Skip to main content
Erschienen in:

01.06.2019 | Review

Spinal Cord Stimulation for Pain Treatment After Spinal Cord Injury

verfasst von: Qian Huang, Wanru Duan, Eellan Sivanesan, Shuguang Liu, Fei Yang, Zhiyong Chen, Neil C. Ford, Xueming Chen, Yun Guan

Erschienen in: Neuroscience Bulletin | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

In addition to restoration of bladder, bowel, and motor functions, alleviating the accompanying debilitating pain is equally important for improving the quality of life of patients with spinal cord injury (SCI). Currently, however, the treatment of chronic pain after SCI remains a largely unmet need. Electrical spinal cord stimulation (SCS) has been used to manage a variety of chronic pain conditions that are refractory to pharmacotherapy. Yet, its efficacy, benefit profiles, and mechanisms of action in SCI pain remain elusive, due to limited research, methodological weaknesses in previous clinical studies, and a lack of mechanistic exploration of SCS for SCI pain control. We aim to review recent studies and outline the therapeutic potential of different SCS paradigms for traumatic SCI pain. We begin with an overview of its manifestations, classification, potential underlying etiology, and current challenges for its treatment. The clinical evidence for using SCS in SCI pain is then reviewed. Finally, future perspectives of pre-clinical research and clinical study of SCS for SCI pain treatment are discussed.
Literatur
1.
Zurück zum Zitat Widerstrom-Noga E. Neuropathic pain and spinal cord injury: phenotypes and pharmacological management. Drugs 2017, 77: 967–984.CrossRefPubMed Widerstrom-Noga E. Neuropathic pain and spinal cord injury: phenotypes and pharmacological management. Drugs 2017, 77: 967–984.CrossRefPubMed
2.
Zurück zum Zitat Widerstrom-Noga E, Felix ER, Adcock JP, Escalona M, Tibbett J. Multidimensional neuropathic pain phenotypes after spinal cord injury. J Neurotrauma 2016, 33: 482–492.CrossRefPubMed Widerstrom-Noga E, Felix ER, Adcock JP, Escalona M, Tibbett J. Multidimensional neuropathic pain phenotypes after spinal cord injury. J Neurotrauma 2016, 33: 482–492.CrossRefPubMed
3.
5.
Zurück zum Zitat Chakravarthy K, Richter H, Christo PJ, Williams K, Guan Y. Spinal cord stimulation for treating chronic pain: reviewing preclinical and clinical data on paresthesia-free high-frequency therapy. Neuromodulation 2018, 21: 10–18.CrossRefPubMed Chakravarthy K, Richter H, Christo PJ, Williams K, Guan Y. Spinal cord stimulation for treating chronic pain: reviewing preclinical and clinical data on paresthesia-free high-frequency therapy. Neuromodulation 2018, 21: 10–18.CrossRefPubMed
6.
Zurück zum Zitat Geurts JW, Joosten EA, van Kleef KM. Current status and future perspectives of spinal cord stimulation in treatment of chronic pain. Pain 2017, 158: 771–774.CrossRefPubMed Geurts JW, Joosten EA, van Kleef KM. Current status and future perspectives of spinal cord stimulation in treatment of chronic pain. Pain 2017, 158: 771–774.CrossRefPubMed
7.
Zurück zum Zitat Linderoth B, Foreman RD. Conventional and novel spinal stimulation algorithms: hypothetical mechanisms of action and comments on outcomes. Neuromodulation 2017, 20: 525–533.CrossRefPubMed Linderoth B, Foreman RD. Conventional and novel spinal stimulation algorithms: hypothetical mechanisms of action and comments on outcomes. Neuromodulation 2017, 20: 525–533.CrossRefPubMed
8.
Zurück zum Zitat Shealy CN, Mortimer JT, Hagfors NR. Dorsal column electroanalgesia. J Neurosurg 1970, 32: 560–564.CrossRefPubMed Shealy CN, Mortimer JT, Hagfors NR. Dorsal column electroanalgesia. J Neurosurg 1970, 32: 560–564.CrossRefPubMed
9.
10.
Zurück zum Zitat Chari A, Hentall ID, Papadopoulos MC, Pereira EA. Surgical neurostimulation for spinal cord injury. Brain Sci 2017, 7: 18–35.CrossRefPubMedCentral Chari A, Hentall ID, Papadopoulos MC, Pereira EA. Surgical neurostimulation for spinal cord injury. Brain Sci 2017, 7: 18–35.CrossRefPubMedCentral
11.
Zurück zum Zitat Widerstrom-Noga E, Biering-Sorensen F, Bryce TN, Cardenas DD, Finnerup NB, Jensen MP et al. The International Spinal Cord Injury Pain Basic Data Set (version 2.0). Spinal Cord 2014, 52: 282–286.CrossRefPubMed Widerstrom-Noga E, Biering-Sorensen F, Bryce TN, Cardenas DD, Finnerup NB, Jensen MP et al. The International Spinal Cord Injury Pain Basic Data Set (version 2.0). Spinal Cord 2014, 52: 282–286.CrossRefPubMed
12.
Zurück zum Zitat Bryce TN, Ragnarsson KT. Pain after spinal cord injury. Phys Med Rehabil Clin N Am 2000, 11: 157–168.CrossRefPubMed Bryce TN, Ragnarsson KT. Pain after spinal cord injury. Phys Med Rehabil Clin N Am 2000, 11: 157–168.CrossRefPubMed
13.
Zurück zum Zitat Bryce TN, Budh CN, Cardenas DD, Dijkers M, Felix ER, Finnerup NB, et al. Pain after spinal cord injury: an evidence-based review for clinical practice and research. Report of the National Institute on Disability and Rehabilitation Research Spinal Cord Injury Measures meeting. J Spinal Cord Med 2007, 30: 421–440.CrossRefPubMedPubMedCentral Bryce TN, Budh CN, Cardenas DD, Dijkers M, Felix ER, Finnerup NB, et al. Pain after spinal cord injury: an evidence-based review for clinical practice and research. Report of the National Institute on Disability and Rehabilitation Research Spinal Cord Injury Measures meeting. J Spinal Cord Med 2007, 30: 421–440.CrossRefPubMedPubMedCentral
14.
15.
Zurück zum Zitat Attal N, Mazaltarine G, Perrouin-Verbe B, Albert T. Chronic neuropathic pain management in spinal cord injury patients. What is the efficacy of pharmacological treatments with a general mode of administration? (oral, transdermal, intravenous). Ann Phys Rehabil Med 2009, 52: 124–141.CrossRefPubMed Attal N, Mazaltarine G, Perrouin-Verbe B, Albert T. Chronic neuropathic pain management in spinal cord injury patients. What is the efficacy of pharmacological treatments with a general mode of administration? (oral, transdermal, intravenous). Ann Phys Rehabil Med 2009, 52: 124–141.CrossRefPubMed
16.
Zurück zum Zitat Dijkers M, Bryce T, Zanca J. Prevalence of chronic pain after traumatic spinal cord injury: a systematic review. J Rehabil Res Dev 2009, 46: 13–29.CrossRefPubMed Dijkers M, Bryce T, Zanca J. Prevalence of chronic pain after traumatic spinal cord injury: a systematic review. J Rehabil Res Dev 2009, 46: 13–29.CrossRefPubMed
17.
Zurück zum Zitat Widerstrom-Noga E, Biering-Sorensen F, Bryce T, Cardenas DD, Finnerup NB, Jensen MP, et al. The international spinal cord injury pain basic data set. Spinal Cord 2008, 46: 818–823.CrossRefPubMed Widerstrom-Noga E, Biering-Sorensen F, Bryce T, Cardenas DD, Finnerup NB, Jensen MP, et al. The international spinal cord injury pain basic data set. Spinal Cord 2008, 46: 818–823.CrossRefPubMed
18.
Zurück zum Zitat Widerstrom-Noga E, Biering-Sorensen F, Bryce TN, Cardenas DD, Finnerup NB, Jensen MP, et al. The International Spinal Cord Injury Pain Extended Data Set (Version 1.0). Spinal Cord 2016, 54: 1036–1046.CrossRefPubMed Widerstrom-Noga E, Biering-Sorensen F, Bryce TN, Cardenas DD, Finnerup NB, Jensen MP, et al. The International Spinal Cord Injury Pain Extended Data Set (Version 1.0). Spinal Cord 2016, 54: 1036–1046.CrossRefPubMed
19.
Zurück zum Zitat Burke D, Fullen BM, Stokes D, Lennon O. Neuropathic pain prevalence following spinal cord injury: A systematic review and meta-analysis. Eur J Pain 2017, 21: 29–44.CrossRefPubMed Burke D, Fullen BM, Stokes D, Lennon O. Neuropathic pain prevalence following spinal cord injury: A systematic review and meta-analysis. Eur J Pain 2017, 21: 29–44.CrossRefPubMed
20.
Zurück zum Zitat Wieseler J, Ellis AL, McFadden A, Brown K, Starnes C, Maier SF, et al. Below level central pain induced by discrete dorsal spinal cord injury. J Neurotrauma 2010, 27: 1697–1707.CrossRefPubMedPubMedCentral Wieseler J, Ellis AL, McFadden A, Brown K, Starnes C, Maier SF, et al. Below level central pain induced by discrete dorsal spinal cord injury. J Neurotrauma 2010, 27: 1697–1707.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Siddall PJ, McClelland JM, Rutkowski SB, Cousins MJ. A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain 2003, 103: 249–257.CrossRefPubMed Siddall PJ, McClelland JM, Rutkowski SB, Cousins MJ. A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain 2003, 103: 249–257.CrossRefPubMed
22.
23.
Zurück zum Zitat Bryce TN, Biering-Sorensen F, Finnerup NB, Cardenas DD, Defrin R, Lundeberg T, et al. International spinal cord injury pain classification: part I. Background and description. March 6–7, 2009. Spinal Cord 2012, 50: 413–417.CrossRefPubMed Bryce TN, Biering-Sorensen F, Finnerup NB, Cardenas DD, Defrin R, Lundeberg T, et al. International spinal cord injury pain classification: part I. Background and description. March 6–7, 2009. Spinal Cord 2012, 50: 413–417.CrossRefPubMed
24.
Zurück zum Zitat Modirian E, Pirouzi P, Soroush M, Karbalaei-Esmaeili S, Shojaei H, Zamani H. Chronic pain after spinal cord injury: results of a long-term study. Pain Med 2010, 11: 1037–1043.CrossRefPubMed Modirian E, Pirouzi P, Soroush M, Karbalaei-Esmaeili S, Shojaei H, Zamani H. Chronic pain after spinal cord injury: results of a long-term study. Pain Med 2010, 11: 1037–1043.CrossRefPubMed
25.
Zurück zum Zitat Finnerup NB, Jensen MP, Norrbrink C, Trok K, Johannesen IL, Jensen TS, et al. A prospective study of pain and psychological functioning following traumatic spinal cord injury. Spinal Cord 2016, 54: 816–821.CrossRefPubMed Finnerup NB, Jensen MP, Norrbrink C, Trok K, Johannesen IL, Jensen TS, et al. A prospective study of pain and psychological functioning following traumatic spinal cord injury. Spinal Cord 2016, 54: 816–821.CrossRefPubMed
26.
Zurück zum Zitat Penas C, Navarro X. Epigenetic modifications associated to neuroinflammation and neuropathic pain after neural trauma. Front Cell Neurosci 2018, 12: 158.CrossRefPubMedPubMedCentral Penas C, Navarro X. Epigenetic modifications associated to neuroinflammation and neuropathic pain after neural trauma. Front Cell Neurosci 2018, 12: 158.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Walters ET. Neuroinflammatory contributions to pain after SCI: roles for central glial mechanisms and nociceptor-mediated host defense. Exp Neurol 2014, 258: 48–61.CrossRefPubMed Walters ET. Neuroinflammatory contributions to pain after SCI: roles for central glial mechanisms and nociceptor-mediated host defense. Exp Neurol 2014, 258: 48–61.CrossRefPubMed
28.
Zurück zum Zitat Yezierski RP. Spinal cord injury pain: spinal and supraspinal mechanisms. J Rehabil Res Dev 2009, 46: 95–107.CrossRefPubMed Yezierski RP. Spinal cord injury pain: spinal and supraspinal mechanisms. J Rehabil Res Dev 2009, 46: 95–107.CrossRefPubMed
29.
Zurück zum Zitat Hulsebosch CE, Hains BC, Crown ED, Carlton SM. Mechanisms of chronic central neuropathic pain after spinal cord injury. Brain Res Rev 2009, 60: 202–213.CrossRefPubMed Hulsebosch CE, Hains BC, Crown ED, Carlton SM. Mechanisms of chronic central neuropathic pain after spinal cord injury. Brain Res Rev 2009, 60: 202–213.CrossRefPubMed
30.
Zurück zum Zitat Burchiel KJ, Hsu FP. Pain and spasticity after spinal cord injury: mechanisms and treatment. Spine (Phila Pa 1976) 2001, 26: S146–S160.CrossRef Burchiel KJ, Hsu FP. Pain and spasticity after spinal cord injury: mechanisms and treatment. Spine (Phila Pa 1976) 2001, 26: S146–S160.CrossRef
31.
Zurück zum Zitat Yezierski RP, Yu CG, Mantyh PW, Vierck CJ, Lappi DA. Spinal neurons involved in the generation of at-level pain following spinal injury in the rat. Neurosci Lett 2004, 361: 232–236.CrossRefPubMed Yezierski RP, Yu CG, Mantyh PW, Vierck CJ, Lappi DA. Spinal neurons involved in the generation of at-level pain following spinal injury in the rat. Neurosci Lett 2004, 361: 232–236.CrossRefPubMed
32.
Zurück zum Zitat Gwak YS, Hulsebosch CE. Neuronal hyperexcitability: a substrate for central neuropathic pain after spinal cord injury. Curr Pain Headache Rep 2011, 15: 215–222.CrossRefPubMed Gwak YS, Hulsebosch CE. Neuronal hyperexcitability: a substrate for central neuropathic pain after spinal cord injury. Curr Pain Headache Rep 2011, 15: 215–222.CrossRefPubMed
33.
Zurück zum Zitat Carlton SM, Du J, Tan HY, Nesic O, Hargett GL, Bopp AC, et al. Peripheral and central sensitization in remote spinal cord regions contribute to central neuropathic pain after spinal cord injury. Pain 2009, 147: 265–276.CrossRefPubMedPubMedCentral Carlton SM, Du J, Tan HY, Nesic O, Hargett GL, Bopp AC, et al. Peripheral and central sensitization in remote spinal cord regions contribute to central neuropathic pain after spinal cord injury. Pain 2009, 147: 265–276.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Zhou LJ, Liu XG. Glial activation, a common mechanism underlying spinal synaptic plasticity? Neurosci Bull 2017, 33: 121–123.CrossRefPubMed Zhou LJ, Liu XG. Glial activation, a common mechanism underlying spinal synaptic plasticity? Neurosci Bull 2017, 33: 121–123.CrossRefPubMed
37.
Zurück zum Zitat Kerasidis H, Wrathall JR, Gale K. Behavioral assessment of functional deficit in rats with contusive spinal cord injury. J Neurosci Methods 1987, 20: 167–179.CrossRefPubMed Kerasidis H, Wrathall JR, Gale K. Behavioral assessment of functional deficit in rats with contusive spinal cord injury. J Neurosci Methods 1987, 20: 167–179.CrossRefPubMed
38.
Zurück zum Zitat Vierck CJ Jr, Siddall P, Yezierski RP. Pain following spinal cord injury: animal models and mechanistic studies. Pain 2000, 89: 1–5.CrossRefPubMed Vierck CJ Jr, Siddall P, Yezierski RP. Pain following spinal cord injury: animal models and mechanistic studies. Pain 2000, 89: 1–5.CrossRefPubMed
39.
Zurück zum Zitat Yezierski RP, Liu S, Ruenes GL, Kajander KJ, Brewer KL. Excitotoxic spinal cord injury: behavioral and morphological characteristics of a central pain model. Pain 1998, 75: 141–155.CrossRefPubMed Yezierski RP, Liu S, Ruenes GL, Kajander KJ, Brewer KL. Excitotoxic spinal cord injury: behavioral and morphological characteristics of a central pain model. Pain 1998, 75: 141–155.CrossRefPubMed
40.
Zurück zum Zitat Meisner JG, Marsh AD, Marsh DR. Loss of GABAergic interneurons in laminae I-III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury. J Neurotrauma 2010, 27: 729–737.CrossRefPubMed Meisner JG, Marsh AD, Marsh DR. Loss of GABAergic interneurons in laminae I-III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury. J Neurotrauma 2010, 27: 729–737.CrossRefPubMed
41.
Zurück zum Zitat Kalous A, Osborne PB, Keast JR. Spinal cord compression injury in adult rats initiates changes in dorsal horn remodeling that may correlate with development of neuropathic pain. J Comp Neurol 2009, 513: 668–684.CrossRefPubMed Kalous A, Osborne PB, Keast JR. Spinal cord compression injury in adult rats initiates changes in dorsal horn remodeling that may correlate with development of neuropathic pain. J Comp Neurol 2009, 513: 668–684.CrossRefPubMed
42.
Zurück zum Zitat Hao JX, Kupers RC, Xu XJ. Response characteristics of spinal cord dorsal horn neurons in chronic allodynic rats after spinal cord injury. J Neurophysiol 2004, 92: 1391–1399.CrossRefPubMed Hao JX, Kupers RC, Xu XJ. Response characteristics of spinal cord dorsal horn neurons in chronic allodynic rats after spinal cord injury. J Neurophysiol 2004, 92: 1391–1399.CrossRefPubMed
43.
