Skip to main content
Erschienen in: Brain Topography 4/2018

27.04.2018 | Original Paper

Spatio-temporal Reconstruction of Neural Sources Using Indirect Dominant Mode Rejection

verfasst von: Alireza Talesh Jafadideh, Babak Mohammadzadeh Asl

Erschienen in: Brain Topography | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Adaptive minimum variance based beamformers (MVB) have been successfully applied to magnetoencephalogram (MEG) and electroencephalogram (EEG) data to localize brain activities. However, the performance of these beamformers falls down in situations where correlated or interference sources exist. To overcome this problem, we propose indirect dominant mode rejection (iDMR) beamformer application in brain source localization. This method by modifying measurement covariance matrix makes MVB applicable in source localization in the presence of correlated and interference sources. Numerical results on both EEG and MEG data demonstrate that presented approach accurately reconstructs time courses of active sources and localizes those sources with high spatial resolution. In addition, the results of real AEF data show the good performance of iDMR in empirical situations. Hence, iDMR can be reliably used for brain source localization especially when there are correlated and interference sources.
Fußnoten
2
A point of the posterior root of the zygomatic arch lying immediately in front of the upper end of the tragus.
 
Literatur
Zurück zum Zitat Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. IEEE Signal Process Mag 18(6):14–30CrossRef Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. IEEE Signal Process Mag 18(6):14–30CrossRef
Zurück zum Zitat Berg P, Scherg M (1994) A fast method for forward computation of multiple-shell spherical head models. Electroencephalogr Clin Neurophysiol 90(1):58–64CrossRefPubMed Berg P, Scherg M (1994) A fast method for forward computation of multiple-shell spherical head models. Electroencephalogr Clin Neurophysiol 90(1):58–64CrossRefPubMed
Zurück zum Zitat Brookes M, Stevenson C, Barnes G, Hillebrand A, Simpson M, Francis S, Morrisa P (2007) Beamformer reconstruction of correlated sources using a modified source model. Neuroimage 34(4):1454–1465CrossRefPubMed Brookes M, Stevenson C, Barnes G, Hillebrand A, Simpson M, Francis S, Morrisa P (2007) Beamformer reconstruction of correlated sources using a modified source model. Neuroimage 34(4):1454–1465CrossRefPubMed
Zurück zum Zitat Brookes MJ, Vrba J, Robinson SE, Stevenson CM, Peters AP, Barnes GR, Hillebrand A, Morris PG (2008) Optimising experimental design for MEG beamformer imaging. Neuroimage 39(4):1788–1802CrossRefPubMed Brookes MJ, Vrba J, Robinson SE, Stevenson CM, Peters AP, Barnes GR, Hillebrand A, Morris PG (2008) Optimising experimental design for MEG beamformer imaging. Neuroimage 39(4):1788–1802CrossRefPubMed
Zurück zum Zitat Chen YS, Cheng CY, Hsieh JC, Chen LF (2006) Maximum contrast beamformer for electromagnetic mapping of brain activity. IEEE Trans Biomed Eng 53(9):1765–1774CrossRefPubMed Chen YS, Cheng CY, Hsieh JC, Chen LF (2006) Maximum contrast beamformer for electromagnetic mapping of brain activity. IEEE Trans Biomed Eng 53(9):1765–1774CrossRefPubMed
Zurück zum Zitat Chowdhury RA, Younes Z, Tanguy H, Marcel H, Eliane K, Jean-Marc L, Christophe. G (2015) MEG–EEG information fusion and electromagnetic source imaging: from theory to clinical application in epilepsy. Brain Topogr 18(6):785–812CrossRef Chowdhury RA, Younes Z, Tanguy H, Marcel H, Eliane K, Jean-Marc L, Christophe. G (2015) MEG–EEG information fusion and electromagnetic source imaging: from theory to clinical application in epilepsy. Brain Topogr 18(6):785–812CrossRef
