Skip to main content
Erschienen in: Clinical and Translational Oncology 4/2017

24.10.2016 | Review Article

Spotlight on the relevance of mtDNA in cancer

verfasst von: A. Cruz-Bermúdez, R. J. Vicente-Blanco, E. Gonzalez-Vioque, M. Provencio, M. Á. Fernández-Moreno, R. Garesse

Erschienen in: Clinical and Translational Oncology | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

The potential role of the mitochondrial genome has recently attracted interest because of its high mutation frequency in tumors. Different aspects of mtDNA make it relevant for cancer‘s biology, such as it encodes a limited but essential number of genes for OXPHOS biogenesis, it is particularly susceptible to mutations, and its copy number can vary. Moreover, most ROS in mitochondria are produced by the electron transport chain. These characteristics place the mtDNA in the center of multiple signaling pathways, known as mitochondrial retrograde signaling, which modifies numerous key processes in cancer. Cybrid studies support that mtDNA mutations are relevant and exert their effect through a modification of OXPHOS function and ROS production. However, there is still much controversy regarding the clinical relevance of mtDNA mutations. New studies should focus more on OXPHOS dysfunction associated with a specific mutational signature rather than the presence of mutations in the mtDNA.
Literatur
2.
Zurück zum Zitat Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. Elsevier Inc.; 2011;144:646–74. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. Elsevier Inc.; 2011;144:646–74.
3.
Zurück zum Zitat Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012/03/20 ed. Elsevier Inc.; 2012;148:1145–59. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012/03/20 ed. Elsevier Inc.; 2012;148:1145–59.
4.
Zurück zum Zitat Larman TC, DePalma SR, Hadjipanayis AG, Protopopov A, Zhang J, Gabriel SB, et al. Spectrum of somatic mitochondrial mutations in five cancers. Proc Natl Acad Sci USA. 2012;109:14087–91.CrossRefPubMedPubMedCentral Larman TC, DePalma SR, Hadjipanayis AG, Protopopov A, Zhang J, Gabriel SB, et al. Spectrum of somatic mitochondrial mutations in five cancers. Proc Natl Acad Sci USA. 2012;109:14087–91.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Ju YS, Alexandrov LB, Gerstung M, Martincorena I, Nik-Zainal S, Ramakrishna M, et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. Elife. 2014;3:1–28.CrossRef Ju YS, Alexandrov LB, Gerstung M, Martincorena I, Nik-Zainal S, Ramakrishna M, et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. Elife. 2014;3:1–28.CrossRef
6.
Zurück zum Zitat Stewart JB, Alaei-Mahabadi B, Sabarinathan R, Samuelsson T, Gorodkin J, Gustafsson CM, et al. Simultaneous DNA and RNA mapping of somatic mitochondrial mutations across diverse human cancers. PLoS Genet. 2015;11:e1005333.CrossRefPubMedPubMedCentral Stewart JB, Alaei-Mahabadi B, Sabarinathan R, Samuelsson T, Gorodkin J, Gustafsson CM, et al. Simultaneous DNA and RNA mapping of somatic mitochondrial mutations across diverse human cancers. PLoS Genet. 2015;11:e1005333.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290:457–65.CrossRefPubMed Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290:457–65.CrossRefPubMed
8.
Zurück zum Zitat Greaves LC, Reeve AK, Taylor RW, Turnbull DM. Mitochondrial DNA and disease. J Pathol. 2012;226:274–86.CrossRefPubMed Greaves LC, Reeve AK, Taylor RW, Turnbull DM. Mitochondrial DNA and disease. J Pathol. 2012;226:274–86.CrossRefPubMed
9.
Zurück zum Zitat Itsara LS, Kennedy SR, Fox EJ, Yu S, Hewitt JJ, Sanchez-Contreras M, et al. Oxidative stress is not a major contributor to somatic mitochondrial DNA mutations. PLoS Genet. 2014;10:e1003974.CrossRefPubMedPubMedCentral Itsara LS, Kennedy SR, Fox EJ, Yu S, Hewitt JJ, Sanchez-Contreras M, et al. Oxidative stress is not a major contributor to somatic mitochondrial DNA mutations. PLoS Genet. 2014;10:e1003974.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Pinto M, Moraes CT. Mechanisms linking mtDNA damage and aging. Free Radