Skip to main content
Erschienen in: DGNeurologie 6/2021

11.10.2021 | Neugeborenenscreening | CME Zertifizierte Fortbildung

Diagnostik und Therapie der spinalen Muskelatrophie (SMA) bei Erwachsenen

Die neuen therapeutischen Möglichkeiten im Überblick

verfasst von: N. Schloss, B. Wirth, T. Kruse, H. C. Lehmann, PD Dr. G. Wunderlich

Erschienen in: DGNeurologie | Ausgabe 6/2021

Einloggen, um Zugang zu erhalten

Zusammenfassung

Die proximale spinale Muskelatrophie (SMA) ist eine erbliche neuromuskuläre Erkrankung. Ihr klinisches Erscheinungsbild ist variabel mit progredienter Schwäche der Skelett‑, Schlund- und Atemmuskulatur. Ursächlich ist ein Mangel an SMN-Protein (SMN: „survival of motor neuron“) infolge des defekten SMN1-Gens auf Chromosom 5 durch homozygote Mutation/Deletion. Bis vor 4 Jahren stand keine kausale Therapie zu Verfügung, mittlerweile sind 3 Präparate (Nusinersen, Onasemnogen-Abeparvovec und Risdiplam) mit unterschiedlichen Therapieprinzipien (SMN2-Modifikation, SMN1-Gen-Ersatztherapie, Modifikation des Spleißvorgangs) und Applikationsarten (intrathekal, i.v., peroral) zugelassen. Die Kenntnis deren Vor- und Nachteile ist wichtig, um die klinische Versorgung zu optimieren. Die Pathogenese der SMA wird dargestellt, um darauf aufbauend die Wirkweisen der neuen SMN-assoziierten-Therapien zu erläutern. Zudem wird auf weitere Behandlungsmöglichkeiten und die Wichtigkeit des Neugeborenenscreenings eingegangen.
Literatur
1.
Zurück zum Zitat Wirth B (2000) An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 15(3):228–237PubMedCrossRef Wirth B (2000) An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 15(3):228–237PubMedCrossRef
2.
Zurück zum Zitat Lorson CL et al (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A 96(11):6307–6311PubMedPubMedCentralCrossRef Lorson CL et al (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A 96(11):6307–6311PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Monani UR et al (1999) A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet 8(7):1177–1183PubMedCrossRef Monani UR et al (1999) A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet 8(7):1177–1183PubMedCrossRef
5.
Zurück zum Zitat Feldkotter M et al (2002) Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70(2):358–368PubMedCrossRef Feldkotter M et al (2002) Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70(2):358–368PubMedCrossRef
6.
Zurück zum Zitat Wirth B et al (2020) Twenty-five years of spinal muscular atrophy research: from phenotype to genotype to therapy, and what comes next. Annu Rev Genomics Hum Genet 21:231–261PubMedCrossRef Wirth B et al (2020) Twenty-five years of spinal muscular atrophy research: from phenotype to genotype to therapy, and what comes next. Annu Rev Genomics Hum Genet 21:231–261PubMedCrossRef
7.
Zurück zum Zitat Kannan A et al (2020) ZPR1 prevents R-loop accumulation, upregulates SMN2 expression and rescues spinal muscular atrophy. Brain 143(1):69–93PubMedCrossRef Kannan A et al (2020) ZPR1 prevents R-loop accumulation, upregulates SMN2 expression and rescues spinal muscular atrophy. Brain 143(1):69–93PubMedCrossRef
8.
Zurück zum Zitat Wirth B, Mendoza-Ferreira N, Torres-Benito L (2017) Spinal muscular atrophy disease modifiers. In: Sumner CJ, Paushkin S, Ko C-P (Hrsg) Spinal muscular atrophy. Academic Press, , S 191–210CrossRef Wirth B, Mendoza-Ferreira N, Torres-Benito L (2017) Spinal muscular atrophy disease modifiers. In: Sumner CJ, Paushkin S, Ko C-P (Hrsg) Spinal muscular atrophy. Academic Press, , S 191–210CrossRef
10.
Zurück zum Zitat Bernal S et al (2011) Plastin 3 expression in discordant spinal muscular atrophy (SMA) siblings. Neuromuscul Disord 21(6):413–419PubMedCrossRef Bernal S et al (2011) Plastin 3 expression in discordant spinal muscular atrophy (SMA) siblings. Neuromuscul Disord 21(6):413–419PubMedCrossRef
