Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 2/2018

01.04.2018 | Research Article

Spectroscopic sampling of the left side of long-TE spin echoes: a free lunch?

verfasst von: Robert V. Mulkern, Mukund Balasubramanian

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Objective

Use of spectroscopically-acquired spin echoes typically involves Fourier transformation of the right side of the echo while largely neglecting the left side. For sufficiently long echo times, the left side may have enough spectral resolution to offer some utility. Since the acquisition of this side is “free”, we deemed it worthy of attention and investigated the spectral properties and information content of this data.

Materials and methods

Theoretical expressions for left- and right-side spectra were derived assuming Lorentzian frequency distributions. For left-side spectra, three regimes were identified based upon the relative magnitudes of reversible and irreversible transverse relaxation rates, R 2′ and R 2, respectively. Point-resolved spectroscopy (PRESS) data from muscle, fat deposit and bone marrow were acquired at 1.5 T to test aspects of the theoretical expressions.

Results

For muscle water or methylene marrow resonances, left-side signals were substantially or moderately larger than right-side signals but were similar in magnitude for muscle choline and creatine resonances. Left- versus right-side spectral-peak amplitude ratios depend sensitively on the relative values of R 2 and R 2′ , which can be estimated given this ratio and a right-side linewidth measurement.

Conclusion

Left-side spectra can be used to augment signal-to-noise and to estimate spectral R 2 and R 2′ values under some circumstances.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Mulkern RV, Balasubramanian M, Orbach DB, Mitsouras D, Haker SJ (2013) Incorporating reversible and irreversible transverse relaxation effects into steady state free precession (SSFP) signal intensity expressions for fMRI considerations. Magn Reson Imaging 31(3):346–352CrossRefPubMed Mulkern RV, Balasubramanian M, Orbach DB, Mitsouras D, Haker SJ (2013) Incorporating reversible and irreversible transverse relaxation effects into steady state free precession (SSFP) signal intensity expressions for fMRI considerations. Magn Reson Imaging 31(3):346–352CrossRefPubMed
2.
Zurück zum Zitat Mulkern RV, Balasubramanian M, Mitsouras D (2015) On the Lorentzian versus Gaussian character of time domain spin-echo signals from brain as sampled via gradient echoes: implications for quantitative transverse relaxation studies. Magn Reson Med 74(1):51–62CrossRef Mulkern RV, Balasubramanian M, Mitsouras D (2015) On the Lorentzian versus Gaussian character of time domain spin-echo signals from brain as sampled via gradient echoes: implications for quantitative transverse relaxation studies. Magn Reson Med 74(1):51–62CrossRef
3.
Zurück zum Zitat Balasubramanian M, Jarrett DY, Mulkern RV (2016) Bone marrow segmentation based on a combined consideration of transverse relaxation processes and Dixon oscillations. NMR Biomed 29(5):553–562CrossRefPubMed Balasubramanian M, Jarrett DY, Mulkern RV (2016) Bone marrow segmentation based on a combined consideration of transverse relaxation processes and Dixon oscillations. NMR Biomed 29(5):553–562CrossRefPubMed
4.
Zurück zum Zitat Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann NY Acad Sci 508(1):333–348CrossRefPubMed Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann NY Acad Sci 508(1):333–348CrossRefPubMed
5.
Zurück zum Zitat Jackson JD (1975) Classical electrodynamics, 2nd edn. Wiley, New York Jackson JD (1975) Classical electrodynamics, 2nd edn. Wiley, New York
6.
Zurück zum Zitat Chao H, Bowers JL, Holtzman D, Mulkern RV (1997) Multi-echo 31P spectroscopic imaging of ATP: a scan time reduction strategy. J Magn Reson Imaging 7(2):425–433CrossRefPubMed Chao H, Bowers JL, Holtzman D, Mulkern RV (1997) Multi-echo 31P spectroscopic imaging of ATP: a scan time reduction strategy. J Magn Reson Imaging 7(2):425–433CrossRefPubMed
