Skip to main content
Erschienen in: Graefe's Archive for Clinical and Experimental Ophthalmology 12/2013

01.12.2013 | Pediatrics

Spectral-domain optical coherence tomography analysis in deprivational amblyopia: a pilot study with unilateral pediatric cataract patients

verfasst von: Yong Woo Kim, Seong-Joon Kim, Young Suk Yu

Erschienen in: Graefe's Archive for Clinical and Experimental Ophthalmology | Ausgabe 12/2013

Einloggen, um Zugang zu erhalten

Abstract

Background

To investigate whether macular and peripapillary retinal nerve fiber layer (RNFL) structure differs among deprivational amblyopic eyes, fellow non-amblyopic eyes, and age-matched normal eyes, using spectral-domain optical coherence tomography (SD-OCT).

Methods

Macula and optic disc of 14 unilateral pseudophakic children with deprivational amblyopia, and 14 age-matched normal children (mean age, 7.45 ± 2.57 years) were scanned with CirrusTM HD-OCT. Macular, RNFL, and macular ganglion cell-inner plexiform layer (GCIPL) thicknesses were measured, and compared between the eyes after correction for axial length-related magnification errors.

Results

The average RNFL thickness tended to be greater in amblyopic eyes (99.64 ± 10.11 μm) than in fellow non-amblyopic eyes (97.28 ± 12.34 μm) and normal eyes (95.38 ± 9.74 μm), but did not show statistical significance (p = 0.429, p = 0.286 respectively). The nasal RNFL thickness was significantly greater in amblyopic eyes (75.84 ± 19.22 μm) than in fellow non-amblyopic eyes (63.42 ± 14.05 μm, p = 0.037) and normal eyes (62.38 ± 9.65 μm, p = 0.043). The central macular thickness in amblyopic eyes (237.05 ± 37.74 μm) showed no significant differences compared to those of fellow non-amblyopic eyes (226.67 ± 34.71 μm) and normal eyes (233.74 ± 27.11 μm) (p = 0.137, p = 0.792 respectively). The macular GCIPL thickness showed no significant difference among the amblyopic, fellow non-amblyopic, and normal eyes (average; 78.94 ± 6.35 μm vs 78.77 ± 6.43 μm vs 82.22 ± 5.00 μm respectively, p > 0.05).

