Skip to main content
Erschienen in: Inflammation 4/2019

23.03.2019 | ORIGINAL ARTICLE

Sodium Butyrate Ameliorates Intestinal Injury and Improves Survival in a Rat Model of Cecal Ligation and Puncture-Induced Sepsis

verfasst von: Jiahong Fu, Guofu Li, Xingmao Wu, Bin Zang

Erschienen in: Inflammation | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

Sepsis is a life-threatening condition with a high rate of mortality. Unfortunately, very few therapies can improve outcomes in patients with sepsis. Butyrate, which is the most potent histone deacetylase (HDAC) inhibitor among short-chain fatty acids, exerts anti-inflammatory effects in a variety of inflammatory diseases. Butyrate might thus be valuable in the treatment of sepsis, in which inhibition of overwhelming cytokine release is vitally important. Sepsis was induced in 7- to 8-week-old Sprague-Dawley rats by cecal ligation and puncture (CLP) with a 21-g double-puncture technique. Rats received an intravenous injection of normal saline (vehicle) or sodium butyrate (200 mg/kg) after CLP and were sacrificed 12 h later. Hematoxylin and eosin staining was performed to observe the intestinal mucosal morphology. RT-PCR and ELISA were used to determine the intestinal inflammatory response in vivo. Intestinal permeability was evaluated by measuring fluorescein isothiocyanate dextran (FD-4) absorption in vivo, and tight junction protein expression was examined by western blot. NF-κB p65 activities were assessed by western blot and immunohistochemistry. Sodium butyrate treatment improved the survival rate of CLP rats and alleviated sepsis-induced intestinal mucosal injury. Proinflammatory cytokine expression was lower in butyrate-treated rats than in the vehicle group. FD-4 leakage from the intestinal tract was reduced, and the expression levels of the tight junction proteins claudin-1 and ZO-1 were also restored in rats that received sodium butyrate treatment. These effects were associated with less NF-κB p65 nuclear translocation, whereas the expression of Iκ-Bα was not affected or even increased. Sodium butyrate mitigates the inflammatory response and maintains intestinal barrier function in polymicrobial sepsis partly through inhibition of NF-κB activation and may serve as a novel therapy for sepsis.
Literatur
1.
Zurück zum Zitat Dellinger, R.P., M.M. Levy, A. Rhodes, et al. 2013. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Medicine 39: 165–228.CrossRefPubMedPubMedCentral Dellinger, R.P., M.M. Levy, A. Rhodes, et al. 2013. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Medicine 39: 165–228.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Hotchkiss, R.S., G. Monneret, and D. Payen. 2013. Sepsis-induced immunosuppression: From cellular dysfunctions to immunotherapy. Nature Reviews. Immunology 13: 862–874.CrossRefPubMedPubMedCentral Hotchkiss, R.S., G. Monneret, and D. Payen. 2013. Sepsis-induced immunosuppression: From cellular dysfunctions to immunotherapy. Nature Reviews. Immunology 13: 862–874.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Assimakopoulos, S.F., C. Triantos, K. Thomopoulos, F. Fligou, I. Maroulis, M. Marangos, and C.A. Gogos. 2018. Gut-origin sepsis in the critically ill patient: Pathophysiology and treatment. Infection. 46: 751–760.CrossRefPubMed Assimakopoulos, S.F., C. Triantos, K. Thomopoulos, F. Fligou, I. Maroulis, M. Marangos, and C.A. Gogos. 2018. Gut-origin sepsis in the critically ill patient: Pathophysiology and treatment. Infection. 46: 751–760.CrossRefPubMed
4.
Zurück zum Zitat Klingensmith, N.J., and C.M. Coopersmith. 2016. The gut as the motor of multiple organ dysfunction in critical illness. Critical Care Clinics 32: 203–212.CrossRefPubMedPubMedCentral Klingensmith, N.J., and C.M. Coopersmith. 2016. The gut as the motor of multiple organ dysfunction in critical illness. Critical Care Clinics 32: 203–212.CrossRefPubMedPubMedCentral
6.
7.
Zurück zum Zitat Vieira, E.L., A.J. Leonel, A.P. Sad, et al. 2012. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. The Journal of Nutritional Biochemistry 23: 430–436.CrossRefPubMed Vieira, E.L., A.J. Leonel, A.P. Sad, et al. 2012. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. The Journal of Nutritional Biochemistry 23: 430–436.CrossRefPubMed
8.