Zurück zum Zitat Dai Y, Zhang W, Dickens DL, He B (2012) Source connectivity analysis from MEG and its application to epilepsy source localization. Brain Topogr 25(2):157–166CrossRefPubMed Dai Y, Zhang W, Dickens DL, He B (2012) Source connectivity analysis from MEG and its application to epilepsy source localization. Brain Topogr 25(2):157–166CrossRefPubMed
Zurück zum Zitat Dinh C, Strohmeier D, Luessi M, Güllmar DG, Baumgarten D, Haueisen J, Hamalainen MS (2015) Real-time MEG source localization using regional clustering. Brain Topogr 28(6):771–784CrossRefPubMedPubMedCentral Dinh C, Strohmeier D, Luessi M, Güllmar DG, Baumgarten D, Haueisen J, Hamalainen MS (2015) Real-time MEG source localization using regional clustering. Brain Topogr 28(6):771–784CrossRefPubMedPubMedCentral
Zurück zum Zitat Gorodnitsky J, George, Rao B (1995) Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. Electroencephalogr Clin Neurophysiol 95(4)231–251CrossRefPubMed Gorodnitsky J, George, Rao B (1995) Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. Electroencephalogr Clin Neurophysiol 95(4)231–251CrossRefPubMed
Zurück zum Zitat Greenblatt RE, Ossadtchi A, Pflieger ME (2005) Local linear estimators for the bioelectromagnetic inverse problem. IEEE Trans Signal Process 53(9):3403–3412CrossRef Greenblatt RE, Ossadtchi A, Pflieger ME (2005) Local linear estimators for the bioelectromagnetic inverse problem. IEEE Trans Signal Process 53(9):3403–3412CrossRef
Zurück zum Zitat Huang M-X, Shih JJ, Lee RR, Harrington DL, Thoma RJ, Weisend MP, Hanlon F, Paulson KM, Li T, Martin K, Miller GA, Canive JM (2004) Commonalities and differences among vectorized beamformers in electromagnetic source imaging. Brain Topogr 16(3):139–158CrossRefPubMed Huang M-X, Shih JJ, Lee RR, Harrington DL, Thoma RJ, Weisend MP, Hanlon F, Paulson KM, Li T, Martin K, Miller GA, Canive JM (2004) Commonalities and differences among vectorized beamformers in electromagnetic source imaging. Brain Topogr 16(3):139–158CrossRefPubMed
Zurück zum Zitat Hui HB, Pantazis D, Bressler SL, Leahy RM (2010) Identifying true cortical interactions in MEG using the nulling beamformer. Neuroimage 49(4):3161–3174CrossRefPubMed Hui HB, Pantazis D, Bressler SL, Leahy RM (2010) Identifying true cortical interactions in MEG using the nulling beamformer. Neuroimage 49(4):3161–3174CrossRefPubMed
Zurück zum Zitat Hyvärinen A, Karhunen J, Oja E (2004) Independent component analysis, vol 46. Wiley, New York Hyvärinen A, Karhunen J, Oja E (2004) Independent component analysis, vol 46. Wiley, New York
Zurück zum Zitat Jonmohamadi Y, Poudel G, Innes C, Weiss D, Krueger R, Jones R (2014) Comparison of beamformers for EEG source signal reconstruction. Biomed Signal Process Control 14:175–188CrossRef Jonmohamadi Y, Poudel G, Innes C, Weiss D, Krueger R, Jones R (2014) Comparison of beamformers for EEG source signal reconstruction. Biomed Signal Process Control 14:175–188CrossRef
Zurück zum Zitat Kimura T, Kako M, Kamiyama H, Ishiyama A, Kasai N, Watanabe Y (2007) Inverse solution for time-correlated multiple sources using Beamformer method, vol 1300. International Congress Series, pp 417–420 Kimura T, Kako M, Kamiyama H, Ishiyama A, Kasai N, Watanabe Y (2007) Inverse solution for time-correlated multiple sources using Beamformer method, vol 1300. International Congress Series, pp 417–420
