Skip to main content
Erschienen in:

06.04.2019 | Original Article—Physics & Engineering

Spectral analysis framework for compressed sensing ultrasound signals

verfasst von: Jaeyoon Shim, Don Hur, Hyungsuk Kim

Erschienen in: Journal of Medical Ultrasonics | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Compressed sensing (CS) is the theory of the recovery of signals that are sampled below the Nyquist sampling rate. We propose a spectral analysis framework for CS data that does not require full reconstruction for extracting frequency characteristics of signals by an appropriate basis matrix.

Methods

The coefficients of a basis matrix already contain the spectral information for CS data, and the proposed framework directly utilizes them without completely restoring original data. We apply three basis matrices, i.e., DCT, DFT, and DWT, for sampling and reconstructing processes, subsequently estimating the attenuation coefficients to validate the proposed method. The estimation accuracy and precision, as well as the execution time, are compared using the reference phantom method (RPM).

Results

The experiment results show the effective extraction of spectral information from CS signals by the proposed framework, and the DCT basis matrix provides the most accurate results while minimizing estimation variances. The execution time is also reduced compared with that of the traditional approach, which completely reconstructs the original data.

Conclusion

The proposed method provides accurate spectral analysis without full reconstruction. Since it effectively utilizes the data storage and reduces the processing time, it could be applied to small and portable ultrasound systems using the CS technique.
Literatur
1.
Zurück zum Zitat Techavipoo U, Varghese T, Chen Q, et al. Temperature dependence of ultrasonic propagation speed and attenuation in excised canine liver tissue measured using transmitted and reflected pulses. J Acoust Soc Am. 2004;115:2859–65.CrossRef Techavipoo U, Varghese T, Chen Q, et al. Temperature dependence of ultrasonic propagation speed and attenuation in excised canine liver tissue measured using transmitted and reflected pulses. J Acoust Soc Am. 2004;115:2859–65.CrossRef
2.
Zurück zum Zitat Wear KA, Stiles TA, Frank GR, et al. Interlaboratory comparison of ultrasonic backscatter coefficient measurements from 2 to 9 MHz. J Ultrasound Med. 2005;24:1235–50.CrossRef Wear KA, Stiles TA, Frank GR, et al. Interlaboratory comparison of ultrasonic backscatter coefficient measurements from 2 to 9 MHz. J Ultrasound Med. 2005;24:1235–50.CrossRef
3.
Zurück zum Zitat Treece G, Prager R, Gee A. Ultrasound attenuation measurement in the presence of scatterer variation for reduction of shadowing and enhancement. IEEE Trans UFFC. 2005;52:2346–60.CrossRef Treece G, Prager R, Gee A. Ultrasound attenuation measurement in the presence of scatterer variation for reduction of shadowing and enhancement. IEEE Trans UFFC. 2005;52:2346–60.CrossRef
4.
Zurück zum Zitat Levy Y, Agnon Y, Azhari H. Measurement of speed of sound dispersion in soft tissues using a double frequency continuous wave method. Ultrasound Med Biol. 2006;32:1065–71.CrossRef Levy Y, Agnon Y, Azhari H. Measurement of speed of sound dispersion in soft tissues using a double frequency continuous wave method. Ultrasound Med Biol. 2006;32:1065–71.CrossRef
5.
Zurück zum Zitat Bridal SL, Fournier C, Coron A, et al. Ultrasonic backscatter and attenuation (11–27 MHz) variation with collagen fiber distribution in ex vivo human dermis. Ultrason Imaging. 2006;28:23–40.CrossRef Bridal SL, Fournier C, Coron A, et al. Ultrasonic backscatter and attenuation (11–27 MHz) variation with collagen fiber distribution in ex vivo human dermis. Ultrason Imaging. 2006;28:23–40.CrossRef
6.
Zurück zum Zitat Fujii Y, Taniguchi N, Itoh K, et al. A new method for attenuation coefficient measurement in the liver: comparison with the spectral shift central frequency method. J Ultrasound Med. 2002;21:783–8.CrossRef Fujii Y, Taniguchi N, Itoh K, et al. A new method for attenuation coefficient measurement in the liver: comparison with the spectral shift central frequency method. J Ultrasound Med. 2002;21:783–8.CrossRef
7.
Zurück zum Zitat Lee K. Dependences of the attenuation and the backscatter coefficients on the frequency and the porosity in bovine trabecular bone: application of the binary mixture model. J Korean Phys Soc. 2012;60:371–5.CrossRef Lee K. Dependences of the attenuation and the backscatter coefficients on the frequency and the porosity in bovine trabecular bone: application of the binary mixture model. J Korean Phys Soc. 2012;60:371–5.CrossRef
8.
Zurück zum Zitat Wear KA. Characterization of trabecular bone using the backscattered spectral centroid shift Characterization of trabecular bone using the backscattered spectral centroid shift. IEEE Trans UFFC. 2003;50:402–7.CrossRef Wear KA. Characterization of trabecular bone using the backscattered spectral centroid shift Characterization of trabecular bone using the backscattered spectral centroid shift. IEEE Trans UFFC. 2003;50:402–7.CrossRef
9.
Zurück zum Zitat Nagatani Y, Mizuno K, Saeki T, et al. Numerical and experimental study on the wave attenuation in bone—FDTD simulation of ultrasound propagation in cancellous bone. Ultrasonics. 2007;48:607–12.CrossRef Nagatani Y, Mizuno K, Saeki T, et al. Numerical and experimental study on the wave attenuation in bone—FDTD simulation of ultrasound propagation in cancellous bone. Ultrasonics. 2007;48:607–12.CrossRef
10.
Zurück zum Zitat Nam K, Zagzebski JA, Hall TJ. Quantitative assessment of in vivo breast masses using ultrasound attenuation and backscatter. Ultrason Imaging. 2013;35:146–61.CrossRef Nam K, Zagzebski JA, Hall TJ. Quantitative assessment of in vivo breast masses using ultrasound attenuation and backscatter. Ultrason Imaging. 2013;35:146–61.CrossRef
11.
Zurück zum Zitat Flax SW, Pelc NJ, Glover GH, et al. Spectral characterization and attenuation measurements in ultrasound. Ultrason Imaging. 1983;5:95–116.CrossRef Flax SW, Pelc NJ, Glover GH, et al. Spectral characterization and attenuation measurements in ultrasound. Ultrason Imaging. 1983;5:95–116.CrossRef
12.
Zurück zum Zitat He P, Greenleaf JF. Application of stochastic-analysis to ultrasonic echoes—estimation of attenuation and tissue heterogeneity from peaks of echo envelope. J Ultrasound Med. 1986;79:526–34. He P, Greenleaf JF. Application of stochastic-analysis to ultrasonic echoes—estimation of attenuation and tissue heterogeneity from peaks of echo envelope. J Ultrasound Med. 1986;79:526–34.
13.
Zurück zum Zitat Jang HS, Song TK, Park SB. Ultrasound attenuation estimation in soft tissue using the entropy difference of pulsed echoes between two adjacent envelope segments. Ultrason Imaging. 1988;10:248–64.CrossRef Jang HS, Song TK, Park SB. Ultrasound attenuation estimation in soft tissue using the entropy difference of pulsed echoes between two adjacent envelope segments. Ultrason Imaging. 1988;10:248–64.CrossRef
14.
Zurück zum Zitat Knipp BS, Zagzebski JA, Wilson TA, et al. Attenuation and backscatter estimation using video signal analysis applied to B-mode images. Ultrason Imaging. 1997;19:221–33.CrossRef Knipp BS, Zagzebski JA, Wilson TA, et al. Attenuation and backscatter estimation using video signal analysis applied to B-mode images. Ultrason Imaging. 1997;19:221–33.CrossRef
15.
Zurück zum Zitat Yao LX, Zagzebski JA, Madsen EL. Backscatter coefficient measurements using a reference phantom to extract depth-dependent instrumentation factors. Ultrason Imaging. 1990;12:58–70.CrossRef Yao LX, Zagzebski JA, Madsen EL. Backscatter coefficient measurements using a reference phantom to extract depth-dependent instrumentation factors. Ultrason Imaging. 1990;12:58–70.CrossRef
16.
