Skip to main content
Erschienen in: Child's Nervous System 2/2021

23.07.2020 | Original Article

Spectrum of neuroimaging findings post-proton beam therapy in a large pediatric cohort

Erschienen in: Child's Nervous System | Ausgabe 2/2021

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Proton beam therapy (PBT) is now well established for the treatment of certain pediatric brain tumors. The intrinsic properties of PBT are known to reduce long-term negative effects of photon radiotherapy (PRT). To better understand the intracranial effects of PBT, we analyzed the longitudinal imaging changes in a cohort of children with brain tumors treated by PBT with clinical and radiotherapy dose correlations.

Materials and methods

Retrospective imaging review of 46 patients from our hospital with brain tumors treated by PBT. The imaging findings were correlated with clinical and dose parameters.

Results

Imaging changes were assessed by reviewing serial magnetic resonance imaging (MRI) scans following PBT over a follow-up period ranging from 1 month to 7 years. Imaging changes were observed in 23 patients undergoing PBT and categorized as pseudoprogression (10 patients, 43%), white matter changes (6 patients, 23%), parenchymal atrophy (6 patients, 23%), and cerebral large vessel arteriopathy (5 patients, 25%). Three patients had more than one type of imaging change. Clinical symptoms attributable to PBT were observed in 13 (28%) patients.