Zurück zum Zitat Sun, J., F. Wang, H. Li, et al. 2015. Neuroprotective effect of sodium butyrate against cerebral ischemia/reperfusion injury in mice. BioMed Research International 2015: 395895.PubMedPubMedCentral Sun, J., F. Wang, H. Li, et al. 2015. Neuroprotective effect of sodium butyrate against cerebral ischemia/reperfusion injury in mice. BioMed Research International 2015: 395895.PubMedPubMedCentral
9.
Zurück zum Zitat Qiao, Y.L., J.M. Qian, F.R. Wang, Z.Y. Ma, and Q.W. Wang. 2014. Butyrate protects liver against ischemia reperfusion injury by inhibiting nuclear factor kappa B activation in Kupffer cells. The Journal of Surgical Research 187: 653–659.CrossRefPubMed Qiao, Y.L., J.M. Qian, F.R. Wang, Z.Y. Ma, and Q.W. Wang. 2014. Butyrate protects liver against ischemia reperfusion injury by inhibiting nuclear factor kappa B activation in Kupffer cells. The Journal of Surgical Research 187: 653–659.CrossRefPubMed
10.
Zurück zum Zitat Correa-Oliveira, R., J.L. Fachi, A. Vieira, et al. 2016. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunology. 5: e73.CrossRefPubMedPubMedCentral Correa-Oliveira, R., J.L. Fachi, A. Vieira, et al. 2016. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunology. 5: e73.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Liu, J., F. Wang, H. Luo, A. Liu, K. Li, C. Li, and Y. Jiang. 2016. Protective effect of butyrate against ethanol-induced gastric ulcers in mice by promoting the anti-inflammatory, anti-oxidant and mucosal defense mechanisms. International Immunopharmacology 30: 179–187.CrossRefPubMed Liu, J., F. Wang, H. Luo, A. Liu, K. Li, C. Li, and Y. Jiang. 2016. Protective effect of butyrate against ethanol-induced gastric ulcers in mice by promoting the anti-inflammatory, anti-oxidant and mucosal defense mechanisms. International Immunopharmacology 30: 179–187.CrossRefPubMed
12.
Zurück zum Zitat Zhang, L.T., Y.M. Yao, J.Q. Lu, X.J. Yan, Y. Yu, and Z.Y. Sheng. 2007. Sodium butyrate prevents lethality of severe sepsis in rats. Shock. 27: 672–677.CrossRefPubMed Zhang, L.T., Y.M. Yao, J.Q. Lu, X.J. Yan, Y. Yu, and Z.Y. Sheng. 2007. Sodium butyrate prevents lethality of severe sepsis in rats. Shock. 27: 672–677.CrossRefPubMed
13.
Zurück zum Zitat Zhang, L., S. Jin, C. Wang, R. Jiang, and J. Wan. 2010. Histone deacetylase inhibitors attenuate acute lung injury during cecal ligation and puncture-induced polymicrobial sepsis. World Journal of Surgery 34: 1676–1683.CrossRefPubMed Zhang, L., S. Jin, C. Wang, R. Jiang, and J. Wan. 2010. Histone deacetylase inhibitors attenuate acute lung injury during cecal ligation and puncture-induced polymicrobial sepsis. World Journal of Surgery 34: 1676–1683.CrossRefPubMed
14.
Zurück zum Zitat Mishra, S.K., and S. Choudhury. 2018. Experimental protocol for cecal ligation and puncture model of polymicrobial sepsis and assessment of vascular functions in mice. Methods in Molecular Biology 1717: 161–187.CrossRefPubMed Mishra, S.K., and S. Choudhury. 2018. Experimental protocol for cecal ligation and puncture model of polymicrobial sepsis and assessment of vascular functions in mice. Methods in Molecular Biology 1717: 161–187.CrossRefPubMed
15.
Zurück zum Zitat Chiu, C.J., A.H. McArdle, R. Brown, et al. 1970. Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Archives of Surgery 101: 478–483.CrossRefPubMed Chiu, C.J., A.H. McArdle, R. Brown, et al. 1970. Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Archives of Surgery 101: 478–483.CrossRefPubMed
16.
Zurück zum Zitat Kao, N.R., A. Xenocostas, D.K. Driman, et al. 2011. Recombinant human erythropoietin improves gut barrier function in a hemorrhagic shock and resuscitation rat model. The Journal of Trauma 71: S456–S461.CrossRefPubMed Kao, N.R., A. Xenocostas, D.K. Driman, et al. 2011. Recombinant human erythropoietin improves gut barrier function in a hemorrhagic shock and resuscitation rat model. The Journal of Trauma 71: S456–S461.CrossRefPubMed
17.