Zurück zum Zitat Zhao P, Waxman SG, Hains BC. Modulation of thalamic nociceptive processing after spinal cord injury through remote activation of thalamic microglia by cysteine cysteine chemokine ligand 21. J Neurosci 2007, 27: 8893–8902.CrossRefPubMedPubMedCentral Zhao P, Waxman SG, Hains BC. Modulation of thalamic nociceptive processing after spinal cord injury through remote activation of thalamic microglia by cysteine cysteine chemokine ligand 21. J Neurosci 2007, 27: 8893–8902.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Hains BC, Saab CY, Waxman SG. Alterations in burst firing of thalamic VPL neurons and reversal by Na(v)1.3 antisense after spinal cord injury. J Neurophysiol 2006, 95: 3343–3352.CrossRefPubMed Hains BC, Saab CY, Waxman SG. Alterations in burst firing of thalamic VPL neurons and reversal by Na(v)1.3 antisense after spinal cord injury. J Neurophysiol 2006, 95: 3343–3352.CrossRefPubMed
45.
Zurück zum Zitat Gwak YS, Kim HK, Kim HY, Leem JW. Bilateral hyperexcitability of thalamic VPL neurons following unilateral spinal injury in rats. J Physiol Sci 2010, 60: 59–66.CrossRefPubMed Gwak YS, Kim HK, Kim HY, Leem JW. Bilateral hyperexcitability of thalamic VPL neurons following unilateral spinal injury in rats. J Physiol Sci 2010, 60: 59–66.CrossRefPubMed
46.
Zurück zum Zitat Crown ED, Gwak YS, Ye Z, Johnson KM, Hulsebosch CE. Activation of p38 MAP kinase is involved in central neuropathic pain following spinal cord injury. Exp Neurol 2008, 213: 257–267.CrossRefPubMedPubMedCentral Crown ED, Gwak YS, Ye Z, Johnson KM, Hulsebosch CE. Activation of p38 MAP kinase is involved in central neuropathic pain following spinal cord injury. Exp Neurol 2008, 213: 257–267.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Hains BC, Waxman SG. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci 2006, 26: 4308–4317.CrossRefPubMedPubMedCentral Hains BC, Waxman SG. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci 2006, 26: 4308–4317.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Gwak YS, Hulsebosch CE. Upregulation of group I metabotropic glutamate receptors in neurons and astrocytes in the dorsal horn following spinal cord injury. Exp Neurol 2005, 195: 236–243.CrossRefPubMed Gwak YS, Hulsebosch CE. Upregulation of group I metabotropic glutamate receptors in neurons and astrocytes in the dorsal horn following spinal cord injury. Exp Neurol 2005, 195: 236–243.CrossRefPubMed
49.
Zurück zum Zitat Hains BC, Saab CY, Klein JP, Craner MJ, Waxman SG. Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci 2004, 24: 4832–4839.CrossRefPubMedPubMedCentral Hains BC, Saab CY, Klein JP, Craner MJ, Waxman SG. Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci 2004, 24: 4832–4839.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med 2010, 16: 302–307.CrossRefPubMed Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med 2010, 16: 302–307.CrossRefPubMed
51.
Zurück zum Zitat Liabeuf S, Stuhl-Gourmand L, Gackiere F, Mancuso R, Sanchez Brualla I, Marino P, et al. Prochlorperazine increases KCC2 function and reduces spasticity after spinal cord injury. J Neurotrauma 2017, 34: 3397–3406.CrossRefPubMed Liabeuf S, Stuhl-Gourmand L, Gackiere F, Mancuso R, Sanchez Brualla I, Marino P, et al. Prochlorperazine increases KCC2 function and reduces spasticity after spinal cord injury. J Neurotrauma 2017, 34: 3397–3406.CrossRefPubMed
52.
Zurück zum Zitat Chen B, Li Y, Yu B, Zhang Z, Brommer B, Williams PR, et al. Reactivation of dormant relay pathways in injured spinal cord by KCC2 manipulations. Cell 2018, 174: 521–535.CrossRefPubMedPubMedCentral Chen B, Li Y, Yu B, Zhang Z, Brommer B, Williams PR, et al. Reactivation of dormant relay pathways in injured spinal cord by KCC2 manipulations. Cell 2018, 174: 521–535.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Tashiro S, Shinozaki M, Mukaino M, Renault-Mihara F, Toyama Y, Liu M, et al. BDNF induced by treadmill training contributes to the suppression of spasticity and allodynia after spinal cord injury via upregulation of KCC2. Neurorehabil Neural Repair 2015, 29: 677–689.CrossRefPubMed Tashiro S, Shinozaki M, Mukaino M, Renault-Mihara F, Toyama Y, Liu M, et al. BDNF induced by treadmill training contributes to the suppression of spasticity and allodynia after spinal cord injury via upregulation of KCC2. Neurorehabil Neural Repair 2015, 29: 677–689.CrossRefPubMed
54.
Zurück zum Zitat Filosa A, Paixao S, Honsek SD, Carmona MA, Becker L, Feddersen B, et al. Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci 2009, 12: 1285–1292.CrossRefPubMedPubMedCentral Filosa A, Paixao S, Honsek SD, Carmona MA, Becker L, Feddersen B, et al. Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci 2009, 12: 1285–1292.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Kronschlager MT, Drdla-Schutting R, Gassner M, Honsek SD, Teuchmann HL, Sandkuhler J. Gliogenic LTP spreads widely in nociceptive pathways. Science 2016, 354: 1144–1148.CrossRefPubMedPubMedCentral Kronschlager MT, Drdla-Schutting R, Gassner M, Honsek SD, Teuchmann HL, Sandkuhler J. Gliogenic LTP spreads widely in nociceptive pathways. Science 2016, 354: 1144–1148.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Gwak YS, Kang J, Unabia GC, Hulsebosch CE. Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats. Exp Neurol 2012, 234: 362–372.CrossRefPubMed Gwak YS, Kang J, Unabia GC, Hulsebosch CE. Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats. Exp Neurol 2012, 234: 362–372.CrossRefPubMed
57.
Zurück zum Zitat Kim D, Kim MA, Cho IH, Kim MS, Lee S, Jo EK, et al. A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem 2007, 282: 14975–14983.CrossRefPubMed Kim D, Kim MA, Cho IH, Kim MS, Lee S, Jo EK, et al. A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem 2007, 282: 14975–14983.CrossRefPubMed
58.
Zurück zum Zitat Hains BC, Waxman SG. Sodium channel expression and the molecular pathophysiology of pain after SCI. Prog Brain Res 2007, 161: 195–203.CrossRefPubMed Hains BC, Waxman SG. Sodium channel expression and the molecular pathophysiology of pain after SCI. Prog Brain Res 2007, 161: 195–203.CrossRefPubMed
59.
Zurück zum Zitat Bedi SS, Yang Q, Crook RJ, Du J, Wu Z, Fishman HM, et al. Chronic spontaneous activity generated in the somata of primary nociceptors is associated with pain-related behavior after spinal cord injury. J Neurosci 2010, 30: 14870–14882.CrossRefPubMedPubMedCentral Bedi SS, Yang Q, Crook RJ, Du J, Wu Z, Fishman HM, et al. Chronic spontaneous activity generated in the somata of primary nociceptors is associated with pain-related behavior after spinal cord injury. J Neurosci 2010, 30: 14870–14882.CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Miranpuri GS, Meethal SV, Sampene E, Chopra A, Buttar S, Nacht C, et al. Folic acid modulates matrix metalloproteinase-2 expression, alleviates neuropathic pain, and improves functional recovery in spinal cord-injured rats. Ann Neurosci 2017, 24: 74–81.CrossRefPubMedPubMedCentral Miranpuri GS, Meethal SV, Sampene E, Chopra A, Buttar S, Nacht C, et al. Folic acid modulates matrix metalloproteinase-2 expression, alleviates neuropathic pain, and improves functional recovery in spinal cord-injured rats. Ann Neurosci 2017, 24: 74–81.CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Schomberg D, Miranpuri G, Duellman T, Crowell A, Vemuganti R, Resnick D. Spinal cord injury induced neuropathic pain: Molecular targets and therapeutic approaches. Metab Brain Dis 2015, 30: 645–658.CrossRefPubMed Schomberg D, Miranpuri G, Duellman T, Crowell A, Vemuganti R, Resnick D. Spinal cord injury induced neuropathic pain: Molecular targets and therapeutic approaches. Metab Brain Dis 2015, 30: 645–658.CrossRefPubMed
62.
Zurück zum Zitat Descalzi G, Ikegami D, Ushijima T, Nestler EJ, Zachariou V, Narita M. Epigenetic mechanisms of chronic pain. Trends Neurosci 2015, 38: 237–246.CrossRefPubMedPubMedCentral Descalzi G, Ikegami D, Ushijima T, Nestler EJ, Zachariou V, Narita M. Epigenetic mechanisms of chronic pain. Trends Neurosci 2015, 38: 237–246.CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Turtle JD, Strain MM, Aceves M, Huang YJ, Reynolds JA, Hook MA, et al. Pain input impairs recovery after spinal cord injury: treatment with lidocaine. J Neurotrauma 2017, 34: 1200–1208.CrossRefPubMedPubMedCentral Turtle JD, Strain MM, Aceves M, Huang YJ, Reynolds JA, Hook MA, et al. Pain input impairs recovery after spinal cord injury: treatment with lidocaine. J Neurotrauma 2017, 34: 1200–1208.CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Ravenscroft A, Ahmed YS, Burnside IG. Chronic pain after SCI. A patient survey. Spinal Cord 2000, 38: 611–614.CrossRefPubMed Ravenscroft A, Ahmed YS, Burnside IG. Chronic pain after SCI. A patient survey. Spinal Cord 2000, 38: 611–614.CrossRefPubMed
65.