11.
Zurück zum Zitat Riessland M et al (2017) Neurocalcin delta suppression protects against spinal muscular atrophy in humans and across species by restoring impaired endocytosis. Am J Hum Genet 100(2):297–315PubMedPubMedCentralCrossRef Riessland M et al (2017) Neurocalcin delta suppression protects against spinal muscular atrophy in humans and across species by restoring impaired endocytosis. Am J Hum Genet 100(2):297–315PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Fischer U, Liu Q, Dreyfuss G (1997) The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90(6):1023–1029PubMedCrossRef Fischer U, Liu Q, Dreyfuss G (1997) The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90(6):1023–1029PubMedCrossRef
14.
Zurück zum Zitat Pellizzoni L et al (1998) A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95(5):615–624PubMedCrossRef Pellizzoni L et al (1998) A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95(5):615–624PubMedCrossRef
15.
Zurück zum Zitat Singh RN et al (2017) Diverse role of survival motor neuron protein. Biochim Biophys Acta Gene Regul Mech 1860(3):299–315PubMedCrossRef Singh RN et al (2017) Diverse role of survival motor neuron protein. Biochim Biophys Acta Gene Regul Mech 1860(3):299–315PubMedCrossRef
16.
Zurück zum Zitat Wirth B, Brichta L, Hahnen E (2006) Spinal muscular atrophy: from gene to therapy. Semin Pediatr Neurol 13(2):121–131PubMedCrossRef Wirth B, Brichta L, Hahnen E (2006) Spinal muscular atrophy: from gene to therapy. Semin Pediatr Neurol 13(2):121–131PubMedCrossRef
18.
Zurück zum Zitat Boyd PJ, Gillingwater TH (2017) Axonal and neuromuscular junction pathology in spinal muscular atrophy. In: Sumner CJ, Paushkin S, Ko C-P (Hrsg) Spinal muscular atrophy. Academic Press, , S 133–151CrossRef Boyd PJ, Gillingwater TH (2017) Axonal and neuromuscular junction pathology in spinal muscular atrophy. In: Sumner CJ, Paushkin S, Ko C-P (Hrsg) Spinal muscular atrophy. Academic Press, , S 133–151CrossRef
19.
Zurück zum Zitat Mentis GZ et al (2011) Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Neuron 69(3):453–467PubMedPubMedCentralCrossRef Mentis GZ et al (2011) Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Neuron 69(3):453–467PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Simon CM et al (2019) Stasimon contributes to the loss of sensory synapses and motor neuron death in a mouse model of spinal muscular atrophy. Cell Rep 29(12):3885–3901.e5PubMedPubMedCentralCrossRef Simon CM et al (2019) Stasimon contributes to the loss of sensory synapses and motor neuron death in a mouse model of spinal muscular atrophy. Cell Rep 29(12):3885–3901.e5PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Boulisfane N et al (2011) Impaired minor tri-snRNP assembly generates differential splicing defects of U12-type introns in lymphoblasts derived from a type I SMA patient. Hum Mol Genet 20(4):641–648PubMedCrossRef Boulisfane N et al (2011) Impaired minor tri-snRNP assembly generates differential splicing defects of U12-type introns in lymphoblasts derived from a type I SMA patient. Hum Mol Genet 20(4):641–648PubMedCrossRef
24.