7.
Zurück zum Zitat Mulkern R, Bowers J (1994) Density matrix calculations of AB spectra from multipulse sequences: quantum mechanics meets in vivo spectroscopy. Concepts Magn Reson 6(1):1–23CrossRef Mulkern R, Bowers J (1994) Density matrix calculations of AB spectra from multipulse sequences: quantum mechanics meets in vivo spectroscopy. Concepts Magn Reson 6(1):1–23CrossRef
8.
Zurück zum Zitat Duyn JH, Gillen J, Sobering G, van Zijl PC, Moonen CT (1993) Multisection proton MR spectroscopic imaging of the brain. Radiology 188(1):277–282CrossRefPubMed Duyn JH, Gillen J, Sobering G, van Zijl PC, Moonen CT (1993) Multisection proton MR spectroscopic imaging of the brain. Radiology 188(1):277–282CrossRefPubMed
9.
Zurück zum Zitat Balmaceda C, Critchell D, Mao X, Cheung K, Pannullo S, DeLaPaz RL, Shungu DC (2006) Multisection 1H magnetic resonance spectroscopic imaging assessment of glioma response to chemotherapy. J Neurooncol 76(2):185–191CrossRefPubMed Balmaceda C, Critchell D, Mao X, Cheung K, Pannullo S, DeLaPaz RL, Shungu DC (2006) Multisection 1H magnetic resonance spectroscopic imaging assessment of glioma response to chemotherapy. J Neurooncol 76(2):185–191CrossRefPubMed
10.
Zurück zum Zitat Duyn JH, Moonen CT (1993) Fast proton spectroscopic imaging of human brain using multiple spin-echoes. Magn Reson Med 30(4):409–414CrossRefPubMed Duyn JH, Moonen CT (1993) Fast proton spectroscopic imaging of human brain using multiple spin-echoes. Magn Reson Med 30(4):409–414CrossRefPubMed
11.
Zurück zum Zitat Luyten PR, Marien AJ, Heindel W, van Gerwen PH, Herholz K, den Hollander JA, Friedmann G, Heiss WD (1990) Metabolic imaging of patients with intracranial tumors: H-1 MR spectroscopic imaging and PET. Radiology 176(3):791–799CrossRefPubMed Luyten PR, Marien AJ, Heindel W, van Gerwen PH, Herholz K, den Hollander JA, Friedmann G, Heiss WD (1990) Metabolic imaging of patients with intracranial tumors: H-1 MR spectroscopic imaging and PET. Radiology 176(3):791–799CrossRefPubMed
12.
Zurück zum Zitat Dreher W, Leibfritz D (1995) Parametric multiecho proton spectroscopic imaging: application to the rat brain in vivo. Magn Reson Imaging 13(5):753–761CrossRefPubMed Dreher W, Leibfritz D (1995) Parametric multiecho proton spectroscopic imaging: application to the rat brain in vivo. Magn Reson Imaging 13(5):753–761CrossRefPubMed
13.
Zurück zum Zitat Mulkern RV, Chao H, Bowers JL, Holtzman D (1997) Multiecho approaches to spectroscopic imaging of the brain. Ann NY Acad Sci 820:97–122CrossRefPubMed Mulkern RV, Chao H, Bowers JL, Holtzman D (1997) Multiecho approaches to spectroscopic imaging of the brain. Ann NY Acad Sci 820:97–122CrossRefPubMed
14.
Zurück zum Zitat Mulkern RV, Melki PS, Lilly HS, Hoffer FA (1991) 1D spectroscopic imaging with RF echo planar (SIRFEN) methods. Magn Reson Imaging 9(6):909–916CrossRefPubMed Mulkern RV, Melki PS, Lilly HS, Hoffer FA (1991) 1D spectroscopic imaging with RF echo planar (SIRFEN) methods. Magn Reson Imaging 9(6):909–916CrossRefPubMed
15.
Zurück zum Zitat Schick F, Eismann B, Jung WI, Bongers H, Bunse M, Lutz O (1993) Comparison of localized proton NMR signals of skeletal muscle and fat tissue in vivo: two lipid compartments in muscle tissue. Magn Reson Med 29(2):158–167CrossRefPubMed Schick F, Eismann B, Jung WI, Bongers H, Bunse M, Lutz O (1993) Comparison of localized proton NMR signals of skeletal muscle and fat tissue in vivo: two lipid compartments in muscle tissue. Magn Reson Med 29(2):158–167CrossRefPubMed
16.
