Skip to main content
Erschienen in: Clinical Epileptology 2/2023

Open Access 04.05.2023 | Leitthema

SPECT and PET in nonlesional epilepsy

verfasst von: Tim J. von Oertzen, MD FRCP, Gudrun Gröppel, Stefan Katletz, Monika Weiß, Michael Sonnberger, Robert Pichler

Erschienen in: Clinical Epileptology | Ausgabe 2/2023

Abstract

Background

Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are applied in epilepsy mostly during presurgical assessment. Nonlesional focal epilepsy is very challenging for presurgical evaluation in cases of refractory epilepsy.

Objectives

We aimed to investigate the contribution of PET and SPECT to focus localization in nonlesional epilepsy.

Methods

The basic principles of SPECT and PET including different tracers were reviewed. The literature and the most recent publications are discussed in view of findings in nonlesional epilepsy.

Results

Ictal SPECT shows a high sensitivity of over 80% for ictal onset zone in nonlesional epilepsy. Postprocessing with subtraction ictal SPECT co-registered with MRI (SISCOM) or statistical parametric mapping are the gold standard. Histopathological findings in nonlesional epilepsies with concordant ictal SPECT imaging show focal cortical dysplasia in up to 75% of cases. Ictal injection is unsuccessful in approximately 20% of cases and the procedure is very time consuming and labor intensive. Fluorodeoxyglucose (FDG)-PET in nonlesional epilepsy shows variable sensitivity of 46–76%. As with ictal SPECT, it benefits from postprocessing of co-registration with magnetic resonance imaging (MRI) or even statistical parametric mapping. Hybrid PET/magnetic resonance imaging (MRI) scanners provide additional benefits for identifying lesions. Other PET tracers (11C‑Flumazenil (FMZ), α-11C‑methyl-L-tryptophane (AMT)) are clinically applied in special cases only. Both procedures contribute complementary information in multimodal imaging diagnostics.

Conclusions

Ictal SPECT and PET are optional diagnostic tools for presurgical assessment in nonlesional epilepsies. They may reverse nonlesional to lesional epilepsy status and identify nonlesional epileptic foci with a fair chance of seizure freedom after epilepsy surgery.
Hinweise
Scan QR code & read article online
Approximately 30% of people with epilepsy suffer from drug-refractory epilepsy. If two anti-seizure medications (ASM) have failed to control the epilepsy, it is regarded as drug refractory [1]. In fact, if patients suffer from cavernoma, even failure of one ASM to control seizures indicates drug refractoriness [2]. Drug-refractory focal epilepsy is potentially amenable to epilepsy surgery; however, the surgical approach requires a clear delineation of the epileptic onset zone, which must be resected to generate seizure freedom [3, 4]. Identification of the seizure-onset zone is particularly difficult in individuals with nonlesional findings on magnetic resonance imaging (MRI). A lesion on MRI not only provides a hypothesis for the seizure-onset zone, but it may also give an idea of the extent of the abnormal area, which must be resected to generate seizure freedom. Lack of this information on nonlesional MRI complicates the localization and estimation of the extent of the seizure-onset zone. It is generally accepted in epilepsy surgery programs that the MRI protocol must be dedicated to epilepsy including high-resolution sequences with thin slice thickness or even three-dimensional datasets [57].
The basic set of investigations in the presurgical evaluation comprises epilepsy-dedicated MRI, long-term video-electroencephalography (EEG) monitoring including seizure recording, neuropsychological testing, and preferably a neuropsychiatric assessment as well [8]. Additionally, an extensive history of the course of disease and seizure semiology reported by the patient and by witnesses is required.
If MRI findings are nonlesional, hypothesis for the seizure-onset zone would be only based on surface EEG and video. Therefore, additional noninvasive investigations may be required. Nuclear medicine examinations such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) may well contribute functional data for the identification of seizure-onset zone. Alternatively, other investigations such as electrical source imaging (ESI) may be used [9].
In this article we focus on ictal SPECT and PET investigations with an emphasis on the application in nonlesional epilepsies.

The basics of ictal SPECT

Synchronized neuronal discharge activity during epileptic seizures increases the cerebral blood flow in its vicinity by up to threefold [10, 11]. Regional cerebral blood flow (rCBF) can be measured by SPECT using two different tracers: 99mTc-hexamethyl-propylene-amine-axime (HMPAO) or 99mTc-ethylene-cysteine-diethylester (ECD) [12, 13]. There have been comparisons of both tracers with the slight benefit of brain to extracerebral contrast in HMPAO [14]. However, our own experience clearly shows that ECD is superior to HMPAO for co-registrations and postprocessing (unpublished data). Unfortunately, the choice of tracer is not only based on comparing data but also on availability, which is rather limited for ECD in Europe at present.
The characteristics of the two different tracers (HMPAO and ECD) show a rapid brain uptake within 20–60 s of injection [15, 16]. Imaging can be safely arranged within 2 h after ictal injection, once the patient has passed the postictal phase. As a result, both tracers show a snapshot of rCBF shortly after injection [17]. Hence, the injection should be performed as early as possible during the seizure [1820]. Seizure duration should be longer than 30 s [20].
Interictal changes of rCBF measured by HMPAO-SPECT did not show any significant correlation with the seizure focus [12]. Measuring rCBF with ictal injection, on the contrary, yielded highly significant results of hyperperfusion in the seizure-onset zone. Specificity and sensitivity increased in comparison with interictal perfusion patterns [21].
A further increase of sensitivity and specificity was achieved by adding postprocessing and subtracting interictal from ictal SPECT followed by co-registration on MRI (SISCOM; [22]).
Since the development of SISCOM, further techniques including statistical parametric mapping have been developed and compared [2326]. In general, adding statistical analysis to the postprocessing seems to further increase the sensitivity and specificity. As a result, postprocessing of ictal SPECT is regarded the gold standard.

The basics of PET

Various tracers are available for imaging in PET. In diagnostic use for epilepsy, the most common tracer is 18F‑fluorodeoxyglucose (FDG). For presurgical evaluation in temporal lobe epilepsy, FDG-PET is standard; it indicates glucose uptake in the neurons of the brain as an indirect measure of energy consumption [27, 28]. Most often, changes in glucose metabolism indicate hypometabolism reflecting reduced functionality. This is regarded as an indirect measure of neuronal dysfunction. Particularly in temporal lobe epilepsy, glucose hypometabolism in FDG-PET might be widespread, indicating either the epileptogenic network or the functional deficit zone according to the concept of the epileptic zone [29]. In nonlesional temporal lobe epilepsy, FDG-PET may lateralize the epilepsy well. Furthermore, the distribution of the extent of hypometabolism within the temporal lobe and also beyond the borders of the temporal lobe may predict the surgical outcome [30].
In extratemporal lobe epilepsy, and particularly in focal cortical dysplasia, FDG-PET shows focal reduced or even absent glucose metabolism [3133].
Besides FDG, 11C‑flumazenil (FMZ) is a further tracer applied in the presurgical diagnosis of the epileptic focus. Flumazenil binds to γ‑aminobutyric acid A/central benzodiazepine receptor (GABAA/cBZR) in the brain, reflecting indirectly neuronal density [34]. Interestingly, within the CA1 region of the hippocampus, the reduction in GABAA/cBZR binding was even lower than explained by the reduced neuronal density. Disturbances in neocortical neuronal density are shown as a very focal reduction in FMZ binding on PET [35]. It has also been shown that migration disturbances such as focal cortical dysplasia may show FMZ binding in the white matter areas, particularly in group analysis [36]. More recently, 18F‑flumazenil has become available and is more suitable for clinical application due to the longer half-life of 18F [37].
A particular specialized tracer is α‑11C-methyl-L-tryptophan (AMT), which is applied for patients with tuberous sclerosis. The seizure onset zone is in these cases often difficult to diagnose, in particular if several tubers are present. However, in most cases only one tuber is epileptogenic. Here, AMT-PET may help to identify the epileptogenic tuber [38]. Interestingly, a recent study showed a group of five microRNAs that were correlated with tuber epileptogenicity and AMT uptake [39].

SISCOM in nonlesional epilepsy

Several studies reported on patient cohorts that included either patients with discordant results from MRI and EEG or with nonlesional MRI findings in extratemporal lobe epilepsy. In one of the largest prospective studies, SISCOM contributed to the hypotheses of the epileptic foci in 74 out of 130 patients undergoing ictal SPECT injection [40]. Concordance of SISCOM activation to the side of surgery was 82% in those patients who underwent surgical resection. Ten out of 28 patients had no defined MRI abnormality. Neuropathology in this group showed gliosis, hippocampus sclerosis, or no abnormality, whereas in those who had a possible subtle lesion, focal cortical dysplasias type IIa and IIb were predominantly found. In a similar prospective study, also with a mixed population with discordant or nonlesional MRI findings, SISCOM was applied prior to implantation of invasive electrodes. In 75% of patients the electrode placement was changed according to the SISCOM result [41]. When comparing magnetic source imaging, ictal SPECT and FDG-PET, concordant SISCOM had the highest predictive value (odds ratio [OR]: 9.9) for excellent surgical outcome [42]. Again, most of these patients had extratemporal lobe epilepsy with a nonlocalizing MRI or EEG. Another study compared high-density electric source imaging (HD-ESI) with MRI, PET, and SISCOM [9]. Of 190 included patients, 58 were investigated with all four modalities. The combination of concordant MRI and HD-ESI showed the highest predictive value (92%) for postoperative seizure freedom. The majority of the cases were lesional but eight cases were nonlesional. Using PET and SISCOM together did not add further information if MRI and HD-ESI findings were discordant; however, if only PET and SPECT were taken into consideration, the findings were concordant, and the area of hypo/hyperactivity was resected, the OR of achieving seizure freedom was 6.5. In general, the sensitivity of SISCOM varied from 53% to 85% [9, 40, 41, 43, 44]. Interestingly, all studies showed postsurgical outcome in patients with nonlesional MRI findings comparable to patients with lesional MRI findings undergoing epilepsy surgery. Neuropathology in those nonlesional cases showed in up to 75% features of FCD type IIa or IIb [40, 45].
The neuropathology in nonlesional epilepsy was FCD type II in 75% of cases