Zurück zum Zitat Mills T, Marc L, Sandra NM, Margot JT, Maher AQ (2012) Techniques for detection and localization of weak hippocampal and medial frontal sources using beamformers in MEG. Brain Topogr 25(3):248–263CrossRefPubMed Mills T, Marc L, Sandra NM, Margot JT, Maher AQ (2012) Techniques for detection and localization of weak hippocampal and medial frontal sources using beamformers in MEG. Brain Topogr 25(3):248–263CrossRefPubMed
Zurück zum Zitat Moiseev A, Herdman AT (2013) Multi-core beamformers: derivation, limitations and improvements. Neuroimage 71:135–146CrossRefPubMed Moiseev A, Herdman AT (2013) Multi-core beamformers: derivation, limitations and improvements. Neuroimage 71:135–146CrossRefPubMed
Zurück zum Zitat Moiseev A, Gaspar JM, Schneider JA, Herdman AT (2011) Application of multi-source minimum variance beamformers for reconstruction of correlated neural activity. NeuroImage 58(2):481–496CrossRefPubMed Moiseev A, Gaspar JM, Schneider JA, Herdman AT (2011) Application of multi-source minimum variance beamformers for reconstruction of correlated neural activity. NeuroImage 58(2):481–496CrossRefPubMed
Zurück zum Zitat Mosher JC, Leahy RM (1992) Multiple dipole modeling and localization from spatiotemporal MEG data. IEEE Trans Biomed Eng 39(6):541–557CrossRefPubMed Mosher JC, Leahy RM (1992) Multiple dipole modeling and localization from spatiotemporal MEG data. IEEE Trans Biomed Eng 39(6):541–557CrossRefPubMed
Zurück zum Zitat Mosher JC, Leahy RM (1998) Recursive MUSIC: a framework for EEG and MEG source localization. IEEE Trans Biomed Eng 45(11):1342–1354CrossRefPubMed Mosher JC, Leahy RM (1998) Recursive MUSIC: a framework for EEG and MEG source localization. IEEE Trans Biomed Eng 45(11):1342–1354CrossRefPubMed
Zurück zum Zitat Mosher JC, Leahy RM (1999) Source localization using recursively applied and projected (RAP) MUSIC. IEEE Trans Signal Process 47(2):332–340CrossRef Mosher JC, Leahy RM (1999) Source localization using recursively applied and projected (RAP) MUSIC. IEEE Trans Signal Process 47(2):332–340CrossRef
Zurück zum Zitat Pascual-Marqui RD (2002) Standardized low resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24:5–12PubMed Pascual-Marqui RD (2002) Standardized low resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24:5–12PubMed
Zurück zum Zitat Popescu M, Popescu E, Chan T, Blunt S, Lewine J (2008) Spatial-temporal reconstruction of bilateral auditory steady state responses using MEG beamformers. IEEE Trans Biomed Eng 55(3):1092–1102CrossRefPubMed Popescu M, Popescu E, Chan T, Blunt S, Lewine J (2008) Spatial-temporal reconstruction of bilateral auditory steady state responses using MEG beamformers. IEEE Trans Biomed Eng 55(3):1092–1102CrossRefPubMed
Zurück zum Zitat Quraan M, Cheyne D (2010) Reconstruction of correlated brain activity with adaptive spatialfilters in MEG. NeuroImage 49(3):2387–2400CrossRefPubMed Quraan M, Cheyne D (2010) Reconstruction of correlated brain activity with adaptive spatialfilters in MEG. NeuroImage 49(3):2387–2400CrossRefPubMed
Zurück zum Zitat Santos EL, Zoltowski MD, Rangaswamy M (2007) Indirect dominant mode rejection: a solution to low sample support beamforming. IEEE Trans Signal Process 55(7):3283–3293CrossRef Santos EL, Zoltowski MD, Rangaswamy M (2007) Indirect dominant mode rejection: a solution to low sample support beamforming. IEEE Trans Signal Process 55(7):3283–3293CrossRef
Zurück zum Zitat Sekihara K, Nagarajan SS (2008) Adaptive spatial filters for electromagnetic brain imaging. Springer, Berlin Sekihara K, Nagarajan SS (2008) Adaptive spatial filters for electromagnetic brain imaging. Springer, Berlin
Zurück zum Zitat Sekihara K, Nagarajan S, Poeppel D, Marantz A, Miyashita Y (2001) Reconstructing spatio-temporal activities of neural sources using an MEG Vector beamformer technique. IEEE Trans Biomed Eng 48(7):760–771CrossRefPubMed Sekihara K, Nagarajan S, Poeppel D, Marantz A, Miyashita Y (2001) Reconstructing spatio-temporal activities of neural sources using an MEG Vector beamformer technique. IEEE Trans Biomed Eng 48(7):760–771CrossRefPubMed
Zurück zum Zitat Sekihara K, Nagarajan S, Poeppel D, Marantz A (2004) Asymptotic SNR of scalar and vector minimum-variance beamformers for neuromagnetic source reconstruction. IEEE Trans Biomed Eng 51(10):1726–1734CrossRefPubMedPubMedCentral Sekihara K, Nagarajan S, Poeppel D, Marantz A (2004) Asymptotic SNR of scalar and vector minimum-variance beamformers for neuromagnetic source reconstruction. IEEE Trans Biomed Eng 51(10):1726–1734CrossRefPubMedPubMedCentral
Zurück zum Zitat Shahbazi F, Ewald A, Nolte G (2015) Self-consistent MUSIC: an approach to the localization of true brain interactions from EEG/MEG data. Neuroimage 112(6):299–309CrossRefPubMed Shahbazi F, Ewald A, Nolte G (2015) Self-consistent MUSIC: an approach to the localization of true brain interactions from EEG/MEG data. Neuroimage 112(6):299–309CrossRefPubMed
Zurück zum Zitat Tikhonov AN, Arsenin VY (1997) Solutions of Ill-posed problems. Wiley, New York, NY Tikhonov AN, Arsenin VY (1997) Solutions of Ill-posed problems. Wiley, New York, NY
Zurück zum Zitat Uutela K, Hamalainen M, Somersalo E (1999) Visualization of magnetoencephalographic data using minimum current estimates. Neuroimage 10(2):173–180CrossRefPubMed Uutela K, Hamalainen M, Somersalo E (1999) Visualization of magnetoencephalographic data using minimum current estimates. Neuroimage 10(2):173–180CrossRefPubMed
Zurück zum Zitat Van Veen B, van Drongelen W, Yuchtman M, Suzuki A (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44(9):867–880CrossRefPubMed Van Veen B, van Drongelen W, Yuchtman M, Suzuki A (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44(9):867–880CrossRefPubMed
Zurück zum Zitat Xiang Y, Peng D, Yang Z (2015) Blind source separation: dependent component analysis. Springer, New YorkCrossRef Xiang Y, Peng D, Yang Z (2015) Blind source separation: dependent component analysis. Springer, New YorkCrossRef
Zurück zum Zitat Xu XL, Xu B, He B (2004) An alternative subspace approach to EEG dipole source localization. Phys Med Biol 49:327–343CrossRefPubMed Xu XL, Xu B, He B (2004) An alternative subspace approach to EEG dipole source localization. Phys Med Biol 49:327–343CrossRefPubMed
Zurück zum Zitat Yeung N, Bogacz R, Holroyd CB, Cohen JD (2004) Detection of synchronized oscillations in the electroencephalogram: an evaluation of methods. Psychophysiology 41(6)822–832CrossRefPubMed Yeung N, Bogacz R, Holroyd CB, Cohen JD (2004) Detection of synchronized oscillations in the electroencephalogram: an evaluation of methods. Psychophysiology 41(6)822–832CrossRefPubMed
Metadaten
Titel
Spatio-temporal Reconstruction of Neural Sources Using Indirect Dominant Mode Rejection
verfasst von
Alireza Talesh Jafadideh
Babak Mohammadzadeh Asl
Publikationsdatum
27.04.2018
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 4/2018
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-018-0645-8

Weitere Artikel der Ausgabe 4/2018

Brain Topography 4/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.