Zurück zum Zitat Rage F et al (2013) Genome-wide identification of mRNAs associated with the protein SMN whose depletion decreases their axonal localization. RNA 19(12):1755–1766PubMedPubMedCentralCrossRef Rage F et al (2013) Genome-wide identification of mRNAs associated with the protein SMN whose depletion decreases their axonal localization. RNA 19(12):1755–1766PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Baumer D et al (2009) Alternative splicing events are a late feature of pathology in a mouse model of spinal muscular atrophy. PLoS Genet 5(12):e1000773PubMedPubMedCentralCrossRef Baumer D et al (2009) Alternative splicing events are a late feature of pathology in a mouse model of spinal muscular atrophy. PLoS Genet 5(12):e1000773PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Bernabo P et al (2017) In vivo translatome profiling in spinal muscular atrophy reveals a role for SMN protein in ribosome biology. Cell Rep 21(4):953–965PubMedPubMedCentralCrossRef Bernabo P et al (2017) In vivo translatome profiling in spinal muscular atrophy reveals a role for SMN protein in ribosome biology. Cell Rep 21(4):953–965PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Hua Y et al (2011) Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 478(7367):123–126PubMedPubMedCentralCrossRef Hua Y et al (2011) Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 478(7367):123–126PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Kim JK et al (2020) Muscle-specific SMN reduction reveals motor neuron-independent disease in spinal muscular atrophy models. J Clin Invest 130(3):1271–1287PubMedPubMedCentralCrossRef Kim JK et al (2020) Muscle-specific SMN reduction reveals motor neuron-independent disease in spinal muscular atrophy models. J Clin Invest 130(3):1271–1287PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Verhaart IEC et al (2017) Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy—a literature review. Orphanet J Rare Dis 12(1):124PubMedPubMedCentralCrossRef Verhaart IEC et al (2017) Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy—a literature review. Orphanet J Rare Dis 12(1):124PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Wang CH et al (2007) Consensus statement for standard of care in spinal muscular atrophy. J Child Neurol 22(8):1027–1049PubMedCrossRef Wang CH et al (2007) Consensus statement for standard of care in spinal muscular atrophy. J Child Neurol 22(8):1027–1049PubMedCrossRef
32.
Zurück zum Zitat Hirtz D et al (2005) Challenges and opportunities in clinical trials for spinal muscular atrophy. Neurology 65(9):1352–1357PubMedCrossRef Hirtz D et al (2005) Challenges and opportunities in clinical trials for spinal muscular atrophy. Neurology 65(9):1352–1357PubMedCrossRef
33.
Zurück zum Zitat Ogino S, Wilson RB, Gold B (2004) New insights on the evolution of the SMN1 and SMN2 region: simulation and meta-analysis for allele and haplotype frequency calculations. Eur J Hum Genet 12(12):1015–1023PubMedCrossRef Ogino S, Wilson RB, Gold B (2004) New insights on the evolution of the SMN1 and SMN2 region: simulation and meta-analysis for allele and haplotype frequency calculations. Eur J Hum Genet 12(12):1015–1023PubMedCrossRef
34.
Zurück zum Zitat Calucho M et al (2018) Correlation between SMA type and SMN2 copy number revisited: an analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul Disord 28(3):208–215PubMedCrossRef Calucho M et al (2018) Correlation between SMA type and SMN2 copy number revisited: an analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul Disord 28(3):208–215PubMedCrossRef
35.
Zurück zum Zitat Rudnik-Schoneborn S et al (2009) Genotype-phenotype studies in infantile spinal muscular atrophy (SMA) type I in Germany: implications for clinical trials and genetic counselling. Clin Genet 76(2):168–178PubMedCrossRef Rudnik-Schoneborn S et al (2009) Genotype-phenotype studies in infantile spinal muscular atrophy (SMA) type I in Germany: implications for clinical trials and genetic counselling. Clin Genet 76(2):168–178PubMedCrossRef
36.