Zurück zum Zitat Baastrup C, Finnerup NB. Pharmacological management of neuropathic pain following spinal cord injury. CNS Drugs 2008, 22: 455–475.CrossRefPubMed Baastrup C, Finnerup NB. Pharmacological management of neuropathic pain following spinal cord injury. CNS Drugs 2008, 22: 455–475.CrossRefPubMed
66.
Zurück zum Zitat Mehta S, McIntyre A, Janzen S, Loh E, Teasell R. Systematic review of pharmacologic treatments of pain after spinal cord injury: an update. Arch Phys Med Rehabil 2016, 97: 1381–1391.CrossRefPubMed Mehta S, McIntyre A, Janzen S, Loh E, Teasell R. Systematic review of pharmacologic treatments of pain after spinal cord injury: an update. Arch Phys Med Rehabil 2016, 97: 1381–1391.CrossRefPubMed
67.
Zurück zum Zitat Teasell RW, Mehta S, Aubut JA, Foulon B, Wolfe DL, Hsieh JT, et al. A systematic review of pharmacologic treatments of pain after spinal cord injury. Arch Phys Med Rehabil 2010, 91: 816–831.CrossRefPubMedPubMedCentral Teasell RW, Mehta S, Aubut JA, Foulon B, Wolfe DL, Hsieh JT, et al. A systematic review of pharmacologic treatments of pain after spinal cord injury. Arch Phys Med Rehabil 2010, 91: 816–831.CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Warms CA, Turner JA, Marshall HM, Cardenas DD. Treatments for chronic pain associated with spinal cord injuries: many are tried, few are helpful. Clin J Pain 2002, 18: 154–163.CrossRefPubMed Warms CA, Turner JA, Marshall HM, Cardenas DD. Treatments for chronic pain associated with spinal cord injuries: many are tried, few are helpful. Clin J Pain 2002, 18: 154–163.CrossRefPubMed
69.
Zurück zum Zitat Cardenas DD, Felix ER. Pain after spinal cord injury: a review of classification, treatment approaches, and treatment assessment. PM R 2009, 1: 1077–1090.CrossRefPubMed Cardenas DD, Felix ER. Pain after spinal cord injury: a review of classification, treatment approaches, and treatment assessment. PM R 2009, 1: 1077–1090.CrossRefPubMed
70.
Zurück zum Zitat Sjolund BH. Pain and rehabilitation after spinal cord injury: the case of sensory spasticity? Brain Res Brain Res Rev 2002, 40: 250–256.CrossRefPubMed Sjolund BH. Pain and rehabilitation after spinal cord injury: the case of sensory spasticity? Brain Res Brain Res Rev 2002, 40: 250–256.CrossRefPubMed
71.
Zurück zum Zitat Canavero S, Bonicalzi V. Neuromodulation for central pain. Expert Rev Neurother 2003, 3: 591–607.CrossRefPubMed Canavero S, Bonicalzi V. Neuromodulation for central pain. Expert Rev Neurother 2003, 3: 591–607.CrossRefPubMed
72.
Zurück zum Zitat Sadowsky CL. Electrical stimulation in spinal cord injury. NeuroRehabilitation 2001, 16: 165–169.PubMedCrossRef Sadowsky CL. Electrical stimulation in spinal cord injury. NeuroRehabilitation 2001, 16: 165–169.PubMedCrossRef
73.
Zurück zum Zitat Dworkin RH, O’Connor AB, Kent J, Mackey SC, Raja SN, Stacey BR, et al. Interventional management of neuropathic pain: NeuPSIG recommendations. Pain 2013, 154: 2249–2261.CrossRefPubMedPubMedCentral Dworkin RH, O’Connor AB, Kent J, Mackey SC, Raja SN, Stacey BR, et al. Interventional management of neuropathic pain: NeuPSIG recommendations. Pain 2013, 154: 2249–2261.CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Lagauche D, Facione J, Albert T, Fattal C. The chronic neuropathic pain of spinal cord injury: which efficiency of neuropathic stimulation? Ann Phys Rehabil Med 2009, 52: 180–187.CrossRefPubMed Lagauche D, Facione J, Albert T, Fattal C. The chronic neuropathic pain of spinal cord injury: which efficiency of neuropathic stimulation? Ann Phys Rehabil Med 2009, 52: 180–187.CrossRefPubMed
75.
Zurück zum Zitat Siddall PJ. Management of neuropathic pain following spinal cord injury: now and in the future. Spinal Cord 2009, 47: 352–359.CrossRefPubMed Siddall PJ. Management of neuropathic pain following spinal cord injury: now and in the future. Spinal Cord 2009, 47: 352–359.CrossRefPubMed
76.
Zurück zum Zitat Kumar K, Toth C, Nath RK. Spinal cord stimulation for chronic pain in peripheral neuropathy. Surg Neurol 1996, 46: 363–369.CrossRefPubMed Kumar K, Toth C, Nath RK. Spinal cord stimulation for chronic pain in peripheral neuropathy. Surg Neurol 1996, 46: 363–369.CrossRefPubMed
77.
Zurück zum Zitat Guan Y. Spinal cord stimulation: neurophysiological and neurochemical mechanisms of action. Curr Pain Headache Rep 2012, 16: 217–225.CrossRefPubMed Guan Y. Spinal cord stimulation: neurophysiological and neurochemical mechanisms of action. Curr Pain Headache Rep 2012, 16: 217–225.CrossRefPubMed
78.
Zurück zum Zitat Shechter R, Yang F, Xu Q, Cheong YK, He SQ, Sdrulla A, et al. Conventional and kilohertz-frequency spinal cord stimulation produces intensity- and frequency-dependent inhibition of mechanical hypersensitivity in a rat model of neuropathic pain. Anesthesiology 2013, 119: 422–432.CrossRefPubMed Shechter R, Yang F, Xu Q, Cheong YK, He SQ, Sdrulla A, et al. Conventional and kilohertz-frequency spinal cord stimulation produces intensity- and frequency-dependent inhibition of mechanical hypersensitivity in a rat model of neuropathic pain. Anesthesiology 2013, 119: 422–432.CrossRefPubMed
79.
Zurück zum Zitat Shealy CN. Dorsal column stimulation. Surg Neurol 1977, 7: 192.PubMed Shealy CN. Dorsal column stimulation. Surg Neurol 1977, 7: 192.PubMed
80.
Zurück zum Zitat Costigan M, Woolf CJ. No DREAM, No pain. Closing the spinal gate. Cell 2002, 108: 297–300.PubMed Costigan M, Woolf CJ. No DREAM, No pain. Closing the spinal gate. Cell 2002, 108: 297–300.PubMed
81.
Zurück zum Zitat Kapural L. Spinal cord stimulation for intractable chronic pain. Curr Pain Headache Rep 2014, 18: 406.CrossRefPubMed Kapural L. Spinal cord stimulation for intractable chronic pain. Curr Pain Headache Rep 2014, 18: 406.CrossRefPubMed
82.
Zurück zum Zitat Falowski S, Sharan A. A review on spinal cord stimulation. J Neurosurg Sci 2012, 56: 287–298.PubMed Falowski S, Sharan A. A review on spinal cord stimulation. J Neurosurg Sci 2012, 56: 287–298.PubMed
83.
Zurück zum Zitat Song Z, Viisanen H, Meyerson BA, Pertovaara A, Linderoth B. Efficacy of kilohertz-frequency and conventional spinal cord stimulation in rat models of different pain conditions. Neuromodulation 2014, 17: 226–234.CrossRefPubMed Song Z, Viisanen H, Meyerson BA, Pertovaara A, Linderoth B. Efficacy of kilohertz-frequency and conventional spinal cord stimulation in rat models of different pain conditions. Neuromodulation 2014, 17: 226–234.CrossRefPubMed
84.
Zurück zum Zitat Foreman RD, Linderoth B. Neural mechanisms of spinal cord stimulation. Int Rev Neurobiol 2012, 107: 87–119.CrossRefPubMed Foreman RD, Linderoth B. Neural mechanisms of spinal cord stimulation. Int Rev Neurobiol 2012, 107: 87–119.CrossRefPubMed
85.
Zurück zum Zitat Guan Y, Wacnik PW, Yang F, Carteret AF, Chung CY, Meyer RA, et al. Spinal cord stimulation-induced analgesia: electrical stimulation of dorsal column and dorsal roots attenuates dorsal horn neuronal excitability in neuropathic rats. Anesthesiology 2010, 113: 1392–1405.CrossRefPubMed Guan Y, Wacnik PW, Yang F, Carteret AF, Chung CY, Meyer RA, et al. Spinal cord stimulation-induced analgesia: electrical stimulation of dorsal column and dorsal roots attenuates dorsal horn neuronal excitability in neuropathic rats. Anesthesiology 2010, 113: 1392–1405.CrossRefPubMed
86.