Conclusions

SD-OCT analysis of deprivational amblyopic eyes with unilateral pediatric cataract demonstrated significant increase in nasal RNFL thickness compared to fellow non-amblyopic eyes and age-matched normal eyes. The macular and macular GCIPL thickness did not show any significant difference. Taken together, monocular pattern deprivation in early childhood may have changed the nasal peripapillary RNFL structure.
Literatur
1.
Zurück zum Zitat Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol 160:106–154PubMedCentralPubMed Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol 160:106–154PubMedCentralPubMed
2.
Zurück zum Zitat Wiesel TN, Hubel DH (1963) Effects of visual deprivation on morphology and physiology of cells in the cat's lateral geniculate body. J Neurophys 26:978–993 Wiesel TN, Hubel DH (1963) Effects of visual deprivation on morphology and physiology of cells in the cat's lateral geniculate body. J Neurophys 26:978–993
3.
Zurück zum Zitat Wiesel TN, Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophys 26:1003–1017 Wiesel TN, Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophys 26:1003–1017
4.
Zurück zum Zitat Wiesel TN, Hubel DH, Lam DM (1974) Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. Brain Res 79:273–279PubMedCrossRef Wiesel TN, Hubel DH, Lam DM (1974) Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. Brain Res 79:273–279PubMedCrossRef
5.
Zurück zum Zitat Horton JC, Hocking DR (1997) Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex. J Neurosc Off J Soc Neurosci 17:3684–3709 Horton JC, Hocking DR (1997) Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex. J Neurosc Off J Soc Neurosci 17:3684–3709
6.
Zurück zum Zitat von Noorden GK (1973) Histological studies of the visual system in monkeys with experimental amblyopia. Invest Ophthalmol Vis Sci 12:727–738 von Noorden GK (1973) Histological studies of the visual system in monkeys with experimental amblyopia. Invest Ophthalmol Vis Sci 12:727–738
7.
Zurück zum Zitat von Noorden GK, Crawford ML, Levacy RA (1983) The lateral geniculate nucleus in human anisometropic amblyopia. Invest Ophthalmol Vis Sci 24:788–790 von Noorden GK, Crawford ML, Levacy RA (1983) The lateral geniculate nucleus in human anisometropic amblyopia. Invest Ophthalmol Vis Sci 24:788–790
8.
Zurück zum Zitat von Noorden GK, Crawford ML (1992) The lateral geniculate nucleus in human strabismic amblyopia. Invest Ophthalmol Vis Sci 33:2729–2732 von Noorden GK, Crawford ML (1992) The lateral geniculate nucleus in human strabismic amblyopia. Invest Ophthalmol Vis Sci 33:2729–2732
9.
Zurück zum Zitat Chow KL, Riesen AH, Newell FW (1957) Degeneration of retinal ganglion cells in infant chimpanzees reared in darkness. J Comp Neurol 107:27–42PubMedCrossRef Chow KL, Riesen AH, Newell FW (1957) Degeneration of retinal ganglion cells in infant chimpanzees reared in darkness. J Comp Neurol 107:27–42PubMedCrossRef
10.
Zurück zum Zitat Rasch E, Swift H, Riesen AH, Chow KL (1961) Altered structure and composition of retinal cells in darkreared mammals. Exp Cell Res 25:348–363PubMedCrossRef Rasch E, Swift H, Riesen AH, Chow KL (1961) Altered structure and composition of retinal cells in darkreared mammals. Exp Cell Res 25:348–363PubMedCrossRef
11.
Zurück zum Zitat von Noorden GK, Middleditch PR (1975) Histology of the monkey lateral geniculate nucleus after unilateral lid closure and experimental strabismus: further observations. Invest Ophthalmol Vis Sci 14:674–683 von Noorden GK, Middleditch PR (1975) Histology of the monkey lateral geniculate nucleus after unilateral lid closure and experimental strabismus: further observations. Invest Ophthalmol Vis Sci 14:674–683
12.