Conclusion

In accordance with published literature, we found evidence of varied intracranial imaging changes in pediatric brain tumor patients treated with PBT. There was a higher incidence (10%) of large vessel cerebral arteriopathy in our cohort than previously described in the literature. Twenty-eight percent of patients had clinical sequelae as a result of these changes, particularly in the large vessel arteriopathy subgroup, arguing the need for angiographic and perfusion surveillance to pre-empt any morbidities and offer potential neuro-protection.
Literatur
1.
Zurück zum Zitat Halperin EC, Brady LW, Perez CA, Wazer DE (2013) Perez & Brady’s principles and practice of radiation oncology. Lippincott Williams & Wilkins Halperin EC, Brady LW, Perez CA, Wazer DE (2013) Perez & Brady’s principles and practice of radiation oncology. Lippincott Williams & Wilkins
2.
Zurück zum Zitat Gondi V, Yock TI, Mehta MP (2016) Proton therapy for paediatric CNS tumours — improving treatment-related outcomes. Nature Reviews Neurology 12:334–345CrossRef Gondi V, Yock TI, Mehta MP (2016) Proton therapy for paediatric CNS tumours — improving treatment-related outcomes. Nature Reviews Neurology 12:334–345CrossRef
3.
Zurück zum Zitat Sands SA (2016) Proton beam radiation therapy: the future may prove brighter for pediatric patients with brain tumors. J. Clin. Oncol. 34:1024–1026CrossRef Sands SA (2016) Proton beam radiation therapy: the future may prove brighter for pediatric patients with brain tumors. J. Clin. Oncol. 34:1024–1026CrossRef
4.
Zurück zum Zitat Parvez K, Parvez A, Zadeh G (2014) The diagnosis and treatment of pseudoprogression, radiation necrosis and brain tumor recurrence. Int J Mol Sci 15:11832–11846CrossRef Parvez K, Parvez A, Zadeh G (2014) The diagnosis and treatment of pseudoprogression, radiation necrosis and brain tumor recurrence. Int J Mol Sci 15:11832–11846CrossRef
5.
Zurück zum Zitat Wang S, Martinez-Lage M, Sakai Y et al (2016) Differentiating tumor progression from pseudoprogression in patients with glioblastomas using diffusion tensor imaging and dynamic susceptibility contrast MRI. AJNR Am J Neuroradiol 37:28–36CrossRef Wang S, Martinez-Lage M, Sakai Y et al (2016) Differentiating tumor progression from pseudoprogression in patients with glioblastomas using diffusion tensor imaging and dynamic susceptibility contrast MRI. AJNR Am J Neuroradiol 37:28–36CrossRef
6.
Zurück zum Zitat Hygino da Cruz LC Jr, Rodriguez I, Domingues RC et al (2011) Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol 32:1978–1985CrossRef Hygino da Cruz LC Jr, Rodriguez I, Domingues RC et al (2011) Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol 32:1978–1985CrossRef
7.
Zurück zum Zitat Brandsma D, van den Bent MJ (2009) Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 22:633–638CrossRef Brandsma D, van den Bent MJ (2009) Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 22:633–638CrossRef
8.
Zurück zum Zitat Thust S, van den Bent MJ, Smits M (2018) Pseudoprogression of brain tumors. J. Magn. Reson. Imaging 48:571–589CrossRef Thust S, van den Bent MJ, Smits M (2018) Pseudoprogression of brain tumors. J. Magn. Reson. Imaging 48:571–589CrossRef
9.
Zurück zum Zitat Zivadinov R, Bergsland N, Korn JR et al (2017) Feasibility of brain atrophy measurement in clinical routine without prior standardization of the MRI protocol: results from MS-MRIUS, a longitudinal observational, multicenter real-world outcome study in patients with relapsing-remitting MS. AJNR Am J Neuroradiology 39:289–295CrossRef Zivadinov R, Bergsland N, Korn JR et al (2017) Feasibility of brain atrophy measurement in clinical routine without prior standardization of the MRI protocol: results from MS-MRIUS, a longitudinal observational, multicenter real-world outcome study in patients with relapsing-remitting MS. AJNR Am J Neuroradiology 39:289–295CrossRef
10.
Zurück zum Zitat McGovern SL, Okcu MF, Munsell MF et al (2014) Outcomes and acute toxicities of proton therapy for pediatric atypical teratoid/rhabdoid tumor of the central nervous system. Int J Radiat Oncol Biol Phys 90:1143–1152CrossRef McGovern SL, Okcu MF, Munsell MF et al (2014) Outcomes and acute toxicities of proton therapy for pediatric atypical teratoid/rhabdoid tumor of the central nervous system. Int J Radiat Oncol Biol Phys 90:1143–1152CrossRef
11.
Zurück zum Zitat Uh J, Merchant TE, Li Y et al (2015) Effects of surgery and proton therapy on cerebral white matter of craniopharyngioma patients. International Journal of Radiation Oncology Biology Physics 93:64–71CrossRef Uh J, Merchant TE, Li Y et al (2015) Effects of surgery and proton therapy on cerebral white matter of craniopharyngioma patients. International Journal of Radiation Oncology Biology Physics 93:64–71CrossRef
12.
Zurück zum Zitat Lundkvist J, Ekman M, Ericsson SR et al (2005) Proton therapy of cancer: potential clinical advantages and cost-effectiveness. Acta Oncologica 44:850–861CrossRef Lundkvist J, Ekman M, Ericsson SR et al (2005) Proton therapy of cancer: potential clinical advantages and cost-effectiveness. Acta Oncologica 44:850–861CrossRef
13.
Zurück zum Zitat Sabin ND, Merchant TE, Harreld JH et al (2013) Imaging changes in very young children with brain tumors treated with proton therapy and chemotherapy. American Journal of Neuroradiology 34:446–450CrossRef Sabin ND, Merchant TE, Harreld JH et al (2013) Imaging changes in very young children with brain tumors treated with proton therapy and chemotherapy. American Journal of Neuroradiology 34:446–450CrossRef
14.