Zurück zum Zitat Meng, M., N.J. Klingensmith, and C.M. Coopersmith. 2017. New insights into the gut as the driver of critical illness and organ failure. Current Opinion in Critical Care 23: 143–148.CrossRefPubMedPubMedCentral Meng, M., N.J. Klingensmith, and C.M. Coopersmith. 2017. New insights into the gut as the driver of critical illness and organ failure. Current Opinion in Critical Care 23: 143–148.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Ni, Y.F., J. Wang, X.L. Yan, et al. 2010. Histone deacetylase inhibitor, butyrate, attenuates lipopolysaccharide-induced acute lung injury in mice. Respiratory Research 11. Ni, Y.F., J. Wang, X.L. Yan, et al. 2010. Histone deacetylase inhibitor, butyrate, attenuates lipopolysaccharide-induced acute lung injury in mice. Respiratory Research 11.
19.
Zurück zum Zitat Wang, F., Z. Jin, K. Shen, T. Weng, Z. Chen, J. Feng, Z. Zhang, J. Liu, X. Zhang, and M. Chu. 2017. Butyrate pretreatment attenuates heart depression in a mice model of endotoxin-induced sepsis via anti-inflammation and anti-oxidation. The American Journal of Emergency Medicine 35: 402–409.CrossRefPubMed Wang, F., Z. Jin, K. Shen, T. Weng, Z. Chen, J. Feng, Z. Zhang, J. Liu, X. Zhang, and M. Chu. 2017. Butyrate pretreatment attenuates heart depression in a mice model of endotoxin-induced sepsis via anti-inflammation and anti-oxidation. The American Journal of Emergency Medicine 35: 402–409.CrossRefPubMed
20.
Zurück zum Zitat Dejager, L., I. Pinheiro, E. Dejonckheere, and C. Libert. 2011. Cecal ligation and puncture: The gold standard model for polymicrobial sepsis? Trends in Microbiology 19: 198–208.CrossRefPubMed Dejager, L., I. Pinheiro, E. Dejonckheere, and C. Libert. 2011. Cecal ligation and puncture: The gold standard model for polymicrobial sepsis? Trends in Microbiology 19: 198–208.CrossRefPubMed
21.
Zurück zum Zitat Gentile, L.F., A.G. Cuenca, E.L. Vanzant, P.A. Efron, B. McKinley, F. Moore, and L.L. Moldawer. 2013. Is there value in plasma cytokine measurements in patients with severe trauma and sepsis? Methods. 61: 3–9.CrossRefPubMedPubMedCentral Gentile, L.F., A.G. Cuenca, E.L. Vanzant, P.A. Efron, B. McKinley, F. Moore, and L.L. Moldawer. 2013. Is there value in plasma cytokine measurements in patients with severe trauma and sepsis? Methods. 61: 3–9.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Aksoy, A.N., A. Toker, M. Celik, et al. 2014. The effect of progesterone on systemic inflammation and oxidative stress in the rat model of sepsis. Indian Journal of Pharmacology 46: 622–626.CrossRefPubMedPubMedCentral Aksoy, A.N., A. Toker, M. Celik, et al. 2014. The effect of progesterone on systemic inflammation and oxidative stress in the rat model of sepsis. Indian Journal of Pharmacology 46: 622–626.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Huang, B., X.D. Yang, A. Lamb, and L.F. Chen. 2010. Posttranslational modifications of NF-kappaB: Another layer of regulation for NF-kappaB signaling pathway. Cellular Signalling 22: 1282–1290.CrossRefPubMedPubMedCentral Huang, B., X.D. Yang, A. Lamb, and L.F. Chen. 2010. Posttranslational modifications of NF-kappaB: Another layer of regulation for NF-kappaB signaling pathway. Cellular Signalling 22: 1282–1290.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Liu, S.F., and A.B. Malik. 2006. NF-kappa B activation as a pathological mechanism of septic shock and inflammation. American Journal of Physiology. Lung Cellular and Molecular Physiology 290: L622–L645.CrossRefPubMed Liu, S.F., and A.B. Malik. 2006. NF-kappa B activation as a pathological mechanism of septic shock and inflammation. American Journal of Physiology. Lung Cellular and Molecular Physiology 290: L622–L645.CrossRefPubMed
25.