Zurück zum Zitat Mercuri E et al (2018) Diagnosis and management of spinal muscular atrophy: part 1: recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 28(2):103–115PubMedCrossRef Mercuri E et al (2018) Diagnosis and management of spinal muscular atrophy: part 1: recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 28(2):103–115PubMedCrossRef
37.
Zurück zum Zitat Finkel RS et al (2018) Diagnosis and management of spinal muscular atrophy: part 2: pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul Disord 28(3):197–207PubMedCrossRef Finkel RS et al (2018) Diagnosis and management of spinal muscular atrophy: part 2: pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul Disord 28(3):197–207PubMedCrossRef
38.
Zurück zum Zitat Russman BS (2007) Spinal muscular atrophy: clinical classification and disease heterogeneity. J Child Neurol 22(8):946–951PubMedCrossRef Russman BS (2007) Spinal muscular atrophy: clinical classification and disease heterogeneity. J Child Neurol 22(8):946–951PubMedCrossRef
40.
Zurück zum Zitat Oh J et al (2011) Neurogenic muscle hypertrophy in type III spinal muscular atrophy. J Neurol Sci 308(1–2):147–148PubMedCrossRef Oh J et al (2011) Neurogenic muscle hypertrophy in type III spinal muscular atrophy. J Neurol Sci 308(1–2):147–148PubMedCrossRef
41.
Zurück zum Zitat Yiu EM et al (2008) Adolescent spinal muscular atrophy with calf hypertrophy and a deletion in the SMN gene. Muscle Nerve 38(1):930–932PubMedCrossRef Yiu EM et al (2008) Adolescent spinal muscular atrophy with calf hypertrophy and a deletion in the SMN gene. Muscle Nerve 38(1):930–932PubMedCrossRef
42.
Zurück zum Zitat Granger MW et al (1999) Masticatory muscle function in patients with spinal muscular atrophy. Am J Orthod Dentofacial Orthop 115(6):697–702PubMedCrossRef Granger MW et al (1999) Masticatory muscle function in patients with spinal muscular atrophy. Am J Orthod Dentofacial Orthop 115(6):697–702PubMedCrossRef
43.
Zurück zum Zitat van Bruggen HW et al (2016) Mandibular dysfunction as a reflection of bulbar involvement in SMA type 2 and 3. Neurology 86(6):552–559PubMedCrossRef van Bruggen HW et al (2016) Mandibular dysfunction as a reflection of bulbar involvement in SMA type 2 and 3. Neurology 86(6):552–559PubMedCrossRef
44.
Zurück zum Zitat Eggermann K et al (2020) Spinal muscular atrophy (5qSMA): best practice of diagnostics, newborn screening and therapy. medgen 32(3):263–272 Eggermann K et al (2020) Spinal muscular atrophy (5qSMA): best practice of diagnostics, newborn screening and therapy. medgen 32(3):263–272
45.
Zurück zum Zitat Zühlke C et al (2016) Präimplantationsdiagnostik. medgen 28(3):304–309CrossRef Zühlke C et al (2016) Präimplantationsdiagnostik. medgen 28(3):304–309CrossRef
46.
Zurück zum Zitat Alsaman AS, Alshaikh NM (2013) Type III spinal muscular atrophy mimicking muscular dystrophies. Pediatr Neurol 48(5):363–366PubMedCrossRef Alsaman AS, Alshaikh NM (2013) Type III spinal muscular atrophy mimicking muscular dystrophies. Pediatr Neurol 48(5):363–366PubMedCrossRef
50.
Zurück zum Zitat Hua Y et al (2010) Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 24(15):1634–1644PubMedPubMedCentralCrossRef Hua Y et al (2010) Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 24(15):1634–1644PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Mercuri E et al (2017) Interim analysis of the phase 3 CHERISH study evaluating nusinersen in patients with later-onset spinal muscular atrophy (SMA): primary and descriptive secondary endpoints. Eur J Paediatr Neurol 21:e15CrossRef Mercuri E et al (2017) Interim analysis of the phase 3 CHERISH study evaluating nusinersen in patients with later-onset spinal muscular atrophy (SMA): primary and descriptive secondary endpoints. Eur J Paediatr Neurol 21:e15CrossRef
52.
