Skip to main content

01.12.2015 | Research article | Ausgabe 1/2015 Open Access

BMC Public Health 1/2015

Spontaneous social distancing in response to a simulated epidemic: a virtual experiment

BMC Public Health > Ausgabe 1/2015
Adam Kleczkowski, Savi Maharaj, Susan Rasmussen, Lynn Williams, Nicole Cairns
Wichtige Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

AK: developed the social distancing model, contributed to the software design, performed the statistical analysis, and helped to draft the manuscript. SM: participated in developing the social distancing model, developed the computer game software, carried out simulations, and helped to draft the manuscript. SR: participated in the design of the study and collection of data, and helped to draft the manuscript. LW: participated in the design of the study and collection of data, and helped to draft the manuscript. NC: participated in the collection of data. All authors read and approved the final manuscript.

Authors’ information

Not applicable.



Studies of social distancing during epidemics have found that the strength of the response can have a decisive impact on the outcome. In previous work we developed a model of social distancing driven by individuals’ risk attitude, a parameter which determines the extent to which social contacts are reduced in response to a given infection level. We showed by simulation that a strong response, driven by a highly cautious risk attitude, can quickly suppress an epidemic. However, a moderately cautious risk attitude gives weak control and, by prolonging the epidemic without reducing its impact, may yield a worse outcome than doing nothing. In real societies, social distancing may arise spontaneously from individual choices rather than being imposed centrally. There is little data available about this as opportunistic data collection during epidemics is difficult. Our study uses a simulated epidemic in a computer game setting to measure the social distancing response.


Two hundred thirty participants played a computer game simulating an epidemic on a spatial network. The player controls one individual in a population of 2500 (with others controlled by computer) and decides how many others to contact each day. To mimic real-world trade-offs, the player is motivated to make contact by being rewarded with points, while simultaneously being deterred by the threat of infection. Participants completed a questionnaire regarding psychological measures of health protection motivation. Finally, simulations were used to compare the experimentally-observed response to epidemics with no response.


Participants reduced contacts in response to infection in a manner consistent with our model of social distancing. The experimentally observed response was too weak to halt epidemics quickly, resulting in a somewhat reduced attack rate and a substantially reduced peak attack rate, but longer duration and fewer social contacts, compared to no response. Little correlation was observed between participants’ risk attitudes and the psychological measures.


Our cognitive model of social distancing matches responses to a simulated epidemic. If these responses indicate real world behaviour, spontaneous social distancing can be expected to reduce peak attack rates. However, additional measures are needed if it is important to stop an epidemic quickly.
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2015

BMC Public Health 1/2015 Zur Ausgabe