Skip to main content
Erschienen in: International Journal of Hematology 3/2019

05.06.2019 | Original Article

Soluble CLEC-2 is generated independently of ADAM10 and is increased in plasma in acute coronary syndrome: comparison with soluble GPVI

verfasst von: Osamu Inoue, Makoto Osada, Junya Nakamura, Fuminori Kazama, Toshiaki Shirai, Nagaharu Tsukiji, Tomoyuki Sasaki, Hiroshi Yokomichi, Tomotaka Dohi, Makoto Kaneko, Makoto Kurano, Mitsuru Oosawa, Shogo Tamura, Kaneo Satoh, Katsuhiro Takano, Katsumi Miyauchi, Hiroyuki Daida, Yutaka Yatomi, Yukio Ozaki, Katsue Suzuki-Inoue

Erschienen in: International Journal of Hematology | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Soluble forms of platelet membrane proteins are released upon platelet activation. We previously reported that soluble C-type lectin-like receptor 2 (sCLEC-2) is released as a shed fragment (Shed CLEC-2) or as a whole molecule associated with platelet microparticles (MP-CLEC-2). In contrast, soluble glycoprotein VI (sGPVI) is released as a shed fragment (Shed GPVI), but not as a microparticle-associated form (MP-GPVI). However, mechanism of sCLEC-2 generation or plasma sCLEC-2 has not been fully elucidated. Experiments using metalloproteinase inhibitors/stimulators revealed that ADAM10/17 induce GPVI shedding, but not CLEC-2 shedding, and that shed CLEC-2 was partially generated by MMP-2. Although MP-GPVI was not generated, it was generated in the presence of the ADAM10 inhibitor. Moreover, antibodies against the cytoplasmic or extracellular domain of GPVI revealed the presence of the GPVI cytoplasmic domain, but not the extracellular domain, in the microparticles. These findings suggest that most of the GPVI on microparticles are induced to shed by ADAM10; MP-GPVI is thus undetected. Plasma sCLEC-2 level was 1/32 of plasma sGPVI level in normal subjects, but both soluble proteins significantly increased in plasma of patients with acute coronary syndrome. Thus, sCLEC-2 and sGPVI are released by different mechanisms and released in vivo upon platelet activation.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Nieswandt B, Watson SP. Platelet-collagen interaction: is GPVI the central receptor? Blood. 2003;102:449–61.CrossRefPubMed Nieswandt B, Watson SP. Platelet-collagen interaction: is GPVI the central receptor? Blood. 2003;102:449–61.CrossRefPubMed
2.
Zurück zum Zitat Gurney D, Lip GY, Blann AD. A reliable plasma marker of platelet activation: does it exist? Am J Hematol. 2002;70:139–44.CrossRefPubMed Gurney D, Lip GY, Blann AD. A reliable plasma marker of platelet activation: does it exist? Am J Hematol. 2002;70:139–44.CrossRefPubMed
3.
4.
Zurück zum Zitat Suzuki-Inoue K, Fuller GL, Garcia A, Eble JA, Pohlmann S, Inoue O, et al. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood. 2006;107:542–9.CrossRefPubMed Suzuki-Inoue K, Fuller GL, Garcia A, Eble JA, Pohlmann S, Inoue O, et al. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood. 2006;107:542–9.CrossRefPubMed
5.
Zurück zum Zitat Suzuki-Inoue K, Osada M, Ozaki Y. Physiologic and pathophysiologic roles of interaction between C-type lectin-like receptor 2 and podoplanin: partners from in utero to adulthood. J Thromb Haemost. 2017;15:219–29.CrossRefPubMed Suzuki-Inoue K, Osada M, Ozaki Y. Physiologic and pathophysiologic roles of interaction between C-type lectin-like receptor 2 and podoplanin: partners from in utero to adulthood. J Thromb Haemost. 2017;15:219–29.CrossRefPubMed
6.
Zurück zum Zitat Suzuki-Inoue K, Kato Y, Inoue O, Kaneko MK, Mishima K, Yatomi Y, et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem. 2007;282:25993–6001.CrossRefPubMed Suzuki-Inoue K, Kato Y, Inoue O, Kaneko MK, Mishima K, Yatomi Y, et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem. 2007;282:25993–6001.CrossRefPubMed
7.
Zurück zum Zitat Christou CM, Pearce AC, Watson AA, Mistry AR, Pollitt AY, Fenton-May AE, et al. Renal cells activate the platelet receptor CLEC-2 through podoplanin. Biochem J. 2008;411:133–40.CrossRefPubMed Christou CM, Pearce AC, Watson AA, Mistry AR, Pollitt AY, Fenton-May AE, et al. Renal cells activate the platelet receptor CLEC-2 through podoplanin. Biochem J. 2008;411:133–40.CrossRefPubMed
9.