Zurück zum Zitat Szczepaniak LS, Babcock EE, Schick F, Dobbins RL, Garg A, Burns DK, McGarry JD, Stein DT (1999) Measurement of intracellular triglyceride stores by 1H spectroscopy: validation in vivo. Am J Physiol 276(5):E977–E989PubMed Szczepaniak LS, Babcock EE, Schick F, Dobbins RL, Garg A, Burns DK, McGarry JD, Stein DT (1999) Measurement of intracellular triglyceride stores by 1H spectroscopy: validation in vivo. Am J Physiol 276(5):E977–E989PubMed
17.
Zurück zum Zitat Ma J, Wehrli FW (1996) Method for image-based measurement of the reversible and irreversible contribution to the transverse-relaxation rate. J Magn Reson B 111(1):61–69CrossRefPubMed Ma J, Wehrli FW (1996) Method for image-based measurement of the reversible and irreversible contribution to the transverse-relaxation rate. J Magn Reson B 111(1):61–69CrossRefPubMed
18.
Zurück zum Zitat Yablonskiy DA, Haacke EM (1997) An MRI method for measuring T2 in the presence of static and RF magnetic field inhomogeneities. Magn Reson Med 37(6):872–876CrossRefPubMed Yablonskiy DA, Haacke EM (1997) An MRI method for measuring T2 in the presence of static and RF magnetic field inhomogeneities. Magn Reson Med 37(6):872–876CrossRefPubMed
19.
Zurück zum Zitat Lindeboom L, Nabuurs CI, Hoeks J, Brouwers B, Phielix E, Kooi ME, Hesselink MK, Wildberger JE, Stevens RD, Koves T, Muoio DM, Schrauwen P, Schrauwen-Hinderling VB (2014) Long-echo time MR spectroscopy for skeletal muscle acetylcarnitine detection. J Clin Invest 124(11):4915–4925CrossRefPubMedPubMedCentral Lindeboom L, Nabuurs CI, Hoeks J, Brouwers B, Phielix E, Kooi ME, Hesselink MK, Wildberger JE, Stevens RD, Koves T, Muoio DM, Schrauwen P, Schrauwen-Hinderling VB (2014) Long-echo time MR spectroscopy for skeletal muscle acetylcarnitine detection. J Clin Invest 124(11):4915–4925CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Ren J, Sherry AD, Malloy CR (2010) 1H MRS of intramyocellular lipids in soleus muscle at 7 T: spectral simplification by using long echo times without water suppression. Magn Reson Med 64(3):662–671CrossRefPubMedPubMedCentral Ren J, Sherry AD, Malloy CR (2010) 1H MRS of intramyocellular lipids in soleus muscle at 7 T: spectral simplification by using long echo times without water suppression. Magn Reson Med 64(3):662–671CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Skoch A, Jiru F, Dezortova M, Krusinova E, Kratochvilova S, Pelikanova T, Grodd W, Hajek M (2006) Intramyocellular lipid quantification from 1H long echo time spectra at 1.5 and 3 T by means of the LCModel technique. J Magn Reson Imaging 23(5):728–735CrossRefPubMed Skoch A, Jiru F, Dezortova M, Krusinova E, Kratochvilova S, Pelikanova T, Grodd W, Hajek M (2006) Intramyocellular lipid quantification from 1H long echo time spectra at 1.5 and 3 T by means of the LCModel technique. J Magn Reson Imaging 23(5):728–735CrossRefPubMed
22.
Zurück zum Zitat Mulkern R, Haker S, Mamata H, Lee E, Mitsouras D, Oshio K, Balasubramanian M, Hatabu H (2014) Lung parenchymal signal intensity in MRI: a technical review with educational aspirations regarding reversible versus irreversible transverse relaxation effects in common pulse sequences. Concepts Magn Reson Part A Bridg Educ Res 43A(2):29–53CrossRefPubMedPubMedCentral Mulkern R, Haker S, Mamata H, Lee E, Mitsouras D, Oshio K, Balasubramanian M, Hatabu H (2014) Lung parenchymal signal intensity in MRI: a technical review with educational aspirations regarding reversible versus irreversible transverse relaxation effects in common pulse sequences. Concepts Magn Reson Part A Bridg Educ Res 43A(2):29–53CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Zapp J, Domsch S, Weingartner S, Schad LR (2017) Gaussian signal relaxation around spin echoes: implications for precise reversible transverse relaxation quantification of pulmonary tissue at 1.5 and 3 Tesla. Magn Reson Med 77(5):1938–1945CrossRefPubMed Zapp J, Domsch S, Weingartner S, Schad LR (2017) Gaussian signal relaxation around spin echoes: implications for precise reversible transverse relaxation quantification of pulmonary tissue at 1.5 and 3 Tesla. Magn Reson Med 77(5):1938–1945CrossRefPubMed