Zurück zum Zitat Gunther JR, Sato M, Chintagumpala M et al (2015) Imaging changes in pediatric intracranial ependymoma patients treated with proton beam radiation therapy compared to intensity modulated radiation therapy. International Journal of Radiation Oncology Biology Physics 93:54–63CrossRef Gunther JR, Sato M, Chintagumpala M et al (2015) Imaging changes in pediatric intracranial ependymoma patients treated with proton beam radiation therapy compared to intensity modulated radiation therapy. International Journal of Radiation Oncology Biology Physics 93:54–63CrossRef
15.
Zurück zum Zitat Giantsoudi D, Sethi RV, Yeap BY et al (2016) Incidence of CNS injury for a cohort of 111 patients treated with proton therapy for medulloblastoma: LET and RBE associations for areas of injury. International Journal of Radiation Oncolog Biology Physics 95:287–296CrossRef Giantsoudi D, Sethi RV, Yeap BY et al (2016) Incidence of CNS injury for a cohort of 111 patients treated with proton therapy for medulloblastoma: LET and RBE associations for areas of injury. International Journal of Radiation Oncolog Biology Physics 95:287–296CrossRef
16.
Zurück zum Zitat Pulsifer MB, Duncanson H, Grieco J et al (2018) Cognitive and adaptive outcomes after proton radiation for pediatric patients with brain tumors. Int J Radiat Oncol Biol Phys 102:391–398CrossRef Pulsifer MB, Duncanson H, Grieco J et al (2018) Cognitive and adaptive outcomes after proton radiation for pediatric patients with brain tumors. Int J Radiat Oncol Biol Phys 102:391–398CrossRef
17.
Zurück zum Zitat Dynlacht JR (2011) Human radiation injury, edited by Dennis C. Shrieve and Jay S. Loeffler. Radiation Research 176:273–274CrossRef Dynlacht JR (2011) Human radiation injury, edited by Dennis C. Shrieve and Jay S. Loeffler. Radiation Research 176:273–274CrossRef
18.
Zurück zum Zitat Nordstrom M, Felton E, Sear K et al (2018) Large vessel arteriopathy after cranial radiation therapy in pediatric brain tumor survivors. Journal of Child Neurology 33:359–366CrossRef Nordstrom M, Felton E, Sear K et al (2018) Large vessel arteriopathy after cranial radiation therapy in pediatric brain tumor survivors. Journal of Child Neurology 33:359–366CrossRef
19.
Zurück zum Zitat Conroy R, Gomes L, Owen C et al (2015) Clinical equipoise: protons and the child with craniopharyngioma. Journal of Medical Imaging and Radiation Oncology 59:379–385CrossRef Conroy R, Gomes L, Owen C et al (2015) Clinical equipoise: protons and the child with craniopharyngioma. Journal of Medical Imaging and Radiation Oncology 59:379–385CrossRef
20.
Zurück zum Zitat Desai SS, Paulino AC, Mai WY, Teh BS (2006) Radiation-induced moyamoya syndrome. International Journal of Radiation Oncology Biology Physics 65:1222–1227CrossRef Desai SS, Paulino AC, Mai WY, Teh BS (2006) Radiation-induced moyamoya syndrome. International Journal of Radiation Oncology Biology Physics 65:1222–1227CrossRef
21.
Zurück zum Zitat Redjal N, Agarwalla PK, Dietrich J et al (2015) Remote acute demyelination after focal proton radiation therapy for optic nerve meningioma. J Clin Neurosci 22:1367–1369CrossRef Redjal N, Agarwalla PK, Dietrich J et al (2015) Remote acute demyelination after focal proton radiation therapy for optic nerve meningioma. J Clin Neurosci 22:1367–1369CrossRef
22.
Zurück zum Zitat Patay Z, Merchant TE, Nguyen R et al (2017) Treatment-related non-contiguous radiologic changes in children with diffuse intrinsic pontine glioma treated with expanded irradiation fields and antiangiogenic therapy. Int J Radiat Oncol Biol Phys 99:1295–1305CrossRef Patay Z, Merchant TE, Nguyen R et al (2017) Treatment-related non-contiguous radiologic changes in children with diffuse intrinsic pontine glioma treated with expanded irradiation fields and antiangiogenic therapy. Int J Radiat Oncol Biol Phys 99:1295–1305CrossRef
23.
Zurück zum Zitat Meyzer C, Dhermain F, Ducreux D et al (2010) A case report of pseudoprogression followed by complete remission after proton-beam irradiation for a low-grade glioma in a teenager: the value of dynamic contrast-enhanced MRI. Radiation Oncology 5:9CrossRef Meyzer C, Dhermain F, Ducreux D et al (2010) A case report of pseudoprogression followed by complete remission after proton-beam irradiation for a low-grade glioma in a teenager: the value of dynamic contrast-enhanced MRI. Radiation Oncology 5:9CrossRef
24.
Zurück zum Zitat Kralik SF, Ho CY, Finke W et al (2015) Radiation necrosis in pediatric patients with brain tumors treated with proton radiotherapy. AJNR Am J Neuroradiol 36:1572–1578CrossRef Kralik SF, Ho CY, Finke W et al (2015) Radiation necrosis in pediatric patients with brain tumors treated with proton radiotherapy. AJNR Am J Neuroradiol 36:1572–1578CrossRef
25.
Zurück zum Zitat Kralik SF, Watson GA, Shih C-S et al (2017) Radiation-induced large vessel cerebral vasculopathy in pediatric patients with brain tumors treated with proton radiation therapy. Int J Radiat Oncol Biol Phys 99:817–824CrossRef Kralik SF, Watson GA, Shih C-S et al (2017) Radiation-induced large vessel cerebral vasculopathy in pediatric patients with brain tumors treated with proton radiation therapy. Int J Radiat Oncol Biol Phys 99:817–824CrossRef
Metadaten
Titel
Spectrum of neuroimaging findings post-proton beam therapy in a large pediatric cohort
Publikationsdatum
23.07.2020
Erschienen in
Child's Nervous System / Ausgabe 2/2021
Print ISSN: 0256-7040
Elektronische ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-020-04819-9

Weitere Artikel der Ausgabe 2/2021

Child's Nervous System 2/2021 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

CME: 2 Punkte

Prof. Dr. med. Gregor Antoniadis Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

CME: 2 Punkte

Dr. med. Benjamin Meyknecht, PD Dr. med. Oliver Pieske Das Webinar S2e-Leitlinie „Distale Radiusfraktur“ beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

CME: 2 Punkte

Dr. med. Mihailo Andric
Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.