Zurück zum Zitat Schneider E et al (2017) Nusinersen in symptomatic children with later-onset spinal muscular atrophy (SMA): design of the phase 3 CHERISH study (P3.184). Neurology 88(16):P3–184 Schneider E et al (2017) Nusinersen in symptomatic children with later-onset spinal muscular atrophy (SMA): design of the phase 3 CHERISH study (P3.184). Neurology 88(16):P3–184
53.
Zurück zum Zitat Finkel RS et al (2016) Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388(10063):3017–3026PubMedCrossRef Finkel RS et al (2016) Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388(10063):3017–3026PubMedCrossRef
54.
Zurück zum Zitat Finkel RS et al (2017) Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med 377(18):1723–1732PubMedCrossRef Finkel RS et al (2017) Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med 377(18):1723–1732PubMedCrossRef
55.
Zurück zum Zitat Mercuri E et al (2018) Diagnosis and management of spinal muscular atrophy: part 1: recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 28(2):103–115PubMedCrossRef Mercuri E et al (2018) Diagnosis and management of spinal muscular atrophy: part 1: recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 28(2):103–115PubMedCrossRef
56.
Zurück zum Zitat De Vivo DC et al (2019) Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: interim efficacy and safety results from the phase 2 NURTURE study. Neuromuscul Disord 29(11):842–856PubMedPubMedCentralCrossRef De Vivo DC et al (2019) Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: interim efficacy and safety results from the phase 2 NURTURE study. Neuromuscul Disord 29(11):842–856PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Darras BT et al (2019) Nusinersen in later-onset spinal muscular atrophy: long-term results from the phase 1/2 studies. Neurology 92(21):e2492–e2506PubMedPubMedCentralCrossRef Darras BT et al (2019) Nusinersen in later-onset spinal muscular atrophy: long-term results from the phase 1/2 studies. Neurology 92(21):e2492–e2506PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Montes J et al (2019) Nusinersen improves walking distance and reduces fatigue in later-onset spinal muscular atrophy. Muscle Nerve 60(4):409–414PubMedPubMedCentralCrossRef Montes J et al (2019) Nusinersen improves walking distance and reduces fatigue in later-onset spinal muscular atrophy. Muscle Nerve 60(4):409–414PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Walter MC et al (2019) Safety and treatment effects of nusinersen in longstanding adult 5q-SMA type 3—a prospective observational study. J Neuromuscul Dis 6(4):453–465PubMedPubMedCentralCrossRef Walter MC et al (2019) Safety and treatment effects of nusinersen in longstanding adult 5q-SMA type 3—a prospective observational study. J Neuromuscul Dis 6(4):453–465PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Hagenacker T et al (2020) Nusinersen in adults with 5q spinal muscular atrophy: a non-interventional, multicentre, observational cohort study. Lancet Neurol 19(4):317–325PubMedCrossRef Hagenacker T et al (2020) Nusinersen in adults with 5q spinal muscular atrophy: a non-interventional, multicentre, observational cohort study. Lancet Neurol 19(4):317–325PubMedCrossRef
61.
Zurück zum Zitat Szabó L et al (2020) Efficacy of nusinersen in type 1, 2 and 3 spinal muscular atrophy: real world data from Hungarian patients. Eur J Paediatr Neurol 27:37–42PubMedCrossRef Szabó L et al (2020) Efficacy of nusinersen in type 1, 2 and 3 spinal muscular atrophy: real world data from Hungarian patients. Eur J Paediatr Neurol 27:37–42PubMedCrossRef
62.