Zurück zum Zitat Narikawa K, Furue H, Kumamoto E, Yoshimura M. In vivo patch-clamp analysis of IPSCs evoked in rat substantia gelatinosa neurons by cutaneous mechanical stimulation. J Neurophysiol 2000, 84: 2171–2174.CrossRefPubMed Narikawa K, Furue H, Kumamoto E, Yoshimura M. In vivo patch-clamp analysis of IPSCs evoked in rat substantia gelatinosa neurons by cutaneous mechanical stimulation. J Neurophysiol 2000, 84: 2171–2174.CrossRefPubMed
87.
Zurück zum Zitat Shimoji K, Shimizu H, Maruyama Y, Matsuki M, Kuribayashi H, Fujioka H. Dorsal column stimulation in man: facilitation of primary afferent depolarization. Anesth Analg 1982, 61: 410–413.CrossRefPubMed Shimoji K, Shimizu H, Maruyama Y, Matsuki M, Kuribayashi H, Fujioka H. Dorsal column stimulation in man: facilitation of primary afferent depolarization. Anesth Analg 1982, 61: 410–413.CrossRefPubMed
88.
Zurück zum Zitat Olsson GL, Meyerson BA, Linderoth B. Spinal cord stimulation in adolescents with complex regional pain syndrome type I (CRPS-I). Eur J Pain 2008, 12: 53–59.CrossRefPubMed Olsson GL, Meyerson BA, Linderoth B. Spinal cord stimulation in adolescents with complex regional pain syndrome type I (CRPS-I). Eur J Pain 2008, 12: 53–59.CrossRefPubMed
89.
Zurück zum Zitat Carter ML. Spinal cord stimulation in chronic pain: a review of the evidence. Anaesth Intensive Care 2004, 32: 11–21.CrossRefPubMed Carter ML. Spinal cord stimulation in chronic pain: a review of the evidence. Anaesth Intensive Care 2004, 32: 11–21.CrossRefPubMed
90.
Zurück zum Zitat Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, Molet J, et al. Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain 2007, 132: 179–188.CrossRefPubMed Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, Molet J, et al. Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain 2007, 132: 179–188.CrossRefPubMed
91.
Zurück zum Zitat Meyerson BA, Linderoth B. Mode of action of spinal cord stimulation in neuropathic pain. J Pain Symptom Manage 2006, 31: S6–S12.CrossRefPubMed Meyerson BA, Linderoth B. Mode of action of spinal cord stimulation in neuropathic pain. J Pain Symptom Manage 2006, 31: S6–S12.CrossRefPubMed
92.
Zurück zum Zitat De Ridder D, Vanneste S. Burst and tonic spinal cord stimulation: different and common brain mechanisms. Neuromodulation 2016, 19: 47–59.CrossRefPubMed De Ridder D, Vanneste S. Burst and tonic spinal cord stimulation: different and common brain mechanisms. Neuromodulation 2016, 19: 47–59.CrossRefPubMed
93.
Zurück zum Zitat de Vos CC, Bom MJ, Vanneste S, Lenders MW, De Ridder RD. Burst spinal cord stimulation evaluated in patients with failed back surgery syndrome and painful diabetic neuropathy. Neuromodulation 2014, 17: 152–159.CrossRefPubMed de Vos CC, Bom MJ, Vanneste S, Lenders MW, De Ridder RD. Burst spinal cord stimulation evaluated in patients with failed back surgery syndrome and painful diabetic neuropathy. Neuromodulation 2014, 17: 152–159.CrossRefPubMed
94.
Zurück zum Zitat De Ridder D, Plazier M, Kamerling N, Menovsky T, Vanneste S. Burst spinal cord stimulation for limb and back pain. World Neurosurg 2013, 80: 642–649.CrossRefPubMed De Ridder D, Plazier M, Kamerling N, Menovsky T, Vanneste S. Burst spinal cord stimulation for limb and back pain. World Neurosurg 2013, 80: 642–649.CrossRefPubMed
95.
Zurück zum Zitat Hou S, Kemp K, Grabois M. A systematic evaluation of burst spinal cord stimulation for chronic back and limb pain. Neuromodulation 2016, 19: 398–405.CrossRefPubMed Hou S, Kemp K, Grabois M. A systematic evaluation of burst spinal cord stimulation for chronic back and limb pain. Neuromodulation 2016, 19: 398–405.CrossRefPubMed
96.
Zurück zum Zitat Van HT, Vancamp T, Van LP, Vanneste S, De Ridder D. Spinal cord stimulation for the treatment of chronic back pain patients: 500-Hz vs. 1000-Hz burst stimulation. Neuromodulation 2015, 18: 9–12.CrossRef Van HT, Vancamp T, Van LP, Vanneste S, De Ridder D. Spinal cord stimulation for the treatment of chronic back pain patients: 500-Hz vs. 1000-Hz burst stimulation. Neuromodulation 2015, 18: 9–12.CrossRef
97.
Zurück zum Zitat Tang R, Martinez M, Goodman-Keiser M, Farber JP, Qin C, Foreman RD. Comparison of burst and tonic spinal cord stimulation on spinal neural processing in an animal model. Neuromodulation 2014, 17: 143–151.CrossRefPubMed Tang R, Martinez M, Goodman-Keiser M, Farber JP, Qin C, Foreman RD. Comparison of burst and tonic spinal cord stimulation on spinal neural processing in an animal model. Neuromodulation 2014, 17: 143–151.CrossRefPubMed
98.
Zurück zum Zitat Gong WY, Johanek LM, Sluka KA. A comparison of the effects of burst and tonic spinal cord stimulation on hyperalgesia and physical activity in an animal model of neuropathic pain. Anesth Analg 2016, 112: 1178–1185.CrossRef Gong WY, Johanek LM, Sluka KA. A comparison of the effects of burst and tonic spinal cord stimulation on hyperalgesia and physical activity in an animal model of neuropathic pain. Anesth Analg 2016, 112: 1178–1185.CrossRef
99.
Zurück zum Zitat Kapural L, Yu C, Doust MW, Gliner BE, Vallejo R, Sitzman BT, et al. Novel 10-kHz high-frequency therapy (HF10 therapy) is superior to traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain: The SENZA-RCT randomized controlled trial. Anesthesiology 2015, 123: 851–860.CrossRefPubMed Kapural L, Yu C, Doust MW, Gliner BE, Vallejo R, Sitzman BT, et al. Novel 10-kHz high-frequency therapy (HF10 therapy) is superior to traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain: The SENZA-RCT randomized controlled trial. Anesthesiology 2015, 123: 851–860.CrossRefPubMed
100.
Zurück zum Zitat Al-Kaisy A, Van Buyten JP, Smet I, Palmisani S, Pang D, Smith T. Sustained effectiveness of 10 kHz high-frequency spinal cord stimulation for patients with chronic, low back pain: 24-month results of a prospective multicenter study. Pain Med 2014, 15: 347–354.CrossRefPubMed Al-Kaisy A, Van Buyten JP, Smet I, Palmisani S, Pang D, Smith T. Sustained effectiveness of 10 kHz high-frequency spinal cord stimulation for patients with chronic, low back pain: 24-month results of a prospective multicenter study. Pain Med 2014, 15: 347–354.CrossRefPubMed
101.
Zurück zum Zitat Van Buyten JP, Al-Kaisy A, Smet I, Palmisani S, Smith T. High-frequency spinal cord stimulation for the treatment of chronic back pain patients: results of a prospective multicenter European clinical study. Neuromodulation 2013, 16: 59–65.CrossRefPubMed Van Buyten JP, Al-Kaisy A, Smet I, Palmisani S, Smith T. High-frequency spinal cord stimulation for the treatment of chronic back pain patients: results of a prospective multicenter European clinical study. Neuromodulation 2013, 16: 59–65.CrossRefPubMed
103.
Zurück zum Zitat Perruchoud C, Eldabe S, Batterham AM, Madzinga G, Brookes M, Durrer A, et al. Analgesic efficacy of high-frequency spinal cord stimulation: a randomized double-blind placebo-controlled study. Neuromodulation 2013, 16: 363–369.CrossRefPubMed Perruchoud C, Eldabe S, Batterham AM, Madzinga G, Brookes M, Durrer A, et al. Analgesic efficacy of high-frequency spinal cord stimulation: a randomized double-blind placebo-controlled study. Neuromodulation 2013, 16: 363–369.CrossRefPubMed
104.
Zurück zum Zitat Annemans L, Van Buyten JP, Smith T, Al-Kaisy A. Cost effectiveness of a novel 10 kHz high-frequency spinal cord stimulation system in patients with failed back surgery syndrome (FBSS). J Long Term Eff Med Implants 2014, 24: 173–183.CrossRefPubMed Annemans L, Van Buyten JP, Smith T, Al-Kaisy A. Cost effectiveness of a novel 10 kHz high-frequency spinal cord stimulation system in patients with failed back surgery syndrome (FBSS). J Long Term Eff Med Implants 2014, 24: 173–183.CrossRefPubMed
106.
Zurück zum Zitat Crosby ND, Janik JJ, Grill WM. Modulation of activity and conduction in single dorsal column axons by kilohertz-frequency spinal cord stimulation. J Neurophysiol 2017, 117: 136–147.CrossRefPubMed Crosby ND, Janik JJ, Grill WM. Modulation of activity and conduction in single dorsal column axons by kilohertz-frequency spinal cord stimulation. J Neurophysiol 2017, 117: 136–147.CrossRefPubMed
107.