PET in nonlesional epilepsy

The impact of PET in nonlesional epilepsy cases has been shown in numerous studies. One recent study of a cohort of 106 patients, of whom 43% were nonlesional, indicated encouragement to proceed with intracranial epilepsy monitoring if concordance of FDG-PET with the clinical consensus of epileptic foci was given. Concordance of the clinical consensus with the SISCOM results, by contrast, predicted a good surgical outcome [46]. The combination of MRI and PET in hybrid scanners increases the detection rate of abnormalities. In a group of 33 nonlesional patients with histologically proven extratemporal focal cortical dysplasia, the combination of PET, MRI, morphometric analysis program (MAP, [47]), and statistical parametric mapping-PET (SPM-PET, [48]) had the highest detection rate of 97% [49]. No case of type I FCD was detected by MAP. Examination with PET-MRI was most sensitive for detecting FCDs type II and IIa. Again, 26 out of 33 patients achieved seizure freedom for more than 1.5 years after resective surgery. Another study using hybrid PET/MRI showed in 40 nonlesional patients a morphological lesion in 18 patients and glucose hypometabolism in 29 patients. Out of 60 included patients, a change in the management plan due to the FDG-PET/MRI results was reported for one-third [50]. This mirrors our own experience, that co-registration of PET and MRI increases the diagnostic yield.
Concordance with FDG-PET was a predictor of good surgical outcome
In 53 patients undergoing intracranial EEG monitoring, the preoperative FDG-PET showed 56% sensitivity for the same region as intracranial EEG. By contrast, ictal SPECT had a sensitivity of 87% [44]. A recent single-center experience including 40 patients with nonlesional MRI findings showed that concordance with localized FDG-PET results was one of the predictors of good surgical outcome [51]. The importance of concordant results in nonlesional MRI with functional neuroimaging including FDG-PET was shown to improve postsurgical outcome with up to 75% seizure freedom. Thereby, concordance between two or more investigations (interictal/ictal EEG, MRI, ictal SPECT) with localizing PET were predictive of an outcome of seizure freedom [52]. Postprocessing with SPM or a scanner software increased the pick-up rates for PET abnormalities. This was shown in several studies, which are summarized in a recent review [30].

Lesional or nonlesional epilepsy?

In our own clinical experience and also reported in some of the papers quoted above, nonlesional MRI-negative epilepsy may change to lesional epilepsy after pinpointing on the basis of PET or SPECT results. As outlined in Fig. 1, very subtle signs of focal cortical dysplasia were identified after a SISCOM-positive lesion and an FDG-PET-negative cortical area pointed out the abnormality in a 28-year-old female patient with frontal lobe epilepsy. Further invasive studies confirmed the seizure-onset zone, and resection has been followed by seizure freedom for more than 2 years at the time of writing. Figure 2 shows another example of localizing a lesion with ictal SPECT and FDG-PET as well as FMZ-PET. Additional findings with MRI identified a subtle cortical dysplasia and again invasive recording confirmed the epileptic-onset zone. After high seizure frequency of weekly focal-to-bilateral tonic–clonic seizures, the patient has been seizure free for 3 months since surgical resection. This is in line with the above quoted reports that nonlesional epilepsy might change to FCD on the basis of histopathology results in a number of cases. Hence, the nonlesional or MRI-negative criterion depends on the quality of MRI, MRI reporting, re-reporting, postprocessing, and possibly the combination with additional investigations such as PET and/or ictal SPECT. Currently, nonlesional epilepsies are most often defined by MRI criteria only [7]. It is advisable to have a second look at nonlesional MRI images once additional information becomes available.
Focal cortical dysplasias are one of the three most common histopathologies in epilepsy surgery [53]. Surgical outcome in refractory epilepsy caused by FCD is excellent [54]. Hence, detection of such pathologies with functional neuroimaging including PET and SPECT may lead to excellent surgical outcome in previously nonlesional cases. Furthermore, the group with no clear histopathology findings showed a fair chance of achieving long-term seizure freedom (53%) after epilepsy surgery [54], which is still much higher compared to seizure freedom in the groups with best medical treatment. Therefore, identification of the epileptogenic-onset zone and its consecutive resection may contribute to fair surgical results in truly nonlesional patients. The importance of functional neuro-imaging with PET and SPECT in this difficult patient group is attributed to its additional functional information.

Limitations

In this study we focused strongly on the use of PET and SPECT for the presurgical evaluation of nonlesional epilepsies. This reflects the authors’ opinion that the indication for such examinations in the context of clarifying the type of seizure or epilepsy syndrome is limited. Further, FDG-PET has no therapeutic implications in new-onset seizures or epilepsy [55]. Rare exceptions may be nonlesional and EEG-negative nonconvulsive status epilepticus cases [56, 57] or immune-mediated limbic encephalitis, where FDG-PET showed abnormalities in 14 cases whereas MRI showed abnormalities in 10 of 18 cases only [58]. With these rare exceptions, PET and SPECT are indicated for refractory epilepsy during presurgical evaluation only.

Practical conclusion

  • Postprocessing is the gold standard for single-photon emission computed tomography (SPECT) and positron emission tomography (PET).
  • Both SPECT and PET can identify lesions in cases of nonlesional epilepsy.
  • In nonlesional epilepsy, concordant diagnostics with SPECT or PET may result in good postsurgical outcome.
  • Nonlesional epilepsy should not rule out referral for presurgical evaluation.

Declarations

Conflict of interest

T.J. von Oertzen, G. Gröppel, S. Katletz, M. Weiß, M. Sonnberger and R. Pichler declare that they have no competing interests.
For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