Zurück zum Zitat Von Noorden GK, Crawford ML, Middleditch PR (1977) Effect of lid suture on retinal ganglion cells in Macaca mulatta. Brain Res 122:437–444CrossRef Von Noorden GK, Crawford ML, Middleditch PR (1977) Effect of lid suture on retinal ganglion cells in Macaca mulatta. Brain Res 122:437–444CrossRef
13.
Zurück zum Zitat Yen MY, Cheng CY, Wang AG (2004) Retinal nerve fiber layer thickness in unilateral amblyopia. Invest Ophthalmol Vis Sci 45:2224–2230PubMedCrossRef Yen MY, Cheng CY, Wang AG (2004) Retinal nerve fiber layer thickness in unilateral amblyopia. Invest Ophthalmol Vis Sci 45:2224–2230PubMedCrossRef
14.
Zurück zum Zitat Yoon SW, Park WH, Baek SH, Kong SM (2005) Thicknesses of macular retinal layer and peripapillary retinal nerve fiber layer in patients with hyperopic anisometropic amblyopia. Korean J Ophthalmol 19:62–67PubMedCrossRef Yoon SW, Park WH, Baek SH, Kong SM (2005) Thicknesses of macular retinal layer and peripapillary retinal nerve fiber layer in patients with hyperopic anisometropic amblyopia. Korean J Ophthalmol 19:62–67PubMedCrossRef
15.
Zurück zum Zitat Kee SY, Lee SY, Lee YC (2006) Thicknesses of the fovea and retinal nerve fiber layer in amblyopic and normal eyes in children. Korean J Ophthalmol 20:177–181PubMedCentralPubMedCrossRef Kee SY, Lee SY, Lee YC (2006) Thicknesses of the fovea and retinal nerve fiber layer in amblyopic and normal eyes in children. Korean J Ophthalmol 20:177–181PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat Huynh SC, Samarawickrama C, Wang XY, Rochtchina E, Wong TY, Gole GA, Rose KA, Mitchell P (2009) Macular and nerve fiber layer thickness in amblyopia: the Sydney Childhood Eye Study. Ophthalmology 116:1604–1609PubMedCrossRef Huynh SC, Samarawickrama C, Wang XY, Rochtchina E, Wong TY, Gole GA, Rose KA, Mitchell P (2009) Macular and nerve fiber layer thickness in amblyopia: the Sydney Childhood Eye Study. Ophthalmology 116:1604–1609PubMedCrossRef
18.
Zurück zum Zitat Repka MX, Kraker RT, Tamkins SM, Suh DW, Sala NA, Beck RW (2009) Retinal nerve fiber layer thickness in amblyopic eyes. Am J Ophthalmol 148:143–147PubMedCrossRef Repka MX, Kraker RT, Tamkins SM, Suh DW, Sala NA, Beck RW (2009) Retinal nerve fiber layer thickness in amblyopic eyes. Am J Ophthalmol 148:143–147PubMedCrossRef
19.
Zurück zum Zitat Dickmann A, Petroni S, Perrotta V, Parrilla R, Aliberti S, Salerni A, Savastano MC (2012) Measurement of retinal nerve fiber layer thickness, macular thickness, and foveal volume in amblyopic eyes using spectral-domain optical coherence tomography. J AAPOS 16:86–88PubMedCrossRef Dickmann A, Petroni S, Perrotta V, Parrilla R, Aliberti S, Salerni A, Savastano MC (2012) Measurement of retinal nerve fiber layer thickness, macular thickness, and foveal volume in amblyopic eyes using spectral-domain optical coherence tomography. J AAPOS 16:86–88PubMedCrossRef
20.
21.
Zurück zum Zitat Bruce A, Pacey IE, Bradbury JA, Scally AJ, Barrett BT (2013) Bilateral changes in foveal structure in individuals with amblyopia. Ophthalmology 120:395–403PubMedCrossRef Bruce A, Pacey IE, Bradbury JA, Scally AJ, Barrett BT (2013) Bilateral changes in foveal structure in individuals with amblyopia. Ophthalmology 120:395–403PubMedCrossRef
22.
Zurück zum Zitat Leguire LE, Rogers GL, Bremer DL (1990) Amblyopia: the normal eye is not normal. J Pediatr Ophthalmol Strabismus 27:32–38, discussion 39PubMed Leguire LE, Rogers GL, Bremer DL (1990) Amblyopia: the normal eye is not normal. J Pediatr Ophthalmol Strabismus 27:32–38, discussion 39PubMed
23.