Zurück zum Zitat Maggi L et al (2020) Nusinersen safety and effects on motor function in adult spinal muscular atrophy type 2 and 3. J Neurol Neurosurg Psychiatry 91(11):1166–1174PubMedCrossRef Maggi L et al (2020) Nusinersen safety and effects on motor function in adult spinal muscular atrophy type 2 and 3. J Neurol Neurosurg Psychiatry 91(11):1166–1174PubMedCrossRef
63.
Zurück zum Zitat Lavie M et al (2021) Nusinersen for spinal muscular atrophy type 1: real-world respiratory experience. Pediatr Pulmonol 56(1):291–298PubMedCrossRef Lavie M et al (2021) Nusinersen for spinal muscular atrophy type 1: real-world respiratory experience. Pediatr Pulmonol 56(1):291–298PubMedCrossRef
64.
Zurück zum Zitat Kirschner J et al (2020) European ad-hoc consensus statement on gene replacement therapy for spinal muscular atrophy. Eur J Paediatr Neurol 28:38–43PubMedPubMedCentralCrossRef Kirschner J et al (2020) European ad-hoc consensus statement on gene replacement therapy for spinal muscular atrophy. Eur J Paediatr Neurol 28:38–43PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Bevan AK et al (2011) Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol Ther 19(11):1971–1980PubMedPubMedCentralCrossRef Bevan AK et al (2011) Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol Ther 19(11):1971–1980PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Lowes LP et al (2019) Impact of age and motor function in a phase 1/2A study of infants with SMA type 1 receiving single-dose gene replacement therapy. Pediatr Neurol 98:39–45PubMedCrossRef Lowes LP et al (2019) Impact of age and motor function in a phase 1/2A study of infants with SMA type 1 receiving single-dose gene replacement therapy. Pediatr Neurol 98:39–45PubMedCrossRef
67.
Zurück zum Zitat Mendell JR et al (2017) Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 377(18):1713–1722PubMedCrossRef Mendell JR et al (2017) Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 377(18):1713–1722PubMedCrossRef
68.
Zurück zum Zitat Mendell JR et al (2018) AVXS-101 phase 1 gene replacement therapy clinical trial in SMA type 1: continued event free survival and achievement of developmental milestones. Neurology 90:29.001 Mendell JR et al (2018) AVXS-101 phase 1 gene replacement therapy clinical trial in SMA type 1: continued event free survival and achievement of developmental milestones. Neurology 90:29.001
69.
Zurück zum Zitat Day JW et al (2021) Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 20(4):284–293PubMedCrossRef Day JW et al (2021) Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 20(4):284–293PubMedCrossRef
70.
Zurück zum Zitat Ziegler A et al (2020) Recommendations for gene therapy of spinal muscular atrophy with onasemnogene abeparvovec-AVXS-101 : consensus paper of the German representatives of the society for pediatric neurology (GNP) and the German treatment centers with collaboration of the medical scientific advisory board of the German society for muscular diseases (DGM). Nervenarzt 91(6):518–529PubMedCrossRef Ziegler A et al (2020) Recommendations for gene therapy of spinal muscular atrophy with onasemnogene abeparvovec-AVXS-101 : consensus paper of the German representatives of the society for pediatric neurology (GNP) and the German treatment centers with collaboration of the medical scientific advisory board of the German society for muscular diseases (DGM). Nervenarzt 91(6):518–529PubMedCrossRef
72.