Clinical Epileptology

Print-Titel

• Übersichten, Originalarbeiten, Kasuistiken

• Aktuelles aus der epileptologischen Diagnostik und Therapie  


e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G et al (2010) Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies. Epilepsia 51(6):1069–1077PubMed Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G et al (2010) Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies. Epilepsia 51(6):1069–1077PubMed
2.
Zurück zum Zitat Rosenow F, Alonso-Vanegas MA, Baumgartner C, Blümcke I, Carreño M, Gizewski ER et al (2013) Cavernoma-related epilepsy: review and recommendations for management—report of the surgical task force of the ILAE commission on therapeutic strategies. Epilepsia 54(12):2025–2035PubMed Rosenow F, Alonso-Vanegas MA, Baumgartner C, Blümcke I, Carreño M, Gizewski ER et al (2013) Cavernoma-related epilepsy: review and recommendations for management—report of the surgical task force of the ILAE commission on therapeutic strategies. Epilepsia 54(12):2025–2035PubMed
3.
Zurück zum Zitat Lüders HO, Najm I, Nair D, Widdess-Walsh P, Bingman W (2006) The epileptogenic zone: general principles. Epileptic Disord 8(2):S1–9PubMed Lüders HO, Najm I, Nair D, Widdess-Walsh P, Bingman W (2006) The epileptogenic zone: general principles. Epileptic Disord 8(2):S1–9PubMed
5.
Zurück zum Zitat von Oertzen J, Urbach H, Jungbluth S, Kurthen M, Reuber M, Fernández G et al (2002) Standard magnetic resonance imaging is inadequate for patients with refractory focal epilepsy. J Neurol Neurosurg Psychiatry 73(6):643–647 von Oertzen J, Urbach H, Jungbluth S, Kurthen M, Reuber M, Fernández G et al (2002) Standard magnetic resonance imaging is inadequate for patients with refractory focal epilepsy. J Neurol Neurosurg Psychiatry 73(6):643–647
6.
Zurück zum Zitat Wellmer J, Quesada CM, Rothe L, Elger CE, Bien CG, Urbach H (2013) Proposal for a magnetic resonance imaging protocol for the detection of epileptogenic lesions at early outpatient stages. Epilepsia 54(11):1977–1987PubMed Wellmer J, Quesada CM, Rothe L, Elger CE, Bien CG, Urbach H (2013) Proposal for a magnetic resonance imaging protocol for the detection of epileptogenic lesions at early outpatient stages. Epilepsia 54(11):1977–1987PubMed
7.
Zurück zum Zitat Bernasconi A, Cendes F, Theodore WH, Gill RS, Koepp MJ, Hogan RE et al (2019) Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: a consensus report from the international league against epilepsy neuroimaging task force. Epilepsia 60(6):1054–1068PubMed Bernasconi A, Cendes F, Theodore WH, Gill RS, Koepp MJ, Hogan RE et al (2019) Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: a consensus report from the international league against epilepsy neuroimaging task force. Epilepsia 60(6):1054–1068PubMed
8.
Zurück zum Zitat Rosenow F, Bast T, Czech T, Feucht M, Hans VH, Helmstaedter C et al (2016) Revised version of quality guidelines for presurgical epilepsy evaluation and surgical epilepsy therapy issued by the Austrian, German, and Swiss working group on presurgical epilepsy diagnosis and operative epilepsy treatment. Epilepsia 57(8):1215–1220PubMed Rosenow F, Bast T, Czech T, Feucht M, Hans VH, Helmstaedter C et al (2016) Revised version of quality guidelines for presurgical epilepsy evaluation and surgical epilepsy therapy issued by the Austrian, German, and Swiss working group on presurgical epilepsy diagnosis and operative epilepsy treatment. Epilepsia 57(8):1215–1220PubMed
9.
Zurück zum Zitat Lascano AM, Perneger T, Vulliemoz S, Spinelli L, Garibotto V, Korff CM et al (2016) Yield of MRI, high-density electric source imaging (HD-ESI), SPECT and PET in epilepsy surgery candidates. Clin Neurophysiol 127(1):150–155PubMed Lascano AM, Perneger T, Vulliemoz S, Spinelli L, Garibotto V, Korff CM et al (2016) Yield of MRI, high-density electric source imaging (HD-ESI), SPECT and PET in epilepsy surgery candidates. Clin Neurophysiol 127(1):150–155PubMed
10.
Zurück zum Zitat Hougaard K, Oikawa T, Sveinsdottir E, Skinhøj E, Ingvar DH, Lassen NA (1976) Regional cerebral blood flow in focal cortical epilepsy. Arch Neurol 33(8):527–535PubMed Hougaard K, Oikawa T, Sveinsdottir E, Skinhøj E, Ingvar DH, Lassen NA (1976) Regional cerebral blood flow in focal cortical epilepsy. Arch Neurol 33(8):527–535PubMed
11.
Zurück zum Zitat Goffin K, Dedeurwaerdere S, Van Laere K, Van Paesschen W (2008) Neuronuclear assessment of patients with epilepsy. Semin Nucl Med 38(4):227–239PubMed Goffin K, Dedeurwaerdere S, Van Laere K, Van Paesschen W (2008) Neuronuclear assessment of patients with epilepsy. Semin Nucl Med 38(4):227–239PubMed
12.