Zurück zum Zitat Fink M, Hottier F, Cardoso JF. Ultrasonic signal processing for in vivo attenuation measurement: short time Fourier analysis. Ultrason Imaging. 1983;5:117–35.PubMed Fink M, Hottier F, Cardoso JF. Ultrasonic signal processing for in vivo attenuation measurement: short time Fourier analysis. Ultrason Imaging. 1983;5:117–35.PubMed
17.
Zurück zum Zitat Kim H, Varghese T. Hybrid spectral domain method for attenuation slope estimation. Ultrasound Med Biol. 2008;34:1808–19.CrossRef Kim H, Varghese T. Hybrid spectral domain method for attenuation slope estimation. Ultrasound Med Biol. 2008;34:1808–19.CrossRef
19.
Zurück zum Zitat Nguyen MM, Mung J, Yen JT. Fresnel-based beamforming for low-cost portable ultrasound. IEEE Trans UFFC. 2011;58:112–21.CrossRef Nguyen MM, Mung J, Yen JT. Fresnel-based beamforming for low-cost portable ultrasound. IEEE Trans UFFC. 2011;58:112–21.CrossRef
20.
Zurück zum Zitat Schiffner MF, Jansen T, Schmitz G. Compressed sensing for fast image acquisition in pulse-echo ultrasound. Biomed Tech. 2012;57:192–5.CrossRef Schiffner MF, Jansen T, Schmitz G. Compressed sensing for fast image acquisition in pulse-echo ultrasound. Biomed Tech. 2012;57:192–5.CrossRef
22.
Zurück zum Zitat Liebgott H, Prost R, Friboulet D. Pre-beamformed RF signal reconstruction in medical ultrasound using compressive sensing. Ultrasonics. 2013;53:525–33.CrossRef Liebgott H, Prost R, Friboulet D. Pre-beamformed RF signal reconstruction in medical ultrasound using compressive sensing. Ultrasonics. 2013;53:525–33.CrossRef
23.
Zurück zum Zitat Chernyakova T, Eldar Y. Fourier-domain beamforming: The path to compressed ultrasound imaging. IEEE Trans UFFC. 2014;61:1252–67.CrossRef Chernyakova T, Eldar Y. Fourier-domain beamforming: The path to compressed ultrasound imaging. IEEE Trans UFFC. 2014;61:1252–67.CrossRef
24.
Zurück zum Zitat Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58:1182–95.CrossRef Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58:1182–95.CrossRef
25.
Zurück zum Zitat Donoho D. Compressed sensing. IEEE Trans Inf Theory. 2006;52:1289–306.CrossRef Donoho D. Compressed sensing. IEEE Trans Inf Theory. 2006;52:1289–306.CrossRef
26.
Zurück zum Zitat Nyquist H. Certain topics in telegraph transmission theory. AIEE Trans. 1928;47:617–44. Nyquist H. Certain topics in telegraph transmission theory. AIEE Trans. 1928;47:617–44.
27.
Zurück zum Zitat Shannon C. Communication in the Presence of Noise. Proc IRE. 1949;37:10–211.CrossRef Shannon C. Communication in the Presence of Noise. Proc IRE. 1949;37:10–211.CrossRef
28.
Zurück zum Zitat Knuth DE. Postscript about NP-hard problems. ACM SIGACT News. 1974;6:15–6.CrossRef Knuth DE. Postscript about NP-hard problems. ACM SIGACT News. 1974;6:15–6.CrossRef
29.
Zurück zum Zitat Candès EJ, Recht B. Exact matrix completion via convex optimization. Found Comput Math. 2009;9:717–72.CrossRef Candès EJ, Recht B. Exact matrix completion via convex optimization. Found Comput Math. 2009;9:717–72.CrossRef
30.
Zurück zum Zitat Candès EJ, Wakin MB. An introduction to compressive sampling. IEEE Signal Process Mag. 2008;25:21–30.CrossRef Candès EJ, Wakin MB. An introduction to compressive sampling. IEEE Signal Process Mag. 2008;25:21–30.CrossRef
Metadaten
Titel
Spectral analysis framework for compressed sensing ultrasound signals
verfasst von
Jaeyoon Shim
Don Hur
Hyungsuk Kim
Publikationsdatum
06.04.2019
Verlag
Springer Singapore
Erschienen in
Journal of Medical Ultrasonics / Ausgabe 4/2019
Print ISSN: 1346-4523
Elektronische ISSN: 1613-2254
DOI
https://doi.org/10.1007/s10396-019-00940-8

Neu im Fachgebiet Radiologie

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Stören weiße Wände und viel Licht die Bildqualitätskontrolle?

Wenn es darum geht, die technische Qualität eines Mammogramms zu beurteilen, könnten graue Wandfarbe und reduzierte Beleuchtung im Bildgebungsraum von Vorteil sein. Darauf deuten zumindest Ergebnisse einer kleinen Studie hin. 

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.