24.
Zurück zum Zitat Lundbom J, Heikkinen S, Fielding B, Hakkarainen A, Taskinen MR, Lundbom N (2009) PRESS echo time behavior of triglyceride resonances at 1.5 T: detecting omega-3 fatty acids in adipose tissue in vivo. J Magn Reson 201(1):39–47CrossRefPubMed Lundbom J, Heikkinen S, Fielding B, Hakkarainen A, Taskinen MR, Lundbom N (2009) PRESS echo time behavior of triglyceride resonances at 1.5 T: detecting omega-3 fatty acids in adipose tissue in vivo. J Magn Reson 201(1):39–47CrossRefPubMed
25.
Zurück zum Zitat Schick F, Nagele T, Klose U, Lutz O (1995) Lactate quantification by means of PRESS spectroscopy—influence of refocusing pulses and timing scheme. Magn Reson Imaging 13(2):309–319CrossRefPubMed Schick F, Nagele T, Klose U, Lutz O (1995) Lactate quantification by means of PRESS spectroscopy—influence of refocusing pulses and timing scheme. Magn Reson Imaging 13(2):309–319CrossRefPubMed
27.
Zurück zum Zitat Bax A, Mehlkopf AF, Smidt J (1979) Absorption spectra from phase-modulated spin echoes. J Magn Reson (1969) 35(3):373–377CrossRef Bax A, Mehlkopf AF, Smidt J (1979) Absorption spectra from phase-modulated spin echoes. J Magn Reson (1969) 35(3):373–377CrossRef
28.
Zurück zum Zitat An L, Li S, Shen J (2017) Simultaneous determination of metabolite concentrations, T1 and T2 relaxation times. Magn Reson Med (Early View). doi:10.1002/mrm.26612 An L, Li S, Shen J (2017) Simultaneous determination of metabolite concentrations, T1 and T2 relaxation times. Magn Reson Med (Early View). doi:10.​1002/​mrm.​26612
29.
Zurück zum Zitat Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1989) Localized proton NMR spectroscopy in different regions of the human brain in vivo. Relaxation times and concentrations of cerebral metabolites. Magn Reson Med 11(1):47–63CrossRefPubMed Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1989) Localized proton NMR spectroscopy in different regions of the human brain in vivo. Relaxation times and concentrations of cerebral metabolites. Magn Reson Med 11(1):47–63CrossRefPubMed
30.
Zurück zum Zitat Ababneh Z, Beloeil H, Berde CB, Gambarota G, Maier SE, Mulkern RV (2005) Biexponential parameterization of diffusion and T2 relaxation decay curves in a rat muscle edema model: decay curve components and water compartments. Magn Reson Med 54(3):524–531CrossRefPubMed Ababneh Z, Beloeil H, Berde CB, Gambarota G, Maier SE, Mulkern RV (2005) Biexponential parameterization of diffusion and T2 relaxation decay curves in a rat muscle edema model: decay curve components and water compartments. Magn Reson Med 54(3):524–531CrossRefPubMed
31.
Zurück zum Zitat de Beer R, van den Boogaart A, van Ormondt D, Pijnappel WW, den Hollander JA, Marien AJ, Luyten PR (1992) Application of time-domain fitting in the quantification of in vivo 1H spectroscopic imaging data sets. NMR Biomed 5(4):171–178CrossRefPubMed de Beer R, van den Boogaart A, van Ormondt D, Pijnappel WW, den Hollander JA, Marien AJ, Luyten PR (1992) Application of time-domain fitting in the quantification of in vivo 1H spectroscopic imaging data sets. NMR Biomed 5(4):171–178CrossRefPubMed
32.
Zurück zum Zitat Butkov E (1968) Mathematical physics. Addison-Wesley, Reading, MA Butkov E (1968) Mathematical physics. Addison-Wesley, Reading, MA
33.
Zurück zum Zitat Marsden JE (1973) Basic complex analysis. WH Freeman, San Francisco Marsden JE (1973) Basic complex analysis. WH Freeman, San Francisco
Metadaten
Titel
Spectroscopic sampling of the left side of long-TE spin echoes: a free lunch?
verfasst von
Robert V. Mulkern
Mukund Balasubramanian
Publikationsdatum
01.04.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 2/2018
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-017-0647-7

Weitere Artikel der Ausgabe 2/2018

Magnetic Resonance Materials in Physics, Biology and Medicine 2/2018 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.