Zurück zum Zitat Stefan H, Pawlik G, Böcher-Schwarz HG, Biersack HJ, Burr W, Penin H et al (1987) Functional and morphological abnormalities in temporal lobe epilepsy: a comparison of interictal and ictal EEG, CT, MRI, SPECT and PET. J Neurol 234(6):377–384PubMed Stefan H, Pawlik G, Böcher-Schwarz HG, Biersack HJ, Burr W, Penin H et al (1987) Functional and morphological abnormalities in temporal lobe epilepsy: a comparison of interictal and ictal EEG, CT, MRI, SPECT and PET. J Neurol 234(6):377–384PubMed
13.
Zurück zum Zitat Grünwald F, Menzel C, Pavics L, Bauer J, Hufnagel A, Reichmann K et al (1994) Ictal and interictal brain SPECT imaging in epilepsy using technetium-99m-ECD. J Nucl Med 35(12):1896–1901PubMed Grünwald F, Menzel C, Pavics L, Bauer J, Hufnagel A, Reichmann K et al (1994) Ictal and interictal brain SPECT imaging in epilepsy using technetium-99m-ECD. J Nucl Med 35(12):1896–1901PubMed
14.
Zurück zum Zitat O’Brien TJ, Brinkmann BH, Mullan BP, So EL, Hauser MF, O’Connor MK et al (1999) Comparative study of 99mTc-ECD and 99mTc-HMPAO for peri-ictal SPECT: qualitative and quantitative analysis. J Neurol Neurosurg Psychiatry 66(3):331–339PubMedPubMedCentral O’Brien TJ, Brinkmann BH, Mullan BP, So EL, Hauser MF, O’Connor MK et al (1999) Comparative study of 99mTc-ECD and 99mTc-HMPAO for peri-ictal SPECT: qualitative and quantitative analysis. J Neurol Neurosurg Psychiatry 66(3):331–339PubMedPubMedCentral
15.
Zurück zum Zitat O’Brien TJ (2000) SPECT: methodology. Adv Neurol 83:11–32PubMed O’Brien TJ (2000) SPECT: methodology. Adv Neurol 83:11–32PubMed
16.
Zurück zum Zitat Léveillé J, Demonceau G, Walovitch RC (1992) Intrasubject comparison between technetium-99m-ECD and technetium-99m-HMPAO in healthy human subjects. J Nucl Med 33(4):480–484PubMed Léveillé J, Demonceau G, Walovitch RC (1992) Intrasubject comparison between technetium-99m-ECD and technetium-99m-HMPAO in healthy human subjects. J Nucl Med 33(4):480–484PubMed
17.
Zurück zum Zitat Yassin A, El-Salem K, Al-Mistarehi AH, Momani A, Zein Alaabdin AM, Shah P et al (2021) Use of innovative SPECT techniques in the presurgical evaluation of patients with nonlesional extratemporal drug-resistant epilepsy. Mol Imaging 2021:e6614356 Yassin A, El-Salem K, Al-Mistarehi AH, Momani A, Zein Alaabdin AM, Shah P et al (2021) Use of innovative SPECT techniques in the presurgical evaluation of patients with nonlesional extratemporal drug-resistant epilepsy. Mol Imaging 2021:e6614356
18.
Zurück zum Zitat Aungaroon G, Trout A, Radhakrishnan R, Horn PS, Arya R, Tenney JR et al (2018) Impact of radiotracer injection latency and seizure duration on subtraction ictal SPECT co-registered to MRI (SISCOM) performance in children. Clin Neurophysiol 129(9):1842–1848PubMed Aungaroon G, Trout A, Radhakrishnan R, Horn PS, Arya R, Tenney JR et al (2018) Impact of radiotracer injection latency and seizure duration on subtraction ictal SPECT co-registered to MRI (SISCOM) performance in children. Clin Neurophysiol 129(9):1842–1848PubMed
19.
Zurück zum Zitat Ramchuankiat S, Jarumaneeroj P, Limotai C, Tepmongkol S, Rakvongthai Y (2017) Impact of injection time on migration of SPECT seizure onset in temporal lobe epilepsy. 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 1465–1468 Ramchuankiat S, Jarumaneeroj P, Limotai C, Tepmongkol S, Rakvongthai Y (2017) Impact of injection time on migration of SPECT seizure onset in temporal lobe epilepsy. 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 1465–1468
20.
Zurück zum Zitat Van Paesschen W, Dupont P, Van Driel G, Van Billoen H, Maes A (2003) SPECT perfusion changes during complex partial seizures in patients with hippocampal sclerosis. Brain 126(5):1103–1111PubMed Van Paesschen W, Dupont P, Van Driel G, Van Billoen H, Maes A (2003) SPECT perfusion changes during complex partial seizures in patients with hippocampal sclerosis. Brain 126(5):1103–1111PubMed
21.
Zurück zum Zitat Duncan JS (1997) Imaging and epilepsy. Brain 120(2):339–377PubMed Duncan JS (1997) Imaging and epilepsy. Brain 120(2):339–377PubMed
22.
Zurück zum Zitat O’Brien TJ, So EL, Mullan BP, Hauser MF, Brinkmann BH, Bohnen NI et al (1998) Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology 50(2):445–454PubMed O’Brien TJ, So EL, Mullan BP, Hauser MF, Brinkmann BH, Bohnen NI et al (1998) Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology 50(2):445–454PubMed
23.
Zurück zum Zitat Spanaki MV, Spencer SS, Corsi M, MacMullan J, Seibyl J, Zubal IG (1999) Sensitivity and specificity of quantitative difference SPECT analysis in seizure localization. J Nucl Med 40(5):730–736PubMed Spanaki MV, Spencer SS, Corsi M, MacMullan J, Seibyl J, Zubal IG (1999) Sensitivity and specificity of quantitative difference SPECT analysis in seizure localization. J Nucl Med 40(5):730–736PubMed
24.