Zurück zum Zitat Crosby ND, Weisshaar CL, Smith JR, Zeeman ME, Goodman-Keiser MD, Winkelstein BA. Burst and tonic spinal cord stimulation differentially activate GABAergic mechanisms to attenuate pain in a rat model of cervical radiculopathy. IEEE Trans Biomed Eng 2015, 62: 1604–1613.CrossRefPubMed Crosby ND, Weisshaar CL, Smith JR, Zeeman ME, Goodman-Keiser MD, Winkelstein BA. Burst and tonic spinal cord stimulation differentially activate GABAergic mechanisms to attenuate pain in a rat model of cervical radiculopathy. IEEE Trans Biomed Eng 2015, 62: 1604–1613.CrossRefPubMed
108.
Zurück zum Zitat Tator CH, Minassian K, Mushahwar VK. Spinal cord stimulation: therapeutic benefits and movement generation after spinal cord injury. Handb Clin Neurol 2012, 109: 283–296.CrossRefPubMed Tator CH, Minassian K, Mushahwar VK. Spinal cord stimulation: therapeutic benefits and movement generation after spinal cord injury. Handb Clin Neurol 2012, 109: 283–296.CrossRefPubMed
109.
Zurück zum Zitat Nagel SJ, Wilson S, Johnson MD, Machado A, Frizon L, Chardon MK, et al. Spinal cord stimulation for spasticity: historical approaches, current status, and future directions. Neuromodulation 2017, 20: 307–321.CrossRefPubMed Nagel SJ, Wilson S, Johnson MD, Machado A, Frizon L, Chardon MK, et al. Spinal cord stimulation for spasticity: historical approaches, current status, and future directions. Neuromodulation 2017, 20: 307–321.CrossRefPubMed
110.
Zurück zum Zitat Gater DR Jr, Dolbow D, Tsui B, Gorgey AS. Functional electrical stimulation therapies after spinal cord injury. NeuroRehabilitation 2011, 28: 231–248.PubMedCrossRef Gater DR Jr, Dolbow D, Tsui B, Gorgey AS. Functional electrical stimulation therapies after spinal cord injury. NeuroRehabilitation 2011, 28: 231–248.PubMedCrossRef
111.
Zurück zum Zitat Eldabe S, Thomson S, Duarte R, Brookes M, Belder M, Raphael J, et al. The effectiveness and cost-effectiveness of spinal cord stimulation for refractory angina (RASCAL Study): A pilot randomized controlled trial. Neuromodulation 2016, 19: 60–70.CrossRefPubMed Eldabe S, Thomson S, Duarte R, Brookes M, Belder M, Raphael J, et al. The effectiveness and cost-effectiveness of spinal cord stimulation for refractory angina (RASCAL Study): A pilot randomized controlled trial. Neuromodulation 2016, 19: 60–70.CrossRefPubMed
112.
Zurück zum Zitat Saraste A, Ukkonen H, Varis A, Vasankari T, Tunturi S, Taittonen M, et al. Effect of spinal cord stimulation on myocardial perfusion reserve in patients with refractory angina pectoris. Eur Heart J Cardiovasc Imaging 2015, 16: 449–455.CrossRefPubMed Saraste A, Ukkonen H, Varis A, Vasankari T, Tunturi S, Taittonen M, et al. Effect of spinal cord stimulation on myocardial perfusion reserve in patients with refractory angina pectoris. Eur Heart J Cardiovasc Imaging 2015, 16: 449–455.CrossRefPubMed
113.
Zurück zum Zitat Kapural L, Cywinski JB, Sparks DA. Spinal cord stimulation for visceral pain from chronic pancreatitis. Neuromodulation 2011, 14: 423–426.CrossRefPubMed Kapural L, Cywinski JB, Sparks DA. Spinal cord stimulation for visceral pain from chronic pancreatitis. Neuromodulation 2011, 14: 423–426.CrossRefPubMed
114.
Zurück zum Zitat Aslan SC, Legg Ditterline BE, Park MC, Angeli CA, Rejc E, Chen Y, et al. Epidural spinal cord stimulation of lumbosacral networks modulates arterial blood pressure in individuals with spinal cord injury-induced cardiovascular deficits. Front Physiol 2018, 9: 565.CrossRefPubMedPubMedCentral Aslan SC, Legg Ditterline BE, Park MC, Angeli CA, Rejc E, Chen Y, et al. Epidural spinal cord stimulation of lumbosacral networks modulates arterial blood pressure in individuals with spinal cord injury-induced cardiovascular deficits. Front Physiol 2018, 9: 565.CrossRefPubMedPubMedCentral
115.
Zurück zum Zitat Herrity AN, Williams CS, Angeli CA, Harkema SJ, Hubscher CH. Lumbosacral spinal cord epidural stimulation improves voiding function after human spinal cord injury. Sci Rep 2018, 8: 8688.CrossRefPubMedPubMedCentral Herrity AN, Williams CS, Angeli CA, Harkema SJ, Hubscher CH. Lumbosacral spinal cord epidural stimulation improves voiding function after human spinal cord injury. Sci Rep 2018, 8: 8688.CrossRefPubMedPubMedCentral
116.
Zurück zum Zitat Kowalski KE, Romaniuk JR, Brose SW, Richmond MA, Kowalski T, DiMarco AF. High frequency spinal cord stimulation-New method to restore cough. Respir Physiol Neurobiol 2016, 232: 54–56.CrossRefPubMedPubMedCentral Kowalski KE, Romaniuk JR, Brose SW, Richmond MA, Kowalski T, DiMarco AF. High frequency spinal cord stimulation-New method to restore cough. Respir Physiol Neurobiol 2016, 232: 54–56.CrossRefPubMedPubMedCentral
117.
Zurück zum Zitat DiMarco AF, Geertman RT, Tabbaa K, Polito RR, Kowalski KE. Case report: Minimally invasive method to activate the expiratory muscles to restore cough. J Spinal Cord Med 2018, 41: 562–566.CrossRefPubMed DiMarco AF, Geertman RT, Tabbaa K, Polito RR, Kowalski KE. Case report: Minimally invasive method to activate the expiratory muscles to restore cough. J Spinal Cord Med 2018, 41: 562–566.CrossRefPubMed
118.
Zurück zum Zitat Nashold BS Jr, Friedman H. Dorsal column stimulation for control of pain. Preliminary report on 30 patients. J Neurosurg 1972, 36: 590–597.CrossRefPubMed Nashold BS Jr, Friedman H. Dorsal column stimulation for control of pain. Preliminary report on 30 patients. J Neurosurg 1972, 36: 590–597.CrossRefPubMed
119.
Zurück zum Zitat Meglio M, Cioni B, Rossi GF. Spinal cord stimulation in management of chronic pain. A 9-year experience. J Neurosurg 1989, 70: 519–524.CrossRefPubMed Meglio M, Cioni B, Rossi GF. Spinal cord stimulation in management of chronic pain. A 9-year experience. J Neurosurg 1989, 70: 519–524.CrossRefPubMed
120.
Zurück zum Zitat Buchhaas U, Koulousakis A, Nittner K. Experience with spinal cord stimulation (SCS) in the management of chronic pain in a traumatic transverse lesion syndrome. Neurosurg Rev 1989, 12 Suppl 1: 582–587.CrossRefPubMed Buchhaas U, Koulousakis A, Nittner K. Experience with spinal cord stimulation (SCS) in the management of chronic pain in a traumatic transverse lesion syndrome. Neurosurg Rev 1989, 12 Suppl 1: 582–587.CrossRefPubMed
121.
Zurück zum Zitat Meglio M, Cioni B, Prezioso A, Talamonti G. Spinal cord stimulation (SCS) in deafferentation pain. Pacing Clin Electrophysiol 1989, 12: 709–712.CrossRefPubMed Meglio M, Cioni B, Prezioso A, Talamonti G. Spinal cord stimulation (SCS) in deafferentation pain. Pacing Clin Electrophysiol 1989, 12: 709–712.CrossRefPubMed
122.
Zurück zum Zitat North RB, Kidd DH, Zahurak M, James CS, Long DM. Spinal cord stimulation for chronic, intractable pain: experience over two decades. Neurosurgery 1993, 32: 384–394.CrossRefPubMed North RB, Kidd DH, Zahurak M, James CS, Long DM. Spinal cord stimulation for chronic, intractable pain: experience over two decades. Neurosurgery 1993, 32: 384–394.CrossRefPubMed
123.
Zurück zum Zitat Tasker RR, DeCarvalho GT, Dolan EJ. Intractable pain of spinal cord origin: clinical features and implications for surgery. J Neurosurg 1992, 77: 373–378.CrossRefPubMed Tasker RR, DeCarvalho GT, Dolan EJ. Intractable pain of spinal cord origin: clinical features and implications for surgery. J Neurosurg 1992, 77: 373–378.CrossRefPubMed
124.
Zurück zum Zitat Cioni B, Meglio M, Pentimalli L, Visocchi M. Spinal cord stimulation in the treatment of paraplegic pain. J Neurosurg 1995, 82: 35–39.CrossRefPubMed Cioni B, Meglio M, Pentimalli L, Visocchi M. Spinal cord stimulation in the treatment of paraplegic pain. J Neurosurg 1995, 82: 35–39.CrossRefPubMed
125.