Zurück zum Zitat Day JW et al (2021) Adeno-associated virus serotype 9 antibodies in patients screened for treatment with onasemnogene abeparvovec. Mol Ther Methods Clin Dev 21:76–82PubMedPubMedCentralCrossRef Day JW et al (2021) Adeno-associated virus serotype 9 antibodies in patients screened for treatment with onasemnogene abeparvovec. Mol Ther Methods Clin Dev 21:76–82PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Poirier A et al (2018) Risdiplam distributes and increases SMN protein in both the central nervous system and peripheral organs. Pharmacol Res Perspect 6(6):e447–e447PubMedPubMedCentralCrossRef Poirier A et al (2018) Risdiplam distributes and increases SMN protein in both the central nervous system and peripheral organs. Pharmacol Res Perspect 6(6):e447–e447PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Ratni H et al (2018) Discovery of risdiplam, a selective survival of motor neuron-2 (SMN2) gene splicing modifier for the treatment of spinal muscular atrophy (SMA). J Med Chem 61(15):6501–6517PubMedCrossRef Ratni H et al (2018) Discovery of risdiplam, a selective survival of motor neuron-2 (SMN2) gene splicing modifier for the treatment of spinal muscular atrophy (SMA). J Med Chem 61(15):6501–6517PubMedCrossRef
76.
Zurück zum Zitat Baranello G et al (2021) Risdiplam in type 1 spinal muscular atrophy. N Engl J Med 384(10):915–923PubMedCrossRef Baranello G et al (2021) Risdiplam in type 1 spinal muscular atrophy. N Engl J Med 384(10):915–923PubMedCrossRef
77.
Zurück zum Zitat Servais L et al (2019) FIREFISH part 1: survival, ventilation and swallowing ability in infants with type 1 SMA receiving risdiplam (RG7916)(S25. 008). AAN Enterprises, Servais L et al (2019) FIREFISH part 1: survival, ventilation and swallowing ability in infants with type 1 SMA receiving risdiplam (RG7916)(S25. 008). AAN Enterprises,
78.
Zurück zum Zitat Hwee DT et al (2015) The small-molecule fast skeletal troponin activator, CK-2127107, improves exercise tolerance in a rat model of heart failure. J Pharmacol Exp Ther 353(1):159–168PubMedCrossRef Hwee DT et al (2015) The small-molecule fast skeletal troponin activator, CK-2127107, improves exercise tolerance in a rat model of heart failure. J Pharmacol Exp Ther 353(1):159–168PubMedCrossRef
80.
Zurück zum Zitat Ramdas S, Servais L (2020) New treatments in spinal muscular atrophy: an overview of currently available data. Expert Opin Pharmacother 21(3):307–315PubMedCrossRef Ramdas S, Servais L (2020) New treatments in spinal muscular atrophy: an overview of currently available data. Expert Opin Pharmacother 21(3):307–315PubMedCrossRef
81.
Zurück zum Zitat Long KK et al (2019) Specific inhibition of myostatin activation is beneficial in mouse models of SMA therapy. Hum Mol Genet 28(7):1076–1089PubMedCrossRef Long KK et al (2019) Specific inhibition of myostatin activation is beneficial in mouse models of SMA therapy. Hum Mol Genet 28(7):1076–1089PubMedCrossRef
82.
Zurück zum Zitat Stam M et al (2018) Protocol for a phase II, monocentre, double-blind, placebo-controlled, cross-over trial to assess efficacy of pyridostigmine in patients with spinal muscular atrophy types 2–4 (SPACE trial). BMJ Open 8(7):e19932PubMedPubMedCentralCrossRef Stam M et al (2018) Protocol for a phase II, monocentre, double-blind, placebo-controlled, cross-over trial to assess efficacy of pyridostigmine in patients with spinal muscular atrophy types 2–4 (SPACE trial). BMJ Open 8(7):e19932PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Wadman RI et al (2020) Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 1(1):Cd6282PubMed Wadman RI et al (2020) Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 1(1):Cd6282PubMed
84.
Zurück zum Zitat Bordet T et al (2010) Olesoxime (TRO19622): a novel mitochondrial-targeted neuroprotective compound. Pharmaceuticals (Basel) 3(2):345–368CrossRef Bordet T et al (2010) Olesoxime (TRO19622): a novel mitochondrial-targeted neuroprotective compound. Pharmaceuticals (Basel) 3(2):345–368CrossRef
85.
