Skip to main content
Erschienen in: BMC Endocrine Disorders 1/2020

Open Access 01.12.2020 | Case report

Spontaneous fertility and variable spectrum of reproductive phenotype in a family with adult-onset X-linked adrenal insufficiency harboring a novel DAX-1/NR0B1 mutation

verfasst von: Michelle Cerutti C. Vargas, Felipe Scipião Moura, Cecília P. Elias, Sara R. Carvalho, Nelson Rassi, Ilda S. Kunii, Magnus R. Dias-da-Silva, Flavia Amanda Costa-Barbosa

Erschienen in: BMC Endocrine Disorders | Ausgabe 1/2020

Abstract

Background

Adrenal hypoplasia congenita (AHC) is an X-linked disorder that affects the adrenal cortex and hypothalamus-pituitary-gonadal axis (HPG), leading to primary adrenocortical insufficiency (PAI) and hypogonadotropic hypogonadism. AHC is caused by a mutation in the DAX-1 gene (NR0B1). More commonly, this disease is characterized by early-onset PAI, with symptoms in the first months of life. However, a less severe phenotype termed late-onset AHC has been described, as PAI signs and symptoms may begin in adolescence and adulthood. Here we describe a family report of a novel mutation within NR0B1 gene and variable reproductive phenotypes, including spontaneous fertility, in a very late-onset X-linked AHC kindred.

Case presentation

Three affected maternal male relatives had confirmed PAI diagnosis between 30 y and at late 64 y. The X-linked pattern has made the endocrinology team to AHC suspicion. Regarding the HPG axis, all males presented a distinct degree of testosterone deficiency and fertility phenotypes, varying from a variable degree of hypogonadism, oligoasthenoteratozoospermia to spontaneous fertility. Interestingly, the other five maternal male relatives unexpectedly died during early adulthood, most likely due to undiagnosed PAI/adrenal crisis as the probable cause of their premature deaths. Sequencing analysis of the NR0B1 gene has shown a novel NR0B1 mutation (p.Tyr378Cys) that segregated in three AHC family members.

Conclusions

NR0B1 p.Tyr378Cys segregates in an AHC family with a variable degree of adrenal and gonadal phenotypes, and its hemizygous trait explains the disease in affected family members. We recommend that NR0B1 mutation carriers, even those that are allegedly asymptomatic, be carefully monitored while reinforcing education to prevent PAI and consider early sperm banking when spermatogenesis still viable.
Hinweise
Michelle Cerutti C. Vargas and Felipe Scipião Moura are co-first authorship

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ACTH
Adrenocorticotropic hormone
AHC
Adrenal hypoplasia congenita
BMI
Body Mass Index
CT
Computed Tomography
DAX-1
Dosage-sensitive sex reversal - AHC critical region on the X-chromosome 1
DNA
Deoxyribonucleic acid
ER
Emergency room
FSH
Follicle stimulating hormone
HH
Hypogonadotropic hypogonadism
HPG
Hypothalamus-pituitary-gonadal
LBD
Ligand binding domain
LH
Luteinizing hormone
NA
Not Available
NR0B1
Nuclear receptor subfamily 0 group B member 1
PAI
Primary adrenocortical insufficiency
SF-1
Steroidogenic factor 1
TESE-ICSI
Testicular sperm extraction - Intracytoplasmic sperm injection
TT
Total testosterone

Background

Adrenal hypoplasia congenita (AHC) is an X-linked disorder that affects the adrenal cortex permanent zones and hypothalamus-pituitary-gonadal (HPG) axis, leading to primary adrenocortical insufficiency (PAI) and hypogonadotropic hypogonadism (HH) [1]. This rare condition is caused by a mutation in the DAX-1gene (dosage-sensitive sex reversal-AHC critical region on the X-chromosome 1), also called the Nuclear Receptor Subfamily 0 Group B Member (NR0B1 gene) [13]. This gene is highly expressed in the developing urogenital ridge, pituitary, hypothalamus, gonads and adrenal cortex [46]. Classically, AHC with complete loss-of-function NR0B1 mutations is characterized by early-onset PAI, with symptoms in the first months of life. However, a less severe phenotype termed late-onset AHC has been described, as PAI signs and symptoms may begin later in adolescence and/or adulthood [710]. Isolated mineralocorticoid deficiency can also be considered a milder phenotypic presentation [2, 11, 12].
In regards to pubertal aspects, most frequently, boys fail to enter puberty as a consequence of a combination of hypothalamic and/or gonadotropin pituitary dysfunction, resulting in permanent HH. In addition, infertility may result from primary testicular Sertoli cell injury [13] in a progressive fashion [14]. All these characteristics suggest that AHC is a highly variable disease.
Herein, we report a kindred with late-onset X-linked AHC harboring a novel NR0B1 mutation, in which we have observed high variability of adrenal and gonadal manifestation, thus broadening the puzzling nature of AHC.