Zurück zum Zitat Johnson DA (2006) The use of the scanning laser ophthalmoscope in the evaluation of amblyopia (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 104:414–436PubMedCentralPubMed Johnson DA (2006) The use of the scanning laser ophthalmoscope in the evaluation of amblyopia (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 104:414–436PubMedCentralPubMed
24.
Zurück zum Zitat Hooks BM, Chen C (2007) Critical periods in the visual system: changing views for a model of experience-dependent plasticity. Neuron 56:312–326PubMedCrossRef Hooks BM, Chen C (2007) Critical periods in the visual system: changing views for a model of experience-dependent plasticity. Neuron 56:312–326PubMedCrossRef
26.
Zurück zum Zitat Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ (2011) Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci 52:8323–8329PubMedCentralPubMedCrossRef Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ (2011) Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci 52:8323–8329PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat Littmann H (1982) Determination of the real size of an object on the fundus of the living eye. Klin Monatsbl Augenheilkd 180:286–289PubMedCrossRef Littmann H (1982) Determination of the real size of an object on the fundus of the living eye. Klin Monatsbl Augenheilkd 180:286–289PubMedCrossRef
28.
Zurück zum Zitat Bennett AG, Rudnicka AR, Edgar DF (1994) Improvements on Littmann's method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalrnol 232:361–367CrossRef Bennett AG, Rudnicka AR, Edgar DF (1994) Improvements on Littmann's method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalrnol 232:361–367CrossRef
29.
Zurück zum Zitat Leung CK, Mohamed S, Leung KS, Cheung CY, Chan SL, Cheng DK, Lee AK, Leung GY, Rao SK, Lam DS (2006) Retinal nerve fiber layer measurements in myopia: an optical coherence tomography study. Invest Ophthalmol Vis Sci 47:5171–5176PubMedCrossRef Leung CK, Mohamed S, Leung KS, Cheung CY, Chan SL, Cheng DK, Lee AK, Leung GY, Rao SK, Lam DS (2006) Retinal nerve fiber layer measurements in myopia: an optical coherence tomography study. Invest Ophthalmol Vis Sci 47:5171–5176PubMedCrossRef
30.
Zurück zum Zitat Kang SH, Hong SW, Im SK, Lee SH, Ahn MD (2010) Effect of myopia on the thickness of the retinal nerve fiber layer measured by Cirrus HD optical coherence tomography. Invest Ophthalmol Vis Sci 51:4075–4083PubMedCrossRef Kang SH, Hong SW, Im SK, Lee SH, Ahn MD (2010) Effect of myopia on the thickness of the retinal nerve fiber layer measured by Cirrus HD optical coherence tomography. Invest Ophthalmol Vis Sci 51:4075–4083PubMedCrossRef
31.
Zurück zum Zitat Altintas O, Yuksel N, Ozkan B, Caglar Y (2005) Thickness of the retinal nerve fiber layer, macular thickness, and macular volume in patients with strabismic amblyopia. J Pediatr Ophthalmol Strabismus 42:216–221PubMed Altintas O, Yuksel N, Ozkan B, Caglar Y (2005) Thickness of the retinal nerve fiber layer, macular thickness, and macular volume in patients with strabismic amblyopia. J Pediatr Ophthalmol Strabismus 42:216–221PubMed
32.
Zurück zum Zitat Dickmann A, Petroni S, Salerni A, Dell'Omo R, Balestrazzi E (2009) Unilateral amblyopia: an optical coherence tomography study. J AAPOS 13:148–150 Dickmann A, Petroni S, Salerni A, Dell'Omo R, Balestrazzi E (2009) Unilateral amblyopia: an optical coherence tomography study. J AAPOS 13:148–150
33.
Zurück zum Zitat Patel VS, Simon JW, Schultze RL (2010) Anisometropic amblyopia: axial length versus corneal curvature in children with severe refractive imbalance. J AAPOS 14:396–398PubMedCrossRef Patel VS, Simon JW, Schultze RL (2010) Anisometropic amblyopia: axial length versus corneal curvature in children with severe refractive imbalance. J AAPOS 14:396–398PubMedCrossRef
34.
