Skip to main content

01.12.2016 | Case report | Ausgabe 1/2016 Open Access

BMC Endocrine Disorders 1/2016

Splicing analysis of CYP11B1 mutation in a family affected with 11β-hydroxylase deficiency: case report

BMC Endocrine Disorders > Ausgabe 1/2016
Pattaranatcha Charnwichai, Patra Yeetong, Kanya Suphapeetiporn, Vichit Supornsilchai, Taninee Sahakitrungruang, Vorasuk Shotelersuk



Congenital adrenal hyperplasia (CAH) due to steroid 11β-hydroxylase deficiency (11β-OHD) is a rare form of CAH associated with low renin hypertension, hypokalemia, hyperandrogenemia and ambiguous genitalia in affected females. Herein we describe the clinical, hormonal and molecular characteristics of two Uzbekistan siblings with 11β-OHD and analyze the effects of a splicing mutation.

Case presentation

A 46,XX girl presented with genital ambiguity and low renin hypertension; her 46,XY brother presented with precocious puberty. Hormonal studies suggested 11β-OHD. Mutation analysis was performed by PCR followed by Sanger sequencing of the entire coding regions and their flanking introns of the CYP11B1 gene. Mutation analysis showed that both patients were compound heterozygous for IVS7 + 1G > A, and c.421C > T. Although the identified mutations have been previously described, this is, to our knowledge, the first report of these mutations in compound heterozygotes. A minigene assay was used to determine the effects of the splicing mutation. The constructs containing either the wild-type or the splice-site mutant CYP11B1 genomic DNA of exons-introns 6–9 were transfected into COS-7 cells; subsequently, RNA splicing was assessed by reversed transcribed-PCR of CYP11B1 complementary DNA. The minigene assay revealed that the IVS7 + 1G > A mutation resulted in two shorter incorrectly spliced products; one skipping the exon 7 and the other skipping the exons 7–8. The c.421C > T mutation leads to the introduction of a premature stop codon at residue 141 (p.R141X). These mutations are expected to code non-functional proteins.


Compound heterozygous mutations (IVS7 + 1G > A and p.R141X) in the CYP11B1 gene were found to cause 11β-OHD. The IVS7 + 1G > A mutation causes aberrant splicing of CYP11B1 leading to exon skipping. This finding could facilitate the future novel therapies targeted on splicing modulation to treat human disease.
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2016

BMC Endocrine Disorders 1/2016 Zur Ausgabe

Neu im Fachgebiet Innere Medizin

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Innere Medizin und bleiben Sie gut informiert – ganz bequem per eMail.

© Springer Medizin