Zurück zum Zitat Li, Q., Q. Zhang, C. Wang, X. Liu, N. Li, and J. Li. 2009. Disruption of tight junctions during polymicrobial sepsis in vivo. The Journal of Pathology 218: 210–221.CrossRefPubMed Li, Q., Q. Zhang, C. Wang, X. Liu, N. Li, and J. Li. 2009. Disruption of tight junctions during polymicrobial sepsis in vivo. The Journal of Pathology 218: 210–221.CrossRefPubMed
26.
Zurück zum Zitat Lechuga, S., and A.I. Ivanov. 2017. Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms. Biochimica et Biophysica Acta, Molecular Cell Research 1864: 1183–1194.CrossRefPubMed Lechuga, S., and A.I. Ivanov. 2017. Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms. Biochimica et Biophysica Acta, Molecular Cell Research 1864: 1183–1194.CrossRefPubMed
27.
Zurück zum Zitat Berkes, J., V.K. Viswanathan, S.D. Savkovic, and G. Hecht. 2003. Intestinal epithelial responses to enteric pathogens: Effects on the tight junction barrier, ion transport, and inflammation. Gut. 52: 439–451.CrossRefPubMedPubMedCentral Berkes, J., V.K. Viswanathan, S.D. Savkovic, and G. Hecht. 2003. Intestinal epithelial responses to enteric pathogens: Effects on the tight junction barrier, ion transport, and inflammation. Gut. 52: 439–451.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Singh, N., M. Thangaraju, P.D. Prasad, P.M. Martin, N.A. Lambert, T. Boettger, S. Offermanns, and V. Ganapathy. 2010. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases. The Journal of Biological Chemistry 285: 27601–27608.CrossRefPubMedPubMedCentral Singh, N., M. Thangaraju, P.D. Prasad, P.M. Martin, N.A. Lambert, T. Boettger, S. Offermanns, and V. Ganapathy. 2010. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases. The Journal of Biological Chemistry 285: 27601–27608.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Park, J., M. Kim, S.G. Kang, A.H. Jannasch, B. Cooper, J. Patterson, and C.H. Kim. 2015. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunology 8: 80–93.CrossRefPubMed Park, J., M. Kim, S.G. Kang, A.H. Jannasch, B. Cooper, J. Patterson, and C.H. Kim. 2015. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunology 8: 80–93.CrossRefPubMed
30.
Zurück zum Zitat Ito, K. 2007. Impact of post-translational modifications of proteins on the inflammatory process. Biochemical Society Transactions 35: 281–283.CrossRefPubMed Ito, K. 2007. Impact of post-translational modifications of proteins on the inflammatory process. Biochemical Society Transactions 35: 281–283.CrossRefPubMed
31.
Zurück zum Zitat Flint, H.J., K.P. Scott, P. Louis, and S.H. Duncan. 2012. The role of the gut microbiota in nutrition and health. Nature Reviews. Gastroenterology & Hepatology 9: 577–589.CrossRef Flint, H.J., K.P. Scott, P. Louis, and S.H. Duncan. 2012. The role of the gut microbiota in nutrition and health. Nature Reviews. Gastroenterology & Hepatology 9: 577–589.CrossRef
32.
Zurück zum Zitat Kiernan, R., V. Bres, R.W. Ng, et al. 2003. Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. The Journal of Biological Chemistry 278: 2758–2766.CrossRefPubMed Kiernan, R., V. Bres, R.W. Ng, et al. 2003. Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. The Journal of Biological Chemistry 278: 2758–2766.CrossRefPubMed
33.
Zurück zum Zitat Ziesche, E., D. Kettner-Buhrow, A. Weber, et al. 2013. The coactivator role of histone deacetylase 3 in IL-1-signaling involves deacetylation of p65 NF-kappaB. Nucleic Acids Research 41: 90–109.CrossRefPubMed Ziesche, E., D. Kettner-Buhrow, A. Weber, et al. 2013. The coactivator role of histone deacetylase 3 in IL-1-signaling involves deacetylation of p65 NF-kappaB. Nucleic Acids Research 41: 90–109.CrossRefPubMed
34.
Zurück zum Zitat Leus, N.G., M.R. Zwinderman, and F.J. Dekker. 2016. Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-kappaB-mediated inflammation. Current Opinion in Chemical Biology 33: 160–168.CrossRefPubMedPubMedCentral Leus, N.G., M.R. Zwinderman, and F.J. Dekker. 2016. Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-kappaB-mediated inflammation. Current Opinion in Chemical Biology 33: 160–168.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Li, H., W. Han, V. Polosukhin, et al. 2013. NF-kappaB inhibition after cecal ligation and puncture reduces sepsis-associated lung injury without altering bacterial host defense. Mediators of Inflammation 503213: 2013. Li, H., W. Han, V. Polosukhin, et al. 2013. NF-kappaB inhibition after cecal ligation and puncture reduces sepsis-associated lung injury without altering bacterial host defense. Mediators of Inflammation 503213: 2013.