Zurück zum Zitat Al-Haddad CE, Mollayess GM, Cherfan CG, Jaafar DF, Bashshur ZF (2011) Retinal nerve fibre layer and macular thickness in amblyopia as measured by spectral-domain optical coherence tomography. Br J Ophthalmol 95:1696–1699PubMedCrossRef Al-Haddad CE, Mollayess GM, Cherfan CG, Jaafar DF, Bashshur ZF (2011) Retinal nerve fibre layer and macular thickness in amblyopia as measured by spectral-domain optical coherence tomography. Br J Ophthalmol 95:1696–1699PubMedCrossRef
35.
Zurück zum Zitat Park KA, Park DY, Oh SY (2011) Analysis of spectral-domain optical coherence tomography measurements in amblyopia: a pilot study. Br J Ophthalmol 95:1700–1706PubMedCrossRef Park KA, Park DY, Oh SY (2011) Analysis of spectral-domain optical coherence tomography measurements in amblyopia: a pilot study. Br J Ophthalmol 95:1700–1706PubMedCrossRef
36.
Zurück zum Zitat Lempert P, Porter L (1998) Dysversion of the optic disc and axial length measurements in a presumed amblyopic population. J AAPOS 2:207–213PubMedCrossRef Lempert P, Porter L (1998) Dysversion of the optic disc and axial length measurements in a presumed amblyopic population. J AAPOS 2:207–213PubMedCrossRef
37.
Zurück zum Zitat Lempert P (2000) Optic nerve hypoplasia and small eyes in presumed amblyopia. J AAPOS 4:258–266PubMedCrossRef Lempert P (2000) Optic nerve hypoplasia and small eyes in presumed amblyopia. J AAPOS 4:258–266PubMedCrossRef
38.
Zurück zum Zitat Lempert P (2004) The axial length/disc area ratio in anisometropic hyperopic amblyopia: a hypothesis for decreased unilateral vision associated with hyperopic anisometropia. Ophthalmology 111:304–308PubMedCrossRef Lempert P (2004) The axial length/disc area ratio in anisometropic hyperopic amblyopia: a hypothesis for decreased unilateral vision associated with hyperopic anisometropia. Ophthalmology 111:304–308PubMedCrossRef
39.
Zurück zum Zitat Lempert P (2008) Retinal area and optic disc rim area in amblyopic, fellow, and normal hyperopic eyes: a hypothesis for decreased acuity in amblyopia. Ophthalmology 115:2259–2261PubMedCrossRef Lempert P (2008) Retinal area and optic disc rim area in amblyopic, fellow, and normal hyperopic eyes: a hypothesis for decreased acuity in amblyopia. Ophthalmology 115:2259–2261PubMedCrossRef
40.
Zurück zum Zitat Tsai CS, Ritch R, Shin DH, Wan JY, Chi T (1992) Age-related decline of disc rim area in visually normal subjects. Ophthalmology 99:29–35PubMedCrossRef Tsai CS, Ritch R, Shin DH, Wan JY, Chi T (1992) Age-related decline of disc rim area in visually normal subjects. Ophthalmology 99:29–35PubMedCrossRef
41.
Zurück zum Zitat Leung CK, Yu M, Weinreb RN, Ye C, Liu S, Lai G, Lam DS (2012) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a prospective analysis of age-related loss. Ophthalmology 119:731–737PubMedCrossRef Leung CK, Yu M, Weinreb RN, Ye C, Liu S, Lai G, Lam DS (2012) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a prospective analysis of age-related loss. Ophthalmology 119:731–737PubMedCrossRef
42.
Zurück zum Zitat Sherman SM (1973) Visual field defects in monocularly and binocularly deprived cats. Brain Res 49:24–45PubMed Sherman SM (1973) Visual field defects in monocularly and binocularly deprived cats. Brain Res 49:24–45PubMed
43.
Zurück zum Zitat Sparks DL, Mays LE, Gurski MR, Hickey TL (1986) Long- and short-term monocular deprivation in the rhesus monkey: effects on visual fields and optokinetic nystagmus. J Neurosci 6:1771–1780PubMed Sparks DL, Mays LE, Gurski MR, Hickey TL (1986) Long- and short-term monocular deprivation in the rhesus monkey: effects on visual fields and optokinetic nystagmus. J Neurosci 6:1771–1780PubMed
44.