Zurück zum Zitat Kumar K, Toth C, Nath RK, Laing P. Epidural spinal cord stimulation for treatment of chronic pain–some predictors of success. A 15-year experience. Surg Neurol 1998, 50: 110–120.CrossRefPubMed Kumar K, Toth C, Nath RK, Laing P. Epidural spinal cord stimulation for treatment of chronic pain–some predictors of success. A 15-year experience. Surg Neurol 1998, 50: 110–120.CrossRefPubMed
126.
Zurück zum Zitat Shimoji K, Hokari T, Kano T, Tomita M, Kimura R, Watanabe S, et al. Management of intractable pain with percutaneous epidural spinal cord stimulation: differences in pain-relieving effects among diseases and sites of pain. Anesth Analg 1993, 77: 110–116.CrossRefPubMed Shimoji K, Hokari T, Kano T, Tomita M, Kimura R, Watanabe S, et al. Management of intractable pain with percutaneous epidural spinal cord stimulation: differences in pain-relieving effects among diseases and sites of pain. Anesth Analg 1993, 77: 110–116.CrossRefPubMed
127.
Zurück zum Zitat Levine AB, Parrent AG, MacDougall KW. Cervical spinal cord and dorsal nerve root stimulation for neuropathic upper limb pain. Can J Neurol Sci 2017, 44: 83–89.CrossRefPubMed Levine AB, Parrent AG, MacDougall KW. Cervical spinal cord and dorsal nerve root stimulation for neuropathic upper limb pain. Can J Neurol Sci 2017, 44: 83–89.CrossRefPubMed
128.
Zurück zum Zitat Brill S, Aryeh IG. Neuromodulation in the management of pain from brachial plexus injury. Pain Physician 2008, 11: 81–85.PubMed Brill S, Aryeh IG. Neuromodulation in the management of pain from brachial plexus injury. Pain Physician 2008, 11: 81–85.PubMed
129.
Zurück zum Zitat Richardson RR, Meyer PR, Cerullo LJ. Neurostimulation in the modulation of intractable paraplegic and traumatic neuroma pains. Pain 1980, 8: 75–84.CrossRefPubMed Richardson RR, Meyer PR, Cerullo LJ. Neurostimulation in the modulation of intractable paraplegic and traumatic neuroma pains. Pain 1980, 8: 75–84.CrossRefPubMed
130.
Zurück zum Zitat Barchini J, Tchachaghian S, Shamaa F, Jabbur SJ, Meyerson BA, Song Z, et al. Spinal segmental and supraspinal mechanisms underlying the pain-relieving effects of spinal cord stimulation: an experimental study in a rat model of neuropathy. Neuroscience 2012, 215: 196–208.CrossRefPubMed Barchini J, Tchachaghian S, Shamaa F, Jabbur SJ, Meyerson BA, Song Z, et al. Spinal segmental and supraspinal mechanisms underlying the pain-relieving effects of spinal cord stimulation: an experimental study in a rat model of neuropathy. Neuroscience 2012, 215: 196–208.CrossRefPubMed
131.
Zurück zum Zitat Sdrulla AD, Xu Q, He SQ, Tiwari V, Yang F, Zhang C, et al. Electrical stimulation of low-threshold afferent fibers induces a prolonged synaptic depression in lamina II dorsal horn neurons to high-threshold afferent inputs in mice. Pain 2015, 156: 1008–1017.PubMedPubMedCentral Sdrulla AD, Xu Q, He SQ, Tiwari V, Yang F, Zhang C, et al. Electrical stimulation of low-threshold afferent fibers induces a prolonged synaptic depression in lamina II dorsal horn neurons to high-threshold afferent inputs in mice. Pain 2015, 156: 1008–1017.PubMedPubMedCentral
132.
Zurück zum Zitat Yang F, Xu Q, Shu B, Tiwari V, He SQ, Vera-Portocarrero LP, et al. Activation of cannabinoid CB1 receptor contributes to suppression of spinal nociceptive transmission and inhibition of mechanical hypersensitivity by Abeta-fiber stimulation. Pain 2016, 157: 2582–2593.CrossRefPubMedPubMedCentral Yang F, Xu Q, Shu B, Tiwari V, He SQ, Vera-Portocarrero LP, et al. Activation of cannabinoid CB1 receptor contributes to suppression of spinal nociceptive transmission and inhibition of mechanical hypersensitivity by Abeta-fiber stimulation. Pain 2016, 157: 2582–2593.CrossRefPubMedPubMedCentral
133.
Zurück zum Zitat Zhang H, Xie W, Xie Y. Spinal cord injury triggers sensitization of wide dynamic range dorsal horn neurons in segments rostral to the injury. Brain Res 2005, 1055: 103–110.CrossRefPubMed Zhang H, Xie W, Xie Y. Spinal cord injury triggers sensitization of wide dynamic range dorsal horn neurons in segments rostral to the injury. Brain Res 2005, 1055: 103–110.CrossRefPubMed
134.
Zurück zum Zitat Hains BC, Willis WD, Hulsebosch CE. Temporal plasticity of dorsal horn somatosensory neurons after acute and chronic spinal cord hemisection in rat. Brain Res 2003, 970: 238–241.CrossRefPubMed Hains BC, Willis WD, Hulsebosch CE. Temporal plasticity of dorsal horn somatosensory neurons after acute and chronic spinal cord hemisection in rat. Brain Res 2003, 970: 238–241.CrossRefPubMed
135.
Zurück zum Zitat Reck TA, Landmann G. Successful spinal cord stimulation for neuropathic below-level spinal cord injury pain following complete paraplegia: a case report. Spinal Cord Ser Cases 2017, 3: 17049.CrossRefPubMedPubMedCentral Reck TA, Landmann G. Successful spinal cord stimulation for neuropathic below-level spinal cord injury pain following complete paraplegia: a case report. Spinal Cord Ser Cases 2017, 3: 17049.CrossRefPubMedPubMedCentral
136.
Zurück zum Zitat Eldabe S, Buchser E, Duarte RV. Complications of spinal cord stimulation and peripheral nerve stimulation techniques: a review of the literature. Pain Med 2016, 17: 325–336.PubMed Eldabe S, Buchser E, Duarte RV. Complications of spinal cord stimulation and peripheral nerve stimulation techniques: a review of the literature. Pain Med 2016, 17: 325–336.PubMed
137.
Zurück zum Zitat Deer TR, Mekhail N, Provenzano D, Pope J, Krames E, Leong M, et al. The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases: the Neuromodulation Appropriateness Consensus Committee. Neuromodulation 2014, 17: 515–550.CrossRefPubMed Deer TR, Mekhail N, Provenzano D, Pope J, Krames E, Leong M, et al. The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases: the Neuromodulation Appropriateness Consensus Committee. Neuromodulation 2014, 17: 515–550.CrossRefPubMed
138.
Zurück zum Zitat Cameron T. Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: a 20-year literature review. J Neurosurg 2004, 100: 254–267.PubMed Cameron T. Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: a 20-year literature review. J Neurosurg 2004, 100: 254–267.PubMed
139.
Zurück zum Zitat Levy R, Henderson J, Slavin K, Simpson BA, Barolat G, Shipley J, et al. Incidence and avoidance of neurologic complications with paddle type spinal cord stimulation leads. Neuromodulation 2011, 14: 412–422.CrossRefPubMed Levy R, Henderson J, Slavin K, Simpson BA, Barolat G, Shipley J, et al. Incidence and avoidance of neurologic complications with paddle type spinal cord stimulation leads. Neuromodulation 2011, 14: 412–422.CrossRefPubMed
140.
Zurück zum Zitat Shealy CN, Mortimer JT, Reswick JB. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg 1967, 46: 489–491.PubMed Shealy CN, Mortimer JT, Reswick JB. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg 1967, 46: 489–491.PubMed
141.
Zurück zum Zitat Franzini A, Ferroli P, Marras C, Broggi G. Huge epidural hematoma after surgery for spinal cord stimulation. Acta Neurochir (Wien) 2005, 147: 565–567.CrossRef Franzini A, Ferroli P, Marras C, Broggi G. Huge epidural hematoma after surgery for spinal cord stimulation. Acta Neurochir (Wien) 2005, 147: 565–567.CrossRef
142.
143.
Zurück zum Zitat Anderson M, Zheng Q, Dong X. Investigation of pain mechanisms by calcium imaging approaches. Neurosci Bull 2018, 34: 194–199.CrossRefPubMed Anderson M, Zheng Q, Dong X. Investigation of pain mechanisms by calcium imaging approaches. Neurosci Bull 2018, 34: 194–199.CrossRefPubMed
144.
Zurück zum Zitat Deer TR, Krames E, Mekhail N, Pope J, Leong M, Stanton-Hicks M, et al. The appropriate use of neurostimulation: new and evolving neurostimulation therapies and applicable treatment for chronic pain and selected disease states. Neuromodulation Appropriateness Consensus Committee. Neuromodulation 2014, 17: 599–615.CrossRefPubMed Deer TR, Krames E, Mekhail N, Pope J, Leong M, Stanton-Hicks M, et al. The appropriate use of neurostimulation: new and evolving neurostimulation therapies and applicable treatment for chronic pain and selected disease states. Neuromodulation Appropriateness Consensus Committee. Neuromodulation 2014, 17: 599–615.CrossRefPubMed
145.