Zurück zum Zitat Bertozzi CC, Schmaier AA, Mericko P, Hess PR, Zou Z, Chen M, et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood. 2010;116:661–70.CrossRefPubMedPubMedCentral Bertozzi CC, Schmaier AA, Mericko P, Hess PR, Zou Z, Chen M, et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood. 2010;116:661–70.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Suzuki-Inoue K, Inoue O, Ding G, Nishimura S, Hokamura K, Eto K, et al. Essential in vivo roles of the C-type lectin receptor CLEC-2: embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets. J Biol Chem. 2010;285:24494–507.CrossRefPubMedPubMedCentral Suzuki-Inoue K, Inoue O, Ding G, Nishimura S, Hokamura K, Eto K, et al. Essential in vivo roles of the C-type lectin receptor CLEC-2: embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets. J Biol Chem. 2010;285:24494–507.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Chaipan C, Soilleux EJ, Simpson P, Hofmann H, Gramberg T, Marzi A, et al. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J Virol. 2006;80:8951–60.CrossRefPubMedPubMedCentral Chaipan C, Soilleux EJ, Simpson P, Hofmann H, Gramberg T, Marzi A, et al. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J Virol. 2006;80:8951–60.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Tang T, Li L, Tang J, Li Y, Lin WY, Martin F, et al. A mouse knockout library for secreted and transmembrane proteins. Nat Biotechnol. 2010;28:749–55.CrossRefPubMed Tang T, Li L, Tang J, Li Y, Lin WY, Martin F, et al. A mouse knockout library for secreted and transmembrane proteins. Nat Biotechnol. 2010;28:749–55.CrossRefPubMed
13.
Zurück zum Zitat Gitz E, Pollitt AY, Gitz-Francois JJ, Alshehri O, Mori J, Montague S, et al. CLEC-2 expression is maintained on activated platelets and on platelet microparticles. Blood. 2014;124:2262–70.CrossRefPubMedPubMedCentral Gitz E, Pollitt AY, Gitz-Francois JJ, Alshehri O, Mori J, Montague S, et al. CLEC-2 expression is maintained on activated platelets and on platelet microparticles. Blood. 2014;124:2262–70.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Kazama F, Nakamura J, Osada M, Inoue O, Oosawa M, Tamura S, et al. Measurement of soluble C-type lectin-like receptor 2 in human plasma. Platelets. 2015;26:711–9.CrossRefPubMed Kazama F, Nakamura J, Osada M, Inoue O, Oosawa M, Tamura S, et al. Measurement of soluble C-type lectin-like receptor 2 in human plasma. Platelets. 2015;26:711–9.CrossRefPubMed
15.
Zurück zum Zitat Aota T, Naitoh K, Wada H, Yamashita Y, Miyamoto N, Hasegawa M, et al. Elevated soluble platelet glycoprotein VI is a useful marker for DVT in postoperative patients treated with edoxaban. Int J Hematol. 2014;100:450–6.CrossRefPubMed Aota T, Naitoh K, Wada H, Yamashita Y, Miyamoto N, Hasegawa M, et al. Elevated soluble platelet glycoprotein VI is a useful marker for DVT in postoperative patients treated with edoxaban. Int J Hematol. 2014;100:450–6.CrossRefPubMed
16.
Zurück zum Zitat Inoue O, Suzuki-Inoue K, Shinoda D, Umeda Y, Uchino M, Takasaki S, et al. Novel synthetic collagen fibers, poly(PHG), stimulate platelet aggregation through glycoprotein VI. FEBS Lett. 2009;583:81–7.CrossRefPubMed Inoue O, Suzuki-Inoue K, Shinoda D, Umeda Y, Uchino M, Takasaki S, et al. Novel synthetic collagen fibers, poly(PHG), stimulate platelet aggregation through glycoprotein VI. FEBS Lett. 2009;583:81–7.CrossRefPubMed
17.
Zurück zum Zitat Osada M, Inoue O, Ding G, Shirai T, Ichise H, Hirayama K, et al. Platelet activation receptor CLEC-2 regulates blood/lymphatic vessel separation by inhibiting proliferation, migration, and tube formation of lymphatic endothelial cells. J Biol Chem. 2012;287:22241–52.CrossRefPubMedPubMedCentral Osada M, Inoue O, Ding G, Shirai T, Ichise H, Hirayama K, et al. Platelet activation receptor CLEC-2 regulates blood/lymphatic vessel separation by inhibiting proliferation, migration, and tube formation of lymphatic endothelial cells. J Biol Chem. 2012;287:22241–52.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Dohi T, Miyauchi K, Ohkawa R, Nakamura K, Kishimoto T, Miyazaki T, et al. Increased circulating plasma lysophosphatidic acid in patients with acute coronary syndrome. Clin Chim Acta. 2012;413:207–12.CrossRefPubMed Dohi T, Miyauchi K, Ohkawa R, Nakamura K, Kishimoto T, Miyazaki T, et al. Increased circulating plasma lysophosphatidic acid in patients with acute coronary syndrome. Clin Chim Acta. 2012;413:207–12.CrossRefPubMed
19.