Zurück zum Zitat McNally KA, Paige AL, Varghese G, Zhang H, Novotny EJ, Spencer SS et al (2005) Localizing value of ictal-interictal SPECT analyzed by SPM (ISAS). Epilepsia 46(9):1450–1464PubMed McNally KA, Paige AL, Varghese G, Zhang H, Novotny EJ, Spencer SS et al (2005) Localizing value of ictal-interictal SPECT analyzed by SPM (ISAS). Epilepsia 46(9):1450–1464PubMed
25.
Zurück zum Zitat Sulc V, Stykel S, Hanson DP, Brinkmann BH, Jones DT, Holmes DR et al (2014) Statistical SPECT processing in MRI-negative epilepsy surgery. Neurology 82(11):932–939PubMedPubMedCentral Sulc V, Stykel S, Hanson DP, Brinkmann BH, Jones DT, Holmes DR et al (2014) Statistical SPECT processing in MRI-negative epilepsy surgery. Neurology 82(11):932–939PubMedPubMedCentral
26.
Zurück zum Zitat Ponisio MR, Zempel JM, Day BK, Eisenman LN, Miller-Thomas MM, Smyth MD et al (2021) The role of SPECT and PET in epilepsy. AJR Am J Roentgenol 216(3):759–768PubMed Ponisio MR, Zempel JM, Day BK, Eisenman LN, Miller-Thomas MM, Smyth MD et al (2021) The role of SPECT and PET in epilepsy. AJR Am J Roentgenol 216(3):759–768PubMed
27.
Zurück zum Zitat Theodore WH, Brooks R, Sato S, Patronas N, Margolin R, Di Chiro G et al (1984) The role of positron emission tomography in the evaluation of seizure disorders. Ann Neurol 15:S176–179PubMed Theodore WH, Brooks R, Sato S, Patronas N, Margolin R, Di Chiro G et al (1984) The role of positron emission tomography in the evaluation of seizure disorders. Ann Neurol 15:S176–179PubMed
28.
Zurück zum Zitat Vielhaber S, von Oertzen JH, Kudin AF, Schoenfeld A, Menzel C, Biersack HJ et al (2003) Correlation of hippocampal glucose oxidation capacity and interictal FDG-PET in temporal lobe epilepsy. Epilepsia 44(2):193–199PubMed Vielhaber S, von Oertzen JH, Kudin AF, Schoenfeld A, Menzel C, Biersack HJ et al (2003) Correlation of hippocampal glucose oxidation capacity and interictal FDG-PET in temporal lobe epilepsy. Epilepsia 44(2):193–199PubMed
29.
Zurück zum Zitat Carreno M, Lüders HO (2001) General principals of presurgical evaluation, 2nd edn. Epilepsy surgery. Lippincott Williams & Wilkins, Philadelphia, pp 185–200 Carreno M, Lüders HO (2001) General principals of presurgical evaluation, 2nd edn. Epilepsy surgery. Lippincott Williams & Wilkins, Philadelphia, pp 185–200
30.
Zurück zum Zitat von Oertzen TJ (2018) PET and ictal SPECT can be helpful for localizing epileptic foci. Curr Opin Neurol 31(2):184–191 von Oertzen TJ (2018) PET and ictal SPECT can be helpful for localizing epileptic foci. Curr Opin Neurol 31(2):184–191
31.
Zurück zum Zitat Widdess-Walsh P, Diehl B, Najm I (2006) Neuroimaging of focal cortical dysplasia. J Neuroimaging 16(3):185–196PubMed Widdess-Walsh P, Diehl B, Najm I (2006) Neuroimaging of focal cortical dysplasia. J Neuroimaging 16(3):185–196PubMed
32.
Zurück zum Zitat Desarnaud S, Mellerio C, Semah F, Laurent A, Landre E, Devaux B et al (2018) 18F-FDG PET in drug-resistant epilepsy due to focal cortical dysplasia type 2: additional value of electroclinical data and coregistration with MRI. Eur J Nucl Med Mol Imaging 45:1449–1460PubMed Desarnaud S, Mellerio C, Semah F, Laurent A, Landre E, Devaux B et al (2018) 18F-FDG PET in drug-resistant epilepsy due to focal cortical dysplasia type 2: additional value of electroclinical data and coregistration with MRI. Eur J Nucl Med Mol Imaging 45:1449–1460PubMed
33.
Zurück zum Zitat Schwarz G, Puttinger G, von Oertzen TJ (2019) Prächirurgische Epilepsiediagnostik – öfter ein Thema als viele denken. Psychoprax Neuroprax 22:260–267 Schwarz G, Puttinger G, von Oertzen TJ (2019) Prächirurgische Epilepsiediagnostik – öfter ein Thema als viele denken. Psychoprax Neuroprax 22:260–267
34.
Zurück zum Zitat Hand KS, Baird VH, Van Paesschen W, Koepp MJ, Revesz T, Thom M et al (1997) Central benzodiazepine receptor autoradiography in hippocampal sclerosis. Br J Pharmacol 122(2):358–364PubMedPubMedCentral Hand KS, Baird VH, Van Paesschen W, Koepp MJ, Revesz T, Thom M et al (1997) Central benzodiazepine receptor autoradiography in hippocampal sclerosis. Br J Pharmacol 122(2):358–364PubMedPubMedCentral
35.
Zurück zum Zitat Richardson MP, Koepp MJ, Brooks DJ, Duncan JS (1998) 11C-flumazenil PET in neocortical epilepsy. Neurology 51(2):485–492PubMed Richardson MP, Koepp MJ, Brooks DJ, Duncan JS (1998) 11C-flumazenil PET in neocortical epilepsy. Neurology 51(2):485–492PubMed
36.
Zurück zum Zitat Hammers A, Koepp MJ, Richardson MP, Hurlemann R, Brooks DJ, Duncan JS (2003) Grey and white matter flumazenil binding in neocortical epilepsy with normal MRI. A PET study of 44 patients. Brain 126(6):1300–1318PubMed Hammers A, Koepp MJ, Richardson MP, Hurlemann R, Brooks DJ, Duncan JS (2003) Grey and white matter flumazenil binding in neocortical epilepsy with normal MRI. A PET study of 44 patients. Brain 126(6):1300–1318PubMed
37.