Zurück zum Zitat Xie YF, Wang J, Bonin RP. Optogenetic exploration and modulation of pain processing. Exp Neurol 2018, 306: 117–121.CrossRefPubMed Xie YF, Wang J, Bonin RP. Optogenetic exploration and modulation of pain processing. Exp Neurol 2018, 306: 117–121.CrossRefPubMed
146.
Zurück zum Zitat Rahman MH, Nam Y, Kim JH, Lee WH, Suk K. Optogenetics of the spinal cord: use of channelrhodopsin proteins for interrogation of spinal cord circuits. Curr Protein Pept Sci 2018, 19: 714–724.CrossRefPubMed Rahman MH, Nam Y, Kim JH, Lee WH, Suk K. Optogenetics of the spinal cord: use of channelrhodopsin proteins for interrogation of spinal cord circuits. Curr Protein Pept Sci 2018, 19: 714–724.CrossRefPubMed
147.
Zurück zum Zitat Ropero Pelaez FJ, Taniguchi S. The Gate Theory of Pain revisited: modeling different pain conditions with a parsimonious neurocomputational model. Neural Plast 2016, 2016: 4131395.CrossRefPubMed Ropero Pelaez FJ, Taniguchi S. The Gate Theory of Pain revisited: modeling different pain conditions with a parsimonious neurocomputational model. Neural Plast 2016, 2016: 4131395.CrossRefPubMed
148.
Zurück zum Zitat Lempka SF, McIntyre CC, Kilgore KL, Machado AG. Computational analysis of kilohertz frequency spinal cord stimulation for chronic pain management. Anesthesiology 2015, 122: 1362–1376.CrossRefPubMed Lempka SF, McIntyre CC, Kilgore KL, Machado AG. Computational analysis of kilohertz frequency spinal cord stimulation for chronic pain management. Anesthesiology 2015, 122: 1362–1376.CrossRefPubMed
149.
Zurück zum Zitat Drew GM, Siddall PJ, Duggan AW. Mechanical allodynia following contusion injury of the rat spinal cord is associated with loss of GABAergic inhibition in the dorsal horn. Pain 2004, 109: 379–388.CrossRefPubMed Drew GM, Siddall PJ, Duggan AW. Mechanical allodynia following contusion injury of the rat spinal cord is associated with loss of GABAergic inhibition in the dorsal horn. Pain 2004, 109: 379–388.CrossRefPubMed
150.
Zurück zum Zitat Krishna V, Andrews H, Jin X, Yu J, Varma A, Wen X, et al. A contusion model of severe spinal cord injury in rats. J Vis Exp 2013, 78: e50111. Krishna V, Andrews H, Jin X, Yu J, Varma A, Wen X, et al. A contusion model of severe spinal cord injury in rats. J Vis Exp 2013, 78: e50111.
151.
Zurück zum Zitat King T, Qu C, Okun A, Mercado R, Ren J, Brion T, et al. Contribution of afferent pathways to nerve injury-induced spontaneous pain and evoked hypersensitivity. Pain 2011, 152: 1997–2005.CrossRefPubMedPubMedCentral King T, Qu C, Okun A, Mercado R, Ren J, Brion T, et al. Contribution of afferent pathways to nerve injury-induced spontaneous pain and evoked hypersensitivity. Pain 2011, 152: 1997–2005.CrossRefPubMedPubMedCentral
152.
Zurück zum Zitat Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 2010, 9: 807–819.CrossRefPubMed Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 2010, 9: 807–819.CrossRefPubMed
153.
Zurück zum Zitat Christensen MD, Hulsebosch CE. Chronic central pain after spinal cord injury. J Neurotrauma 1997, 14: 517–537.CrossRefPubMed Christensen MD, Hulsebosch CE. Chronic central pain after spinal cord injury. J Neurotrauma 1997, 14: 517–537.CrossRefPubMed
154.
Zurück zum Zitat Meier K. Spinal cord stimulation: Background and clinical application. Scand J Pain 2017, 5: 175–181.CrossRef Meier K. Spinal cord stimulation: Background and clinical application. Scand J Pain 2017, 5: 175–181.CrossRef
155.
Zurück zum Zitat Norrbrink BC, Lundeberg T. Non-pharmacological pain-relieving therapies in individuals with spinal cord injury: a patient perspective. Complement Ther Med 2004, 12: 189–197.CrossRef Norrbrink BC, Lundeberg T. Non-pharmacological pain-relieving therapies in individuals with spinal cord injury: a patient perspective. Complement Ther Med 2004, 12: 189–197.CrossRef
156.
Zurück zum Zitat Stroman PW, Khan HS, Bosma RL, Cotoi AI, Leung R, Cadotte DW, et al. Changes in pain processing in the spinal cord and brainstem after spinal cord injury characterized by functional magnetic resonance imaging. J Neurotrauma 2016, 33: 1450–1460.CrossRefPubMed Stroman PW, Khan HS, Bosma RL, Cotoi AI, Leung R, Cadotte DW, et al. Changes in pain processing in the spinal cord and brainstem after spinal cord injury characterized by functional magnetic resonance imaging. J Neurotrauma 2016, 33: 1450–1460.CrossRefPubMed
157.
Zurück zum Zitat Howell B, Lad SP, Grill WM. Evaluation of intradural stimulation efficiency and selectivity in a computational model of spinal cord stimulation. PLoS One 2014, 9: e114938.CrossRefPubMedPubMedCentral Howell B, Lad SP, Grill WM. Evaluation of intradural stimulation efficiency and selectivity in a computational model of spinal cord stimulation. PLoS One 2014, 9: e114938.CrossRefPubMedPubMedCentral
158.
Zurück zum Zitat Flouty OE, Oya H, Kawasaki H, Reddy CG, Fredericks DC, Gibson-Corley KN, et al. Intracranial somatosensory responses with direct spinal cord stimulation in anesthetized sheep. PLoS One 2013, 8: e56266.CrossRefPubMedPubMedCentral Flouty OE, Oya H, Kawasaki H, Reddy CG, Fredericks DC, Gibson-Corley KN, et al. Intracranial somatosensory responses with direct spinal cord stimulation in anesthetized sheep. PLoS One 2013, 8: e56266.CrossRefPubMedPubMedCentral
159.
Zurück zum Zitat Flouty O, Oya H, Kawasaki H, Wilson S, Reddy CG, Jeffery ND, et al. A new device concept for directly modulating spinal cord pathways: initial in vivo experimental results. Physiol Meas 2012, 33: 2003–2015.CrossRefPubMed Flouty O, Oya H, Kawasaki H, Wilson S, Reddy CG, Jeffery ND, et al. A new device concept for directly modulating spinal cord pathways: initial in vivo experimental results. Physiol Meas 2012, 33: 2003–2015.CrossRefPubMed
160.
Zurück zum Zitat Walters BC. Oscillating field stimulation in the treatment of spinal cord injury. PM R 2010, 2: S286–S291.CrossRefPubMed Walters BC. Oscillating field stimulation in the treatment of spinal cord injury. PM R 2010, 2: S286–S291.CrossRefPubMed
161.
Zurück zum Zitat Deer T, Kim C, Bowman R, Ranson M, Douglas CS, Tolentino W. Spinal cord stimulation as a method of reducing opioids in severe chronic pain: a case report and review of the literature. W V Med J 2010, 106: 56–59.PubMed Deer T, Kim C, Bowman R, Ranson M, Douglas CS, Tolentino W. Spinal cord stimulation as a method of reducing opioids in severe chronic pain: a case report and review of the literature. W V Med J 2010, 106: 56–59.PubMed
Metadaten
Titel
Spinal Cord Stimulation for Pain Treatment After Spinal Cord Injury
verfasst von
Qian Huang
Wanru Duan
Eellan Sivanesan
Shuguang Liu
Fei Yang
Zhiyong Chen
Neil C. Ford
Xueming Chen
Yun Guan
Publikationsdatum
01.06.2019
Verlag
Springer Singapore
Erschienen in
Neuroscience Bulletin / Ausgabe 3/2019
Print ISSN: 1673-7067
Elektronische ISSN: 1995-8218
DOI
https://doi.org/10.1007/s12264-018-0320-9

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

Kaum Vorteile durch intraarterielle Lyse während Thrombektomie

Nach der Thrombektomie kleinere Fragmente über eine intraarterielle Lyse auflösen – dies könnte die Schlaganfalltherapie verbessern. Zwei aktuelle Studien ergeben für die periprozedurale Lyse jedoch keine großen Vorteile. Die Frage, wie viel sie nützt, bleibt weiter offen.

Nasenstimulation lindert chronische Migräne

Wird die Naseninnenseite durch Vibrationen stimuliert, kann dies offenbar die Zahl der Migränetage von Menschen mit chronischer Migräne deutlich senken. Darauf deuten die Resultate einer randomisiert-kontrollierten deutsch-finnischen Untersuchung.

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.