Case presentation

The index case is a male, 41 y (Fig. 1a: III.5), was admitted to the State General Hospital Emergency Department with an adrenal crisis due to irregular glucocorticoid and mineralocorticoid therapy for PAI. Since 30 y, he has been presenting with progressive weight loss, salt craving, and cutaneous hyperpigmentation. Although he allegedly had normal pubertal development, since he was 25 y, he has been complaining about erectile dysfunction and decreased libido. Physical examination was remarkable for cutaneous hyperpigmentation and decreased testicular volume (3 ml bilateral) and normal pubic hair distribution. Both height and span were 164 cm, body mass index (BMI) at 28 kg/m2. Laboratory results were compatible with PAI (Table 1). Adrenal antibodies were negative. HPG axis evaluation showed low total testosterone (TT) at 72 ng/dL, Follicle stimulating hormone (FSH) at 25 mUI/mL and Luteinizing hormone (LH) at 3.4 mUI/mL, and undetectable inhibin-B (see Table 1 for reference ranges). Computed Tomography (CT) revealed an important volume reduction in the adrenal glands (Fig. 2).
Table 1
Summary of the clinical and lab findings observed in p.Tyr378Cys Brazilian kindred presenting with very late-onset primary adrenocortical insufficiency and distinct reproductive phenotypes
Clinical and Laboratory Feature
Index Case
Affected Uncle
Affected brother
Age at PAI diagnosis (years)
40
64
36
Age at diagnosis of hypogonadism (years)
41
58
Cortisol (3–20 mcg/dL)
2.2
1.5
0.6
ACTH (<46 pg/mL)
1151
1012
>1250
Testosterone (220–715 ng/dL)
72
135
784
SHBG (11.2–78.1 nmol/L)
NA
NA
60
LH (0.6–12 mUI/mL)
3.4
13
3.3
FSH (0.9–12 mUI/mL)
25 (1.4–18)
24 (0.9–12)
13 (0.9–12)
Inhibin B (11–369 pg/mL)
< 4.8
< 4.8
63
Spermogram
NA
Azoospermia
Severe oligospermia, asthenospermia, teratospermia
ACTH Adrenocorticotropic hormone, SHBG Sex hormone biding globulin, LH Luteinizing hormone, FSH Follicle-stimulating hormone, PAI Primary Adrenal Insufficiency, NA Not available
Few months after index case PAI diagnosis, maternal index’s uncle (Fig. 1a: II.8), 64 y, presented at the Emergency Room (ER) at Countryside Hospital due to refractory hypotension. PAI diagnosis was then confirmed in the presence of hyperpigmentation, hyponatraemia, hypokalaemia, persistent nausea, low cortisol, and increased Adrenocorticotropic hormone (ACTH) levels (Table 1). Six years before PAI diagnosis was complaining about hypogonadism symptoms (e.g., low libido and erectile dysfunction), but he has declined any additional medical investigation. Physical examination at the ER demonstrated bilaterally reduced testicular volume (4 mL) and normal pubic hair. Height was 178 cm, span 177 cm, and BMI at 35 kg/m2. He fathered a healthy son at 39 y. Laboratory findings showed low TT at 135 ng/dL, FSH at 24 mUI/mL, and LH at 13 mUI/mL, plus undetectable inhibin-B and azoospermia (Table 1).
The proband’s brother (affected brother) (Fig. 1a: III.6) was diagnosed with PAI at 36 y, practically at the same time as his uncle. Dizziness, involuntary weight loss, hyperpigmentation, and fatigue were present since his early 30s. He has recently married and fathered a healthy son at 32 y. Height is 172 cm, span is 172 cm, and BMI is 21 kg/m2. The testicular volume was 12 mL bilaterally with normal pubic hair. Laboratory results have shown both normal TT (784 ng/dL) and inhibin-B levels (63 pg/mL), but severe oligoasthenoteratozoospermia was detected (Table 1). Interestingly, the other five male family members unexpectedly died in adolescence or adulthood between 14 and 46 y (Fig. 1a: II.3, II.5, II.7, III.1, III.8). Although no precise investigation was performed, family reports of adrenal insufficiency symptoms in these members led us to conclude that undiagnosed adrenal crisis was probably the cause of their early deaths.
Because of the PAI X-linked pattern in the family, NR0B1 gene mutation associated late-onset AHC was strongly suspected. Sanger sequencing revealed a novel homozygous p.Tyr378Cys (c.1133A > G, cDNA 1368A > G, g.1368A > G) NR0B1 mutation (Fig. 1b-c). This mutation segregated in all three PAI family members III-5, III-6, and II-8 but not in the healthy tested sibling (III.10). We tested several protein predicting bioinformatics algorithms including PolyPhen [15] (Polymorphism Phenotyping, http://​genetics.​bwh.​harvard.​edu, Harvard), PROVEAN [16] (Protein Variation Effect Analyzer, http://​provean.​jcvi.​org/​index.​php, JCVI), MutationTaster [17] (MutationTaster, http://​mutationtaster.​org, NCB) and Have Our Protein Explained (HOPE) http://​cmbi.​ru.​nl/​hope, CMBI) [18]. All four in silico analysis algorithms were concordant to predict that tyrosine to cysteine amino acid substitution can cause disruption of DAX-1 function. Tyr378 residue is part of a highly conserved sequence motif across orthologous sequences (Fig. 1d).