Zurück zum Zitat Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013;48:452–8.CrossRef Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013;48:452–8.CrossRef
20.
Zurück zum Zitat Gardiner EE, Karunakaran D, Shen Y, Arthur JF, Andrews RK, Berndt MC. Controlled shedding of platelet glycoprotein (GP)VI and GPIb-IX-V by ADAM family metalloproteinases. J Thromb Haemost. 2007;5:1530–7.CrossRefPubMed Gardiner EE, Karunakaran D, Shen Y, Arthur JF, Andrews RK, Berndt MC. Controlled shedding of platelet glycoprotein (GP)VI and GPIb-IX-V by ADAM family metalloproteinases. J Thromb Haemost. 2007;5:1530–7.CrossRefPubMed
21.
Zurück zum Zitat Al-Tamimi M, Tan CW, Qiao J, Pennings GJ, Javadzadegan A, Yong AS, et al. Pathologic shear triggers shedding of vascular receptors: a novel mechanism for down-regulation of platelet glycoprotein VI in stenosed coronary vessels. Blood. 2012;119:4311–20.CrossRefPubMed Al-Tamimi M, Tan CW, Qiao J, Pennings GJ, Javadzadegan A, Yong AS, et al. Pathologic shear triggers shedding of vascular receptors: a novel mechanism for down-regulation of platelet glycoprotein VI in stenosed coronary vessels. Blood. 2012;119:4311–20.CrossRefPubMed
22.
Zurück zum Zitat Ezumi Y, Shindoh K, Tsuji M, Takayama H. Physical and functional association of the Src family kinases Fyn and Lyn with the collagen receptor glycoprotein VI-Fc receptor gamma chain complex on human platelets. J Exp Med. 1998;188:267–76.CrossRefPubMedPubMedCentral Ezumi Y, Shindoh K, Tsuji M, Takayama H. Physical and functional association of the Src family kinases Fyn and Lyn with the collagen receptor glycoprotein VI-Fc receptor gamma chain complex on human platelets. J Exp Med. 1998;188:267–76.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Wijeyewickrema LC, Gardiner EE, Moroi M, Berndt MC, Andrews RK. Snake venom metalloproteinases, crotarhagin and alborhagin, induce ectodomain shedding of the platelet collagen receptor, glycoprotein VI. Thromb Haemost. 2007;98:1285–90.CrossRefPubMed Wijeyewickrema LC, Gardiner EE, Moroi M, Berndt MC, Andrews RK. Snake venom metalloproteinases, crotarhagin and alborhagin, induce ectodomain shedding of the platelet collagen receptor, glycoprotein VI. Thromb Haemost. 2007;98:1285–90.CrossRefPubMed
24.
Zurück zum Zitat Bender M, Hofmann S, Stegner D, Chalaris A, Bosl M, Braun A, et al. Differentially regulated GPVI ectodomain shedding by multiple platelet-expressed proteinases. Blood. 2010;116:3347–55.CrossRefPubMed Bender M, Hofmann S, Stegner D, Chalaris A, Bosl M, Braun A, et al. Differentially regulated GPVI ectodomain shedding by multiple platelet-expressed proteinases. Blood. 2010;116:3347–55.CrossRefPubMed
25.
Zurück zum Zitat Reinboldt S, Wenzel F, Rauch BH, Hohlfeld T, Grandoch M, Fischer JW, et al. Preliminary evidence for a matrix metalloproteinase-2 (MMP-2)-dependent shedding of soluble CD40 ligand (sCD40L) from activated platelets. Platelets. 2009;20:441–4.CrossRefPubMed Reinboldt S, Wenzel F, Rauch BH, Hohlfeld T, Grandoch M, Fischer JW, et al. Preliminary evidence for a matrix metalloproteinase-2 (MMP-2)-dependent shedding of soluble CD40 ligand (sCD40L) from activated platelets. Platelets. 2009;20:441–4.CrossRefPubMed
26.
Zurück zum Zitat Naitoh K, Hosaka Y, Honda M, Ogawa K, Shirakawa K, Furusako S. Properties of soluble glycoprotein VI, a potential platelet activation biomarker. Platelets. 2015;26:745–50.CrossRefPubMed Naitoh K, Hosaka Y, Honda M, Ogawa K, Shirakawa K, Furusako S. Properties of soluble glycoprotein VI, a potential platelet activation biomarker. Platelets. 2015;26:745–50.CrossRefPubMed
27.