Zurück zum Zitat Wilson JR, Lavallee KA, Joosse MV, Hendrickson AE, Boothe RG, Harwerth RS (1989) Visual fields of monocularly deprived macaque monkeys. Behav Brain Res 33:13–22PubMedCrossRef Wilson JR, Lavallee KA, Joosse MV, Hendrickson AE, Boothe RG, Harwerth RS (1989) Visual fields of monocularly deprived macaque monkeys. Behav Brain Res 33:13–22PubMedCrossRef
45.
Zurück zum Zitat Maurer D, Lewis TL, Brent HP (1983) Peripheral vision and optokinetic nystagmus in children with unilateral congenital cataract. Behav Brain Res 10:151–161PubMedCrossRef Maurer D, Lewis TL, Brent HP (1983) Peripheral vision and optokinetic nystagmus in children with unilateral congenital cataract. Behav Brain Res 10:151–161PubMedCrossRef
46.
Zurück zum Zitat Bowering ER, Maurer D, Lewis TL, Brent HP (1993) Sensitivity in the nasal and temporal hemifields in children treated for cataract. Invest Ophthalmol Vis Sci 34:3501–3509PubMed Bowering ER, Maurer D, Lewis TL, Brent HP (1993) Sensitivity in the nasal and temporal hemifields in children treated for cataract. Invest Ophthalmol Vis Sci 34:3501–3509PubMed
47.
Zurück zum Zitat Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA (2000) Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 107:1809–1815PubMedCrossRef Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA (2000) Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 107:1809–1815PubMedCrossRef
48.
Zurück zum Zitat Kanamori A, Naka M, Nagai-Kusuhara A, Yamada Y, Nakamura M, Negi A (2008) Regional relationship between retinal nerve fiber layer thickness and corresponding visual field sensitivity in glaucomatous eyes. Arch Ophthalmol 126:1500–1506PubMedCrossRef Kanamori A, Naka M, Nagai-Kusuhara A, Yamada Y, Nakamura M, Negi A (2008) Regional relationship between retinal nerve fiber layer thickness and corresponding visual field sensitivity in glaucomatous eyes. Arch Ophthalmol 126:1500–1506PubMedCrossRef
49.
Zurück zum Zitat Tugcu B, Araz-Ersan B, Kilic M, Erdogan ET, Yigit U, Karamursel S (2013) The morpho-functional evaluation of retina in amblyopia. Curr Eye Res 38(7):802–809PubMedCrossRef Tugcu B, Araz-Ersan B, Kilic M, Erdogan ET, Yigit U, Karamursel S (2013) The morpho-functional evaluation of retina in amblyopia. Curr Eye Res 38(7):802–809PubMedCrossRef
50.
Zurück zum Zitat Firat PG, Ozsoy E, Demirel S, Cumurcu T, Gunduz A (2013) Evaluation of peripapillary retinal nerve fiber layer, macula and ganglion cell thickness in amblyopia using spectral optical coherence tomography. Int J Ophthalmol 6:90–94PubMedCentralPubMed Firat PG, Ozsoy E, Demirel S, Cumurcu T, Gunduz A (2013) Evaluation of peripapillary retinal nerve fiber layer, macula and ganglion cell thickness in amblyopia using spectral optical coherence tomography. Int J Ophthalmol 6:90–94PubMedCentralPubMed
51.
Zurück zum Zitat Kiernan DF, Mieler WF, Hariprasad SM (2010) Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems. Am J Ophthalmol 149:18–31PubMedCrossRef Kiernan DF, Mieler WF, Hariprasad SM (2010) Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems. Am J Ophthalmol 149:18–31PubMedCrossRef
Metadaten
Titel
Spectral-domain optical coherence tomography analysis in deprivational amblyopia: a pilot study with unilateral pediatric cataract patients
verfasst von
Yong Woo Kim
Seong-Joon Kim
Young Suk Yu
Publikationsdatum
01.12.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Graefe's Archive for Clinical and Experimental Ophthalmology / Ausgabe 12/2013
Print ISSN: 0721-832X
Elektronische ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-013-2494-1

Weitere Artikel der Ausgabe 12/2013

Graefe's Archive for Clinical and Experimental Ophthalmology 12/2013 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.