Zurück zum Zitat Bertini E et al (2017) Safety and efficacy of olesoxime in patients with type 2 or non-ambulatory type 3 spinal muscular atrophy: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol 16(7):513–522PubMedCrossRef Bertini E et al (2017) Safety and efficacy of olesoxime in patients with type 2 or non-ambulatory type 3 spinal muscular atrophy: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol 16(7):513–522PubMedCrossRef
86.
Zurück zum Zitat Sansone VA et al (2015) 1st Italian SMA family association consensus meeting: management and recommendations for respiratory involvement in spinal muscular atrophy (SMA) types I–III, Rome, Italy, 30-31 january 2015. Neuromuscul Disord 25(12):979–989PubMedCrossRef Sansone VA et al (2015) 1st Italian SMA family association consensus meeting: management and recommendations for respiratory involvement in spinal muscular atrophy (SMA) types I–III, Rome, Italy, 30-31 january 2015. Neuromuscul Disord 25(12):979–989PubMedCrossRef
87.
Zurück zum Zitat Frimberger V (2019) Skoliose bei mehrfach behinderten Kindern und Jugendlichen. Monatsschr Kinderheilkd 167(8):696–703CrossRef Frimberger V (2019) Skoliose bei mehrfach behinderten Kindern und Jugendlichen. Monatsschr Kinderheilkd 167(8):696–703CrossRef
88.
Zurück zum Zitat Granata C et al (1989) Spinal muscular atrophy: natural history and orthopaedic treatment of scoliosis. Spine (Phila Pa 1976) 14(7):760–762CrossRef Granata C et al (1989) Spinal muscular atrophy: natural history and orthopaedic treatment of scoliosis. Spine (Phila Pa 1976) 14(7):760–762CrossRef
89.
Zurück zum Zitat Merlini L et al (1989) Scoliosis in spinal muscular atrophy: natural history and management. Dev Med Child Neurol 31(4):501–508PubMedCrossRef Merlini L et al (1989) Scoliosis in spinal muscular atrophy: natural history and management. Dev Med Child Neurol 31(4):501–508PubMedCrossRef
90.
91.
Zurück zum Zitat Czibere L et al (2020) High-throughput genetic newborn screening for spinal muscular atrophy by rapid nucleic acid extraction from dried blood spots and 384-well qPCR. Eur J Hum Genet 28(1):23–30PubMedCrossRef Czibere L et al (2020) High-throughput genetic newborn screening for spinal muscular atrophy by rapid nucleic acid extraction from dried blood spots and 384-well qPCR. Eur J Hum Genet 28(1):23–30PubMedCrossRef
95.
Zurück zum Zitat Glascock J et al (2020) Revised recommendations for the treatment of infants diagnosed with spinal muscular atrophy via newborn screening who have 4 copies of SMN2. J Neuromuscul Dis 7(2):97–100PubMedPubMedCentralCrossRef Glascock J et al (2020) Revised recommendations for the treatment of infants diagnosed with spinal muscular atrophy via newborn screening who have 4 copies of SMN2. J Neuromuscul Dis 7(2):97–100PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Glascock J et al (2018) Treatment algorithm for infants diagnosed with spinal muscular atrophy through newborn screening. J Neuromuscul Dis 5(2):145–158PubMedPubMedCentralCrossRef Glascock J et al (2018) Treatment algorithm for infants diagnosed with spinal muscular atrophy through newborn screening. J Neuromuscul Dis 5(2):145–158PubMedPubMedCentralCrossRef
Metadaten
Titel
Diagnostik und Therapie der spinalen Muskelatrophie (SMA) bei Erwachsenen
Die neuen therapeutischen Möglichkeiten im Überblick
verfasst von
N. Schloss
B. Wirth
T. Kruse
H. C. Lehmann
PD Dr. G. Wunderlich
Publikationsdatum
11.10.2021
Verlag
Springer Medizin
Erschienen in
DGNeurologie / Ausgabe 6/2021
Print ISSN: 2524-3446
Elektronische ISSN: 2524-3454
DOI
https://doi.org/10.1007/s42451-021-00386-8

Weitere Artikel der Ausgabe 6/2021

DGNeurologie 6/2021 Zur Ausgabe

Magazin

Magazin

Mitteilungen der Deutschen Gesellschaft für Neurologie

Mitteilungen der Deutschen Gesellschaft für Neurologie

Neu in den Fachgebieten Neurologie und Psychiatrie