Discussion and conclusion

We describe a late-onset X-linked AHC family harboring a novel NR0B1 mutation that segregated in three affected family members. Interestingly, these individuals present remarkably variable gonadal features that may add more insights to the heterogeneity of the disease. Although early-onset PAI and pubertal development defects are the most common phenotypic features of X-linked AHC [1], its diagnosis in adulthood, also called the late-onset form, had been recognized [710, 14, 1921]. AHC phenotypic variability has been described even among patients carrying the same NR0B1 mutations [1, 22].
Although the precise PAI onset has been difficult to determine, all affected males (including the deceased ones) in the reported family may have had symptoms during adolescence up to 64 y. In agreement with Kyrikiakis et al. [7], there is no rule regarding the temporal pattern between hypogonadism and PAI onset. Our family presented hypogonadism symptoms preceding PAI in the index case and his uncle but not in the affected brother. Additionally, there was no history of overt PAI symptoms or delayed puberty in alive family members, including in female one (III.9). Indeed, some female carriers of DAX1 mutation have been reported presenting with PAI or puberty delay [23, 24]. These intriguing clinical manifestation in female carriers may reflect variable gene expression or even oligogenicity, similarly to other X- linked diseases [25].
It is well recognized that in addition to adrenal glands, NR0B1 mutations disturb hypothalamic, pituitary or even gonad levels [1]. HH is the most common finding [1, 24]. However, delayed or incomplete puberty associated with partial gonadotropin deficiency [1, 26, 27] or phenotypes with normal gonadotropin function have also been described [12, 14, 2831]. More puzzling, some have suggested that chronic ACTH stimulus to Leydig cells may be related to gonadotropin-independent precocious puberty phenotype in X-linked AHC boys [28]. The following HPG features of the three affected members deserve attention: a) PAI accompanied by isolated oligoasthenoteratozoospermia in affected brother (III.6), b) uncle and the index case (II.8 and III.5, respectively) have PAI and hypogonadism, both in the hypergonadotropic range, and c) proband’s uncle and affected brother (II.8 and III.6, respectively) fathered before X-linked AHC diagnosis. Perhaps, nuclear receptor steroidogenic factor 1 (SF-1) and many other unknown genes or epigenetic factors might interact with DAX-1 at different levels of the HPG axis, [3, 32, 33] favoring those assorted reproductive phenotypes.
Mouse models [34] reinforced by human findings [4, 14] have shown that NR0B1 disruption can cause progressive degeneration of germinative cells, seminiferous tubules, and Leydig cells, resulting in sterility [34] and poor reproductive prognosis [8, 20, 24, 35, 36] despite normal serum testosterone and gonadotropins. Frapsauce et al. [13] reported the unique case of paternity after testicular sperm extraction/ intracytoplasmic sperm injection (TESE-ICSI) in a patient with NROB1 mutation. Although the affected brother presented a significant reproductive phenotype “oligoasthenoteratozoospermia”, he still has preserved fertility, normal testosterone, and inhibin-B levels, contradicting those animal models. Oligospermia has been previously described in individuals with an NR0B1/DAX-1 mutation [14]. In addition, Mou et al. [37] have described that p.V385 L mutation is associated to secretory azoospermia in individuals with no history of X-linked AHC [37]. Then we can speculate that ongoing testicular failure of the maternal uncle and isolated spermatogenesis defects in the affected brother, both with spontaneous fertility, may represent different steps of a DAX-1 progressive gonadal defect during their lifetime [14, 38].
Although no in vitro functional studies were performed in p.Tyr378Cys, this highly conserved mutation (Fig. 1d) segregated in all affected individuals but not in the healthy relatives. Indeed, the in silico analysis was also considered disruptive. Even though the exact 3D-structure of DAX-1 is unknown, we were able to build a model based on a homologous protein structure using HOPE software (Fig. 3). The wild-type and mutant amino acids differ in size, being the mutant residue smaller than the wild-type residue. This change can result in an empty space in the core of the protein (Fig. 3c) as zoomed-in Fig. 3d-f. The hydrophobicity of the wild-type and mutant residue also differs and can cause loss of hydrogen bonds and as a result disturb correct protein folding, likely making difficult the heterodimeric interaction between DAX-1 and other coregulatory nuclear receptors such as NR5A1, AR, ESR1, ESR2, NR5A2, POU5F1, WT1, NANOG, and STAR (https://​string-db.​org/​cgi/​) (Fig. 3a).
The mutation p. Tyr378Cys is close to the previously described late-onset AHC mutation p.Tyr380Asp [8], in which transient gene transcription assays resulted in partial loss of DAX-1 function. Additionally, this mutation and the other described late-onset AHC mutations (p.Ser259Pro, p.Pro279Leu, p.Tyr380Asp, p.IsoI439Ser) are located within the putative carboxyl ligand-binding domain (LBD) [7, 14, 21]. These data suggest that mutations in the LBD region are less severe.
In summary, we described a novel NR0B1mutation in a late-onset AHC family with variable hypogonadal and reproductive features, including spontaneous fertility in two members. The very late PAI diagnosis (64 y) indicates that there may be other unknown factors responsible for this singular outcome. Our findings may bring more awareness when counseling allegedly asymptomatic AHC family members. Clinical evaluation throughout life with periodical exams, including spermogram and early sperm banks, should be performed may warrant fertility preservation on AHC males and diagnose very late PAI, therefore, improving patient quality and expectancy of life.