Zurück zum Zitat Vivash L, Gregoire MC, Lau EW, Ware RE, Binns D, Roselt P et al (2013) 18F-flumazenil: a γ-aminobutyric acid A‑specific PET radiotracer for the localization of drug-resistant temporal lobe epilepsy. J Nucl Med 54(8):1270–1277PubMed Vivash L, Gregoire MC, Lau EW, Ware RE, Binns D, Roselt P et al (2013) 18F-flumazenil: a γ-aminobutyric acid A‑specific PET radiotracer for the localization of drug-resistant temporal lobe epilepsy. J Nucl Med 54(8):1270–1277PubMed
38.
Zurück zum Zitat Chugani HT, Kumar A, Kupsky W, Asano E, Sood S, Juhász C (2011) Clinical and histopathologic correlates of 11C-alpha-methyl-l-tryptophan (AMT) PET abnormalities in children with intractable epilepsy. Epilepsia 52(9):1692–1698PubMedPubMedCentral Chugani HT, Kumar A, Kupsky W, Asano E, Sood S, Juhász C (2011) Clinical and histopathologic correlates of 11C-alpha-methyl-l-tryptophan (AMT) PET abnormalities in children with intractable epilepsy. Epilepsia 52(9):1692–1698PubMedPubMedCentral
39.
Zurück zum Zitat Bagla S, Cukovic D, Asano E, Sood S, Luat A, Chugani HT et al (2018) A distinct microRNA expression profile is associated with α[11C]-methyl-L-tryptophan (AMT) PET uptake in epileptogenic cortical tubers resected from patients with tuberous sclerosis complex. Neurobiol Dis 109:76–87PubMed Bagla S, Cukovic D, Asano E, Sood S, Luat A, Chugani HT et al (2018) A distinct microRNA expression profile is associated with α[11C]-methyl-L-tryptophan (AMT) PET uptake in epileptogenic cortical tubers resected from patients with tuberous sclerosis complex. Neurobiol Dis 109:76–87PubMed
40.
Zurück zum Zitat von Oertzen TJ, Mormann F, Urbach H, Reichmann K, Koenig R, Clusmann H et al (2011) Prospective use of subtraction ictal SPECT coregistered to MRI (SISCOM) in presurgical evaluation of epilepsy. Epilepsia 52(12):2239–2248 von Oertzen TJ, Mormann F, Urbach H, Reichmann K, Koenig R, Clusmann H et al (2011) Prospective use of subtraction ictal SPECT coregistered to MRI (SISCOM) in presurgical evaluation of epilepsy. Epilepsia 52(12):2239–2248
41.
Zurück zum Zitat Ahnlide JA, Rosén I, Lindén-Mickelsson Tech P, Källén K (2007) Does SISCOM contribute to favorable seizure outcome after epilepsy surgery? Epilepsia 48(3):579–588PubMed Ahnlide JA, Rosén I, Lindén-Mickelsson Tech P, Källén K (2007) Does SISCOM contribute to favorable seizure outcome after epilepsy surgery? Epilepsia 48(3):579–588PubMed
42.
Zurück zum Zitat Knowlton RC, Elgavish RA, Bartolucci A, Ojha B, Limdi N, Blount J et al (2008) Functional imaging: II. Prediction of epilepsy surgery outcome. Ann Neurol 64(1):35–41PubMed Knowlton RC, Elgavish RA, Bartolucci A, Ojha B, Limdi N, Blount J et al (2008) Functional imaging: II. Prediction of epilepsy surgery outcome. Ann Neurol 64(1):35–41PubMed
43.
Zurück zum Zitat Kim DW, Lee SK, Chu K, Park KI, Lee SY, Lee CH et al (2009) Predictors of surgical outcome and pathologic considerations in focal cortical dysplasia. Neurology 72(3):211–216PubMed Kim DW, Lee SK, Chu K, Park KI, Lee SY, Lee CH et al (2009) Predictors of surgical outcome and pathologic considerations in focal cortical dysplasia. Neurology 72(3):211–216PubMed
44.
Zurück zum Zitat Desai A, Bekelis K, Thadani VM, Roberts DW, Jobst BC, Duhaime AC et al (2013) Interictal PET and ictal subtraction SPECT: sensitivity in the detection of seizure foci in patients with medically intractable epilepsy. Epilepsia 54(2):341–350PubMed Desai A, Bekelis K, Thadani VM, Roberts DW, Jobst BC, Duhaime AC et al (2013) Interictal PET and ictal subtraction SPECT: sensitivity in the detection of seizure foci in patients with medically intractable epilepsy. Epilepsia 54(2):341–350PubMed
45.
Zurück zum Zitat Juhász C, John F (2020) Utility of MRI, PET, and ictal SPECT in presurgical evaluation of non-lesional pediatric epilepsy. Seizure 77:15–28PubMed Juhász C, John F (2020) Utility of MRI, PET, and ictal SPECT in presurgical evaluation of non-lesional pediatric epilepsy. Seizure 77:15–28PubMed
46.
Zurück zum Zitat Peedicail JS, Singh S, Molnar CP, Numerow LM, Gnanakumar R, Josephson CB et al (2021) Impact of ictal subtraction SPECT and PET in presurgical evaluation. Acta Neurol Scand 143(3):271–280PubMed Peedicail JS, Singh S, Molnar CP, Numerow LM, Gnanakumar R, Josephson CB et al (2021) Impact of ictal subtraction SPECT and PET in presurgical evaluation. Acta Neurol Scand 143(3):271–280PubMed
47.
Zurück zum Zitat Huppertz HJ, Grimm C, Fauser S, Kassubek J, Mader I, Hochmuth A et al (2005) Enhanced visualization of blurred gray-white matter junctions in focal cortical dysplasia by voxel-based 3D MRI analysis. Epilepsy Res 67(1–2):35–50PubMed Huppertz HJ, Grimm C, Fauser S, Kassubek J, Mader I, Hochmuth A et al (2005) Enhanced visualization of blurred gray-white matter junctions in focal cortical dysplasia by voxel-based 3D MRI analysis. Epilepsy Res 67(1–2):35–50PubMed