36.
Zurück zum Zitat Chen, L.F., and W.C. Greene. 2004. Shaping the nuclear action of NF-kappaB. Nature Reviews. Molecular Cell Biology 5: 392–401.CrossRefPubMed Chen, L.F., and W.C. Greene. 2004. Shaping the nuclear action of NF-kappaB. Nature Reviews. Molecular Cell Biology 5: 392–401.CrossRefPubMed
37.
Zurück zum Zitat Kaplan, J., M. Nowell, R. Chima, and B. Zingarelli. 2014. Pioglitazone reduces inflammation through inhibition of NF-kappaB in polymicrobial sepsis. Innate Immunity 20: 519–528.CrossRefPubMed Kaplan, J., M. Nowell, R. Chima, and B. Zingarelli. 2014. Pioglitazone reduces inflammation through inhibition of NF-kappaB in polymicrobial sepsis. Innate Immunity 20: 519–528.CrossRefPubMed
38.
Zurück zum Zitat Ghizzoni, M., H.J. Haisma, H. Maarsingh, and F.J. Dekker. 2011. Histone acetyltransferases are crucial regulators in NF-kappaB mediated inflammation. Drug Discovery Today 16: 504–511.CrossRefPubMed Ghizzoni, M., H.J. Haisma, H. Maarsingh, and F.J. Dekker. 2011. Histone acetyltransferases are crucial regulators in NF-kappaB mediated inflammation. Drug Discovery Today 16: 504–511.CrossRefPubMed
39.
Zurück zum Zitat Spange, S., T. Wagner, T. Heinzel, and O.H. Krämer. 2009. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. The International Journal of Biochemistry & Cell Biology 41: 185–198.CrossRef Spange, S., T. Wagner, T. Heinzel, and O.H. Krämer. 2009. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. The International Journal of Biochemistry & Cell Biology 41: 185–198.CrossRef
40.
Zurück zum Zitat Choo, Q.Y., P.C. Ho, and H.S. Lin. 2008. Histone deacetylase inhibitors: New hope for rheumatoid arthritis? Current Pharmaceutical Design 14: 803–820.CrossRefPubMed Choo, Q.Y., P.C. Ho, and H.S. Lin. 2008. Histone deacetylase inhibitors: New hope for rheumatoid arthritis? Current Pharmaceutical Design 14: 803–820.CrossRefPubMed
41.
Zurück zum Zitat Egorin, M.J., Z.M. Yuan, D.L. Sentz, K. Plaisance, and J.L. Eiseman. 1999. Plasma pharmacokinetics of butyrate after intravenous administration of sodium butyrate or oral administration of tributyrin or sodium butyrate to mice and rats. Cancer Chemotherapy and Pharmacology 43: 445–453.CrossRefPubMed Egorin, M.J., Z.M. Yuan, D.L. Sentz, K. Plaisance, and J.L. Eiseman. 1999. Plasma pharmacokinetics of butyrate after intravenous administration of sodium butyrate or oral administration of tributyrin or sodium butyrate to mice and rats. Cancer Chemotherapy and Pharmacology 43: 445–453.CrossRefPubMed
42.
Zurück zum Zitat Qiao, Y., J. Qian, Q. Lu, Y. Tian, Q. Chen, and Y. Zhang. 2015. Protective effects of butyrate on intestinal ischemia-reperfusion injury in rats. The Journal of Surgical Research 197: 324–330.CrossRefPubMed Qiao, Y., J. Qian, Q. Lu, Y. Tian, Q. Chen, and Y. Zhang. 2015. Protective effects of butyrate on intestinal ischemia-reperfusion injury in rats. The Journal of Surgical Research 197: 324–330.CrossRefPubMed
Metadaten
Titel
Sodium Butyrate Ameliorates Intestinal Injury and Improves Survival in a Rat Model of Cecal Ligation and Puncture-Induced Sepsis
verfasst von
Jiahong Fu
Guofu Li
Xingmao Wu
Bin Zang
Publikationsdatum
23.03.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-00987-2

Weitere Artikel der Ausgabe 4/2019

Inflammation 4/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.