Acknowledgments

We thank the team from the Laboratory for Molecular and Translational Endocrinology of UNIFESP, FAPESP fund agency, and CAPES scholarships.
In order to publish in BMC Endocrine Disorders, we have adhered to CARE guidelines methodology.
All patients and relatives (family members) signed written informed consent according to the Federal University of São Paulo (UNIFESP) Ethics and Research Committee, which approved the study protocol and registered under number CEP-1774406.
All patients and relatives signed written informed consent for publication of this case report. A copy of written consent is available for review by the journal editor.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
2.
Zurück zum Zitat Muscatelli F, Strom TM, Walker AP, Zanaria E, Recan D, Meindl A, Bardoni B, Guioli S, Zehetner G, Rabl W, et al. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature. 1994;372(6507):672–6.CrossRefPubMed Muscatelli F, Strom TM, Walker AP, Zanaria E, Recan D, Meindl A, Bardoni B, Guioli S, Zehetner G, Rabl W, et al. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature. 1994;372(6507):672–6.CrossRefPubMed
3.
Zurück zum Zitat Suntharalingham JP, Buonocore F, Duncan AJ, Achermann JC. DAX-1 (NR0B1) and steroidogenic factor-1 (SF-1, NR5A1) in human disease. Best Pract Res Clin Endocrinol Metab. 2015;29(4):607–19.CrossRefPubMedPubMedCentral Suntharalingham JP, Buonocore F, Duncan AJ, Achermann JC. DAX-1 (NR0B1) and steroidogenic factor-1 (SF-1, NR5A1) in human disease. Best Pract Res Clin Endocrinol Metab. 2015;29(4):607–19.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Lardone MC, Parada-Bustamante A, Ebensperger M, Valdevenito R, Kakarieka E, Martinez D, Pommer R, Piottante A, Castro A. DAX-1 and DAX-1A expression in human testicular tissues with primary spermatogenic failure. Mol Hum Reprod. 2011;17(12):739–46.CrossRefPubMed Lardone MC, Parada-Bustamante A, Ebensperger M, Valdevenito R, Kakarieka E, Martinez D, Pommer R, Piottante A, Castro A. DAX-1 and DAX-1A expression in human testicular tissues with primary spermatogenic failure. Mol Hum Reprod. 2011;17(12):739–46.CrossRefPubMed
5.
Zurück zum Zitat Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell. 1995;83(6):841–50.CrossRefPubMed Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell. 1995;83(6):841–50.CrossRefPubMed
6.
Zurück zum Zitat Swain A, Zanaria E, Hacker A, Lovell-Badge R, Camerino G. Mouse Dax1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nat Genet. 1996;12(4):404–9.CrossRefPubMed Swain A, Zanaria E, Hacker A, Lovell-Badge R, Camerino G. Mouse Dax1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nat Genet. 1996;12(4):404–9.CrossRefPubMed
7.
Zurück zum Zitat Kyriakakis N, Shonibare T, Kyaw-Tun J, Lynch J, Lagos CF, Achermann JC, Murray RD. Late-onset X-linked adrenal hypoplasia (DAX-1, NR0B1): two new adult-onset cases from a single center. Pituitary. 2017;20(5):585–93.CrossRefPubMedPubMedCentral Kyriakakis N, Shonibare T, Kyaw-Tun J, Lynch J, Lagos CF, Achermann JC, Murray RD. Late-onset X-linked adrenal hypoplasia (DAX-1, NR0B1): two new adult-onset cases from a single center. Pituitary. 2017;20(5):585–93.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Mantovani G, Ozisik G, Achermann JC, Romoli R, Borretta G, Persani L, Spada A, Jameson JL, Beck-Peccoz P. Hypogonadotropic hypogonadism as a presenting feature of late-onset X-linked adrenal hypoplasia congenita. J Clin Endocrinol Metab. 2002;87(1):44–8.CrossRefPubMed Mantovani G, Ozisik G, Achermann JC, Romoli R, Borretta G, Persani L, Spada A, Jameson JL, Beck-Peccoz P. Hypogonadotropic hypogonadism as a presenting feature of late-onset X-linked adrenal hypoplasia congenita. J Clin Endocrinol Metab. 2002;87(1):44–8.CrossRefPubMed