48.
Zurück zum Zitat Kumar A, Juhász C, Asano E, Sood S, Muzik O, Chugani HT (2010) Objective detection of epileptic foci by 18F-FDG PET in children undergoing epilepsy surgery. J Nucl Med 51(12):1901–1907PubMed Kumar A, Juhász C, Asano E, Sood S, Muzik O, Chugani HT (2010) Objective detection of epileptic foci by 18F-FDG PET in children undergoing epilepsy surgery. J Nucl Med 51(12):1901–1907PubMed
50.
Zurück zum Zitat Tóth M, Barsi P, Tóth Z, Borbély K, Lückl J, Emri M et al (2021) The role of hybrid FDG-PET/MRI on decision-making in presurgical evaluation of drug-resistant epilepsy. BMC Neurol 21(1):363PubMedPubMedCentral Tóth M, Barsi P, Tóth Z, Borbély K, Lückl J, Emri M et al (2021) The role of hybrid FDG-PET/MRI on decision-making in presurgical evaluation of drug-resistant epilepsy. BMC Neurol 21(1):363PubMedPubMedCentral
51.
Zurück zum Zitat Alsumaili M, Alkhateeb M, Khoja A, Alkhaja M, Alsulami A, Alqadi K et al (2021) Seizure outcome after epilepsy surgery for patients with normal MRI: a single center experience. Epilepsy Res 173:106620PubMed Alsumaili M, Alkhateeb M, Khoja A, Alkhaja M, Alsulami A, Alqadi K et al (2021) Seizure outcome after epilepsy surgery for patients with normal MRI: a single center experience. Epilepsy Res 173:106620PubMed
52.
Zurück zum Zitat Moon HJ, Kim DW, Chung CK, Shin J, Moon J, Kang BS et al (2016) Change of patient selection strategy and improved surgical outcome in MRI-negative neocortical epilepsy. J Epilepsy Res 6(2):66–74PubMed Moon HJ, Kim DW, Chung CK, Shin J, Moon J, Kang BS et al (2016) Change of patient selection strategy and improved surgical outcome in MRI-negative neocortical epilepsy. J Epilepsy Res 6(2):66–74PubMed
53.
Zurück zum Zitat Blumcke I, Spreafico R, Haaker G, Coras R, Kobow K, Bien CG et al (2017) Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med 377(17):1648–1656PubMed Blumcke I, Spreafico R, Haaker G, Coras R, Kobow K, Bien CG et al (2017) Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med 377(17):1648–1656PubMed
54.
Zurück zum Zitat Lamberink HJ, Otte WM, Blümcke I, Braun KPJ, Aichholzer M, Amorim I et al (2020) Seizure outcome and use of antiepileptic drugs after epilepsy surgery according to histopathological diagnosis: a retrospective multicentre cohort study. Lancet Neurol 19(9):748–757PubMed Lamberink HJ, Otte WM, Blümcke I, Braun KPJ, Aichholzer M, Amorim I et al (2020) Seizure outcome and use of antiepileptic drugs after epilepsy surgery according to histopathological diagnosis: a retrospective multicentre cohort study. Lancet Neurol 19(9):748–757PubMed
55.
Zurück zum Zitat Weitemeyer L, Kellinghaus C, Weckesser M, Matheja P, Loddenkemper T, Schuierer G et al (2005) The prognostic value of [F]FDG-PET in nonrefractory partial epilepsy. Epilepsia 46(10):1654–1660PubMed Weitemeyer L, Kellinghaus C, Weckesser M, Matheja P, Loddenkemper T, Schuierer G et al (2005) The prognostic value of [F]FDG-PET in nonrefractory partial epilepsy. Epilepsia 46(10):1654–1660PubMed
56.
Zurück zum Zitat Dong C, Sriram S, Delbeke D, Al-Kaylani M, Arain AM, Singh P et al (2009) Aphasic or amnesic status epilepticus detected on PET but not EEG. Epilepsia 50(2):251–255PubMed Dong C, Sriram S, Delbeke D, Al-Kaylani M, Arain AM, Singh P et al (2009) Aphasic or amnesic status epilepticus detected on PET but not EEG. Epilepsia 50(2):251–255PubMed
57.
Zurück zum Zitat Bauer G, Unterberger I, Trinka E (2009) Comment on ‘Aphasic or amnesic status epilepticus detected on PET but not EEG. Epilepsia 50(8):2004–2005PubMed Bauer G, Unterberger I, Trinka E (2009) Comment on ‘Aphasic or amnesic status epilepticus detected on PET but not EEG. Epilepsia 50(8):2004–2005PubMed
58.
Zurück zum Zitat Baumgartner A, Rauer S, Mader I, Meyer PT (2013) Cerebral FDG-PET and MRI findings in autoimmune limbic encephalitis: correlation with autoantibody types. J Neurol 260(11):2744–2753PubMed Baumgartner A, Rauer S, Mader I, Meyer PT (2013) Cerebral FDG-PET and MRI findings in autoimmune limbic encephalitis: correlation with autoantibody types. J Neurol 260(11):2744–2753PubMed
Metadaten
Titel
SPECT and PET in nonlesional epilepsy
verfasst von
Tim J. von Oertzen, MD FRCP
Gudrun Gröppel
Stefan Katletz
Monika Weiß
Michael Sonnberger
Robert Pichler
Publikationsdatum
04.05.2023
Verlag
Springer Medizin
Erschienen in
Clinical Epileptology / Ausgabe 2/2023
Print ISSN: 2948-104X
Elektronische ISSN: 2948-1058
DOI
https://doi.org/10.1007/s10309-023-00577-1

Weitere Artikel der Ausgabe 2/2023

Clinical Epileptology 2/2023 Zur Ausgabe

Mitteilungen der Arbeitsgemeinschaft für prächirurgische Diagnostik und operative Epilepsietherapie

Mitteilungen der Arbeitsgemeinschaft für prächirurgische Diagnostik und operative Epilepsietherapie

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.