28.
29.
Zurück zum Zitat Al-Tamimi M, Mu FT, Moroi M, Gardiner EE, Berndt MC, Andrews RK. Measuring soluble platelet glycoprotein VI in human plasma by ELISA. Platelets. 2009;20:143–9.CrossRefPubMed Al-Tamimi M, Mu FT, Moroi M, Gardiner EE, Berndt MC, Andrews RK. Measuring soluble platelet glycoprotein VI in human plasma by ELISA. Platelets. 2009;20:143–9.CrossRefPubMed
30.
Zurück zum Zitat Herzog BH, Fu J, Wilson SJ, Hess PR, Sen A, McDaniel JM, et al. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature. 2013;502:105–9.CrossRefPubMedPubMedCentral Herzog BH, Fu J, Wilson SJ, Hess PR, Sen A, McDaniel JM, et al. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature. 2013;502:105–9.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Miyasaka M, Tanaka T. Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat Rev Immunol. 2004;4:360.CrossRefPubMed Miyasaka M, Tanaka T. Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat Rev Immunol. 2004;4:360.CrossRefPubMed
32.
Zurück zum Zitat Inoue O, Suzuki-Inoue K, McCarty OJ, Moroi M, Ruggeri ZM, Kunicki TJ, et al. Laminin stimulates spreading of platelets through integrin alpha6beta1-dependent activation of GPVI. Blood. 2006;107:1405–12.CrossRefPubMedPubMedCentral Inoue O, Suzuki-Inoue K, McCarty OJ, Moroi M, Ruggeri ZM, Kunicki TJ, et al. Laminin stimulates spreading of platelets through integrin alpha6beta1-dependent activation of GPVI. Blood. 2006;107:1405–12.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Bigalke B, Potz O, Kremmer E, Geisler T, Seizer P, Puntmann VO, et al. Sandwich immunoassay for soluble glycoprotein VI in patients with symptomatic coronary artery disease. Clin Chem. 2011;57:898–904.CrossRefPubMed Bigalke B, Potz O, Kremmer E, Geisler T, Seizer P, Puntmann VO, et al. Sandwich immunoassay for soluble glycoprotein VI in patients with symptomatic coronary artery disease. Clin Chem. 2011;57:898–904.CrossRefPubMed
34.
Zurück zum Zitat Onselaer MB, Hardy AT, Wilson C, Sanchez X, Babar AK, Miller JLC, et al. Fibrin and D-dimer bind to monomeric GPVI. Blood Adv. 2017;1:1495–504.CrossRefPubMedPubMedCentral Onselaer MB, Hardy AT, Wilson C, Sanchez X, Babar AK, Miller JLC, et al. Fibrin and D-dimer bind to monomeric GPVI. Blood Adv. 2017;1:1495–504.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Facey A, Pinar I, Arthur JF, Qiao J, Jing J, Mado B, et al. A-disintegrin and metalloproteinase (adam) 10 activity on resting and activated platelets. Biochemistry. 2016;55:1187–94.CrossRefPubMed Facey A, Pinar I, Arthur JF, Qiao J, Jing J, Mado B, et al. A-disintegrin and metalloproteinase (adam) 10 activity on resting and activated platelets. Biochemistry. 2016;55:1187–94.CrossRefPubMed
36.
Zurück zum Zitat Al-Tamimi M, Arthur JF, Gardiner E, Andrews RK. Focusing on plasma glycoprotein VI. Thromb Haemost. 2012;107:648–55.CrossRefPubMed Al-Tamimi M, Arthur JF, Gardiner E, Andrews RK. Focusing on plasma glycoprotein VI. Thromb Haemost. 2012;107:648–55.CrossRefPubMed
Metadaten
Titel
Soluble CLEC-2 is generated independently of ADAM10 and is increased in plasma in acute coronary syndrome: comparison with soluble GPVI
verfasst von
Osamu Inoue
Makoto Osada
Junya Nakamura
Fuminori Kazama
Toshiaki Shirai
Nagaharu Tsukiji
Tomoyuki Sasaki
Hiroshi Yokomichi
Tomotaka Dohi
Makoto Kaneko
Makoto Kurano
Mitsuru Oosawa
Shogo Tamura
Kaneo Satoh
Katsuhiro Takano
Katsumi Miyauchi
Hiroyuki Daida
Yutaka Yatomi
Yukio Ozaki
Katsue Suzuki-Inoue
Publikationsdatum
05.06.2019
Verlag
Springer Japan
Erschienen in
International Journal of Hematology / Ausgabe 3/2019
Print ISSN: 0925-5710
Elektronische ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-019-02680-4

Weitere Artikel der Ausgabe 3/2019

International Journal of Hematology 3/2019 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.