9.
Zurück zum Zitat Oh CM, Chun S, Lee JE, Lee JS, Park S, Gee HY, Kim SW. A novel missense mutation in NR0B1 causes delayed-onset primary adrenal insufficiency in adults. Clin Genet. 2017;92(3):344–6.CrossRefPubMed Oh CM, Chun S, Lee JE, Lee JS, Park S, Gee HY, Kim SW. A novel missense mutation in NR0B1 causes delayed-onset primary adrenal insufficiency in adults. Clin Genet. 2017;92(3):344–6.CrossRefPubMed
10.
Zurück zum Zitat Tabarin A, Achermann JC, Recan D, Bex V, Bertagna X, Christin-Maitre S, Ito M, Jameson JL, Bouchard P. A novel mutation in DAX1 causes delayed-onset adrenal insufficiency and incomplete hypogonadotropic hypogonadism. J Clin Invest. 2000;105(3):321–8.CrossRefPubMedPubMedCentral Tabarin A, Achermann JC, Recan D, Bex V, Bertagna X, Christin-Maitre S, Ito M, Jameson JL, Bouchard P. A novel mutation in DAX1 causes delayed-onset adrenal insufficiency and incomplete hypogonadotropic hypogonadism. J Clin Invest. 2000;105(3):321–8.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Iughetti L, Lucaccioni L, Bruzzi P, Ciancia S, Bigi E, Madeo SF, Predieri B, Roucher-Boulez F. Isolated hypoaldosteronism as first sign of X-linked adrenal hypoplasia congenita caused by a novel mutation in NR0B1/DAX-1 gene: a case report. BMC Med Genet. 2019;20(1):98.CrossRefPubMedPubMedCentral Iughetti L, Lucaccioni L, Bruzzi P, Ciancia S, Bigi E, Madeo SF, Predieri B, Roucher-Boulez F. Isolated hypoaldosteronism as first sign of X-linked adrenal hypoplasia congenita caused by a novel mutation in NR0B1/DAX-1 gene: a case report. BMC Med Genet. 2019;20(1):98.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Verrijn Stuart AA, Ozisik G, de Vroede MA, Giltay JC, Sinke RJ, Peterson TJ, Harris RM, Weiss J, Jameson JL. An amino-terminal DAX1 (NROB1) missense mutation associated with isolated mineralocorticoid deficiency. J Clin Endocrinol Metab. 2007;92(3):755–61.CrossRefPubMed Verrijn Stuart AA, Ozisik G, de Vroede MA, Giltay JC, Sinke RJ, Peterson TJ, Harris RM, Weiss J, Jameson JL. An amino-terminal DAX1 (NROB1) missense mutation associated with isolated mineralocorticoid deficiency. J Clin Endocrinol Metab. 2007;92(3):755–61.CrossRefPubMed
13.
Zurück zum Zitat Frapsauce C, Ravel C, Legendre M, Sibony M, Mandelbaum J, Donadille B, Achermann JC, Siffroi JP, Christin-Maitre S. Birth after TESE-ICSI in a man with hypogonadotropic hypogonadism and congenital adrenal hypoplasia linked to a DAX-1 (NR0B1) mutation. Hum Reprod. 2011;26(3):724–8.CrossRefPubMedPubMedCentral Frapsauce C, Ravel C, Legendre M, Sibony M, Mandelbaum J, Donadille B, Achermann JC, Siffroi JP, Christin-Maitre S. Birth after TESE-ICSI in a man with hypogonadotropic hypogonadism and congenital adrenal hypoplasia linked to a DAX-1 (NR0B1) mutation. Hum Reprod. 2011;26(3):724–8.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Raffin-Sanson ML, Oudet B, Salenave S, Brailly-Tabard S, Pehuet M, Christin-Maitre S, Morel Y, Young J. A man with a DAX1/NR0B1 mutation, normal puberty, and an intact hypothalamic-pituitary-gonadal axis but deteriorating oligospermia during long-term follow-up. Eur J Endocrinol. 2013;168(4):K45–50.CrossRefPubMed Raffin-Sanson ML, Oudet B, Salenave S, Brailly-Tabard S, Pehuet M, Christin-Maitre S, Morel Y, Young J. A man with a DAX1/NR0B1 mutation, normal puberty, and an intact hypothalamic-pituitary-gonadal axis but deteriorating oligospermia during long-term follow-up. Eur J Endocrinol. 2013;168(4):K45–50.CrossRefPubMed
15.
