMedCrossRef Fang CH, Barinsky GL, Gray ST, Baredes S, Chandrasekhar SS, Eloy JA (2021) Diversifying researchers and funding in otolaryngology. Otolaryngol Clin North Am 54(3):653–663PubMedCrossRef
53.
Zurück zum Zitat West M, Kraut R, Ei Chew H (2019) I’d blush if I could: closing gender divides in digital skills through education. UNESCO; 2019 West M, Kraut R, Ei Chew H (2019) I’d blush if I could: closing gender divides in digital skills through education. UNESCO; 2019
54.
Zurück zum Zitat Fain KM, Nelson JT, Tse T, Williams RJ (2021) Race and ethnicity reporting for clinical trials in ClinicalTrials.gov and publications. Contemp Clin Trials 101:106237PubMedCrossRef Fain KM, Nelson JT, Tse T, Williams RJ (2021) Race and ethnicity reporting for clinical trials in ClinicalTrials.gov and publications. Contemp Clin Trials 101:106237PubMedCrossRef
55.
Zurück zum Zitat Nagendran M, Chen Y, Lovejoy CA, Gordon AC, Komorowski M, Harvey H et al (2020) Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ 368:m689PubMedPubMedCentralCrossRef Nagendran M, Chen Y, Lovejoy CA, Gordon AC, Komorowski M, Harvey H et al (2020) Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ 368:m689PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Petersilge CA, McDonald J, Bishop M, Yudkovitch L, Treuting C, Towbin AJ (2022) Visible light imaging: clinical aspects with an emphasis on medical photography—a HIMSS-SIIM enterprise imaging community whitepaper. J Digit Imaging 35(3):385–395PubMedPubMedCentralCrossRef Petersilge CA, McDonald J, Bishop M, Yudkovitch L, Treuting C, Towbin AJ (2022) Visible light imaging: clinical aspects with an emphasis on medical photography—a HIMSS-SIIM enterprise imaging community whitepaper. J Digit Imaging 35(3):385–395PubMedPubMedCentralCrossRef
57.
Metadaten
Titel
Sociodemographic reporting in videomics research: a review of practices in otolaryngology - head and neck surgery
verfasst von
Yeo Eun Kim
Aisha Serpedin
Preethi Periyakoil
Daniel German
Anaïs Rameau
Publikationsdatum
05.05.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
European Archives of Oto-Rhino-Laryngology / Ausgabe 11/2024
Print ISSN: 0937-4477
Elektronische ISSN: 1434-4726
DOI
https://doi.org/10.1007/s00405-024-08659-0

Neu im Fachgebiet HNO

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Kopf-Hals-Tumore: Lebensqualität von Langzeitüberlebenden

Eine aktuelle Studie des Universitätsklinikums Erlangen verdeutlicht, dass Langzeitüberlebende von Kopf-Hals-Tumoren eine geringe Symptomlast aufweisen. Die am häufigsten auftretenden Beschwerden – Müdigkeit, Angstzustände, Schläfrigkeit und Schmerzen – sollten von den behandelnden Ärztinnen und Ärzten gezielt adressiert werden.

Schlafapnoe – es lag an einer verbogenen Nasenscheidewand

Tritt eine obstruktive Schlafapnoe vor allem in einer bestimmten Seitenlage auf, kann dies auch an einem verbogenen Nasenseptum liegen. Eine Septumplastik lindert die Beschwerden mitunter deutlich.

Das alles ändert sich für Arztpraxen in 2025

  • 31.12.2024
  • EBM
  • Nachrichten

Ab Januar greifen jede Menge Neuerungen – ob im EBM, Arbeits- und Steuerrecht oder bei der digitalen Vernetzung. Darunter einige Verbesserungen, aber teils auch Mehraufwand. „Same procedure as every year?“ – Ein Überblick.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.