Zurück zum Zitat Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.CrossRefPubMedPubMedCentral Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PLoS One. 2012;7(10):e46688.CrossRefPubMedPubMedCentral Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PLoS One. 2012;7(10):e46688.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–2.CrossRefPubMed Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–2.CrossRefPubMed
18.
Zurück zum Zitat Venselaar H, Te Beek TA, Kuipers RK, Hekkelman ML, Vriend G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics. 2010;11:548.CrossRefPubMedPubMedCentral Venselaar H, Te Beek TA, Kuipers RK, Hekkelman ML, Vriend G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics. 2010;11:548.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Guclu M, Lin L, Erturk E, Achermann JC, Cangul H. Puberty, stress, and sudden death. Lancet. 2010;376(9751):1512.CrossRefPubMed Guclu M, Lin L, Erturk E, Achermann JC, Cangul H. Puberty, stress, and sudden death. Lancet. 2010;376(9751):1512.CrossRefPubMed
20.
Zurück zum Zitat Ozisik G, Mantovani G, Achermann JC, Persani L, Spada A, Weiss J, Beck-Peccoz P, Jameson JL. An alternate translation initiation site circumvents an amino-terminal DAX1 nonsense mutation leading to a mild form of X-linked adrenal hypoplasia congenita. J Clin Endocrinol Metab. 2003;88(1):417–23.CrossRefPubMed Ozisik G, Mantovani G, Achermann JC, Persani L, Spada A, Weiss J, Beck-Peccoz P, Jameson JL. An alternate translation initiation site circumvents an amino-terminal DAX1 nonsense mutation leading to a mild form of X-linked adrenal hypoplasia congenita. J Clin Endocrinol Metab. 2003;88(1):417–23.CrossRefPubMed
21.
Zurück zum Zitat Sekiguchi Y, Hara Y, Matsuoka H, Hayashi Y, Katsumata N, Hirata Y. Sibling cases of Addison's disease caused by DAX-1 gene mutations. Intern Med. 2007;46(1):35–9.CrossRefPubMed Sekiguchi Y, Hara Y, Matsuoka H, Hayashi Y, Katsumata N, Hirata Y. Sibling cases of Addison's disease caused by DAX-1 gene mutations. Intern Med. 2007;46(1):35–9.CrossRefPubMed
22.
Zurück zum Zitat Calliari LE, Rocha MN, Monte O, Longui CA. Mild adrenal insufficiency due to a NROB1 (DAX1) gene mutation in a boy presenting an association of hypogonadotropic hypogonadism, reduced final height and attention deficit disorder. Arq Bras Endocrinol Metabol. 2013;57(7):562–5.CrossRefPubMed Calliari LE, Rocha MN, Monte O, Longui CA. Mild adrenal insufficiency due to a NROB1 (DAX1) gene mutation in a boy presenting an association of hypogonadotropic hypogonadism, reduced final height and attention deficit disorder. Arq Bras Endocrinol Metabol. 2013;57(7):562–5.CrossRefPubMed
23.
Zurück zum Zitat Bernard P, Ludbrook L, Queipo G, Dinulos MB, Kletter GB, Zhang YH, Phelan JK, McCabe ER, Harley VR, Vilain E. A familial missense mutation in the hinge region of DAX1 associated with late-onset AHC in a prepubertal female. Mol Genet Metab. 2006;88(3):272–9.CrossRefPubMed Bernard P, Ludbrook L, Queipo G, Dinulos MB, Kletter GB, Zhang YH, Phelan JK, McCabe ER, Harley VR, Vilain E. A familial missense mutation in the hinge region of DAX1 associated with late-onset AHC in a prepubertal female. Mol Genet Metab. 2006;88(3):272–9.CrossRefPubMed
24.
Zurück zum Zitat Seminara SB, Achermann JC, Genel M, Jameson JL, Crowley WF Jr. X-linked adrenal hypoplasia congenita: a mutation in DAX1 expands the phenotypic spectrum in males and females. J Clin Endocrinol Metab. 1999;84(12):4501–9.PubMed Seminara SB, Achermann JC, Genel M, Jameson JL, Crowley WF Jr. X-linked adrenal hypoplasia congenita: a mutation in DAX1 expands the phenotypic spectrum in males and females. J Clin Endocrinol Metab. 1999;84(12):4501–9.PubMed
25.
Zurück zum Zitat Sykiotis GP, Hoang XH, Avbelj M, Hayes FJ, Thambundit A, Dwyer A, Au M, Plummer L, Crowley WF Jr, Pitteloud N. Congenital idiopathic hypogonadotropic hypogonadism: evidence of defects in the hypothalamus, pituitary, and testes. J Clin Endocrinol Metab. 2010;95(6):3019–27.CrossRefPubMedPubMedCentral Sykiotis GP, Hoang XH, Avbelj M, Hayes FJ, Thambundit A, Dwyer A, Au M, Plummer L, Crowley WF Jr, Pitteloud N. Congenital idiopathic hypogonadotropic hypogonadism: evidence of defects in the hypothalamus, pituitary, and testes. J Clin Endocrinol Metab. 2010;95(6):3019–27.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Achermann JC, Gu WX, Kotlar TJ, Meeks JJ, Sabacan LP, Seminara SB, Habiby RL, Hindmarsh PC, Bick DP, Sherins RJ, et al. Mutational analysis of DAX1 in patients with hypogonadotropic hypogonadism or pubertal delay. J Clin Endocrinol Metab. 1999;84(12):4497–500.PubMed Achermann JC, Gu WX, Kotlar TJ, Meeks JJ, Sabacan LP, Seminara SB, Habiby RL, Hindmarsh PC, Bick DP, Sherins RJ, et al. Mutational analysis of DAX1 in patients with hypogonadotropic hypogonadism or pubertal delay. J Clin Endocrinol Metab. 1999;84(12):4497–500.PubMed
27.
Zurück zum Zitat Bassett JH, O'Halloran DJ, Williams GR, Beardwell CG, Shalet SM, Thakker RV. Novel DAX1 mutations in X-linked adrenal hypoplasia congenita and hypogonadotrophic hypogonadism. Clin Endocrinol. 1999;50(1):69–75.CrossRef Bassett JH, O'Halloran DJ, Williams GR, Beardwell CG, Shalet SM, Thakker RV. Novel DAX1 mutations in X-linked adrenal hypoplasia congenita and hypogonadotrophic hypogonadism. Clin Endocrinol. 1999;50(1):69–75.CrossRef
28.
Zurück zum Zitat Domenice S, Latronico AC, Brito VN, Arnhold IJ, Kok F, Mendonca BB. Adrenocorticotropin-dependent precocious puberty of testicular origin in a boy with X-linked adrenal hypoplasia congenita due to a novel mutation in the DAX1 gene. J Clin Endocrinol Metab. 2001;86(9):4068–71.CrossRefPubMed Domenice S, Latronico AC, Brito VN, Arnhold IJ, Kok F, Mendonca BB. Adrenocorticotropin-dependent precocious puberty of testicular origin in a boy with X-linked adrenal hypoplasia congenita due to a novel mutation in the DAX1 gene. J Clin Endocrinol Metab. 2001;86(9):4068–71.CrossRefPubMed
29.
Zurück zum Zitat Guzzetti C, Bizzarri C, Pisaneschi E, Mucciolo M, Bellacchio E, Ibba A, Casula L, Novelli A, Loche S, Cappa M. Next-generation sequencing identifies different genetic defects in 2 patients with primary adrenal insufficiency and gonadotropin-independent precocious puberty. Horm Res Paediatr. 2018;90(3):203–11.CrossRefPubMed Guzzetti C, Bizzarri C, Pisaneschi E, Mucciolo M, Bellacchio E, Ibba A, Casula L, Novelli A, Loche S, Cappa M. Next-generation sequencing identifies different genetic defects in 2 patients with primary adrenal insufficiency and gonadotropin-independent precocious puberty. Horm Res Paediatr. 2018;90(3):203–11.CrossRefPubMed
30.
Zurück zum Zitat Rodriguez Estevez A, Perez-Nanclares G, Fernandez-Toral J, Rivas-Crespo F, Lopez-Siguero JP, Diez I, Grau G, Castano L. Clinical and molecular characterization of five Spanish kindreds with X-linked adrenal hypoplasia congenita: atypical findings and a novel mutation in NR0B1. J Pediatr Endocrinol Metab. 2015;28(9–10):1129–37.PubMed Rodriguez Estevez A, Perez-Nanclares G, Fernandez-Toral J, Rivas-Crespo F, Lopez-Siguero JP, Diez I, Grau G, Castano L. Clinical and molecular characterization of five Spanish kindreds with X-linked adrenal hypoplasia congenita: atypical findings and a novel mutation in NR0B1. J Pediatr Endocrinol Metab. 2015;28(9–10):1129–37.PubMed
31.
Zurück zum Zitat Wang CL, Fen ZW, Liang L. A de novo mutation of DAX1 in a boy with congenital adrenal hypoplasia without hypogonadotropic hypogonadism. J Pediatr Endocrinol Metab. 2014;27(3–4):343–7.PubMed Wang CL, Fen ZW, Liang L. A de novo mutation of DAX1 in a boy with congenital adrenal hypoplasia without hypogonadotropic hypogonadism. J Pediatr Endocrinol Metab. 2014;27(3–4):343–7.PubMed
32.
Zurück zum Zitat Iyer AK, McCabe ER. Molecular mechanisms of DAX1 action. Mol Genet Metab. 2004;83(1–2):60–73.CrossRefPubMed Iyer AK, McCabe ER. Molecular mechanisms of DAX1 action. Mol Genet Metab. 2004;83(1–2):60–73.CrossRefPubMed
33.
Zurück zum Zitat Jameson JL. Of mice and men: the tale of steroidogenic factor-1. J Clin Endocrinol Metab. 2004;89(12):5927–9.CrossRefPubMed Jameson JL. Of mice and men: the tale of steroidogenic factor-1. J Clin Endocrinol Metab. 2004;89(12):5927–9.CrossRefPubMed
34.
Zurück zum Zitat Jeffs B, Meeks JJ, Ito M, Martinson FA, Matzuk MM, Jameson JL, Russell LD. Blockage of the rete testis and efferent ductules by ectopic Sertoli and Leydig cells causes infertility in Dax1-deficient male mice. Endocrinology. 2001;142(10):4486–95.CrossRefPubMed Jeffs B, Meeks JJ, Ito M, Martinson FA, Matzuk MM, Jameson JL, Russell LD. Blockage of the rete testis and efferent ductules by ectopic Sertoli and Leydig cells causes infertility in Dax1-deficient male mice. Endocrinology. 2001;142(10):4486–95.CrossRefPubMed
35.
Zurück zum Zitat Brown P, Scobie GA, Townsend J, Bayne RA, Seckl JR, Saunders PT, Anderson RA. Identification of a novel missense mutation that is as damaging to DAX-1 repressor function as a nonsense mutation. J Clin Endocrinol Metab. 2003;88(3):1341–9.CrossRefPubMed Brown P, Scobie GA, Townsend J, Bayne RA, Seckl JR, Saunders PT, Anderson RA. Identification of a novel missense mutation that is as damaging to DAX-1 repressor function as a nonsense mutation. J Clin Endocrinol Metab. 2003;88(3):1341–9.CrossRefPubMed
36.
Zurück zum Zitat Ravel C, Hyon C, Siffroi JP, Christin-Maitre S. Are human male patients with DAX1/NR0B1 mutations infertile? Ann Endocrinol (Paris). 2014;75(2):126–7.CrossRef Ravel C, Hyon C, Siffroi JP, Christin-Maitre S. Are human male patients with DAX1/NR0B1 mutations infertile? Ann Endocrinol (Paris). 2014;75(2):126–7.CrossRef
37.
Zurück zum Zitat Mou L, Xie N, Yang L, Liu Y, Diao R, Cai Z, Li H, Gui Y. A novel mutation of DAX-1 associated with secretory Azoospermia. PLoS One. 2015;10(7):e0133997.CrossRefPubMedPubMedCentral Mou L, Xie N, Yang L, Liu Y, Diao R, Cai Z, Li H, Gui Y. A novel mutation of DAX-1 associated with secretory Azoospermia. PLoS One. 2015;10(7):e0133997.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Galeotti C, Lahlou Z, Goullon D, Sarda-Thibault H, Cahen-Varsaux J, Bignon-Topalovic J, Bashamboo A, McElreavey K, Brauner R. Longitudinal evaluation of the hypothalamic-pituitary-testicular function in 8 boys with adrenal hypoplasia congenita (AHC) due to NR0B1 mutations. PLoS One. 2012;7(6):e39828.CrossRefPubMedPubMedCentral Galeotti C, Lahlou Z, Goullon D, Sarda-Thibault H, Cahen-Varsaux J, Bignon-Topalovic J, Bashamboo A, McElreavey K, Brauner R. Longitudinal evaluation of the hypothalamic-pituitary-testicular function in 8 boys with adrenal hypoplasia congenita (AHC) due to NR0B1 mutations. PLoS One. 2012;7(6):e39828.CrossRefPubMedPubMedCentral
Metadaten
Titel
Spontaneous fertility and variable spectrum of reproductive phenotype in a family with adult-onset X-linked adrenal insufficiency harboring a novel DAX-1/NR0B1 mutation
verfasst von
Michelle Cerutti C. Vargas
Felipe Scipião Moura
Cecília P. Elias
Sara R. Carvalho
Nelson Rassi
Ilda S. Kunii
Magnus R. Dias-da-Silva
Flavia Amanda Costa-Barbosa
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Endocrine Disorders / Ausgabe 1/2020
Elektronische ISSN: 1472-6823
DOI
https://doi.org/10.1186/s12902-020-0500-2

Weitere Artikel der Ausgabe 1/2020

BMC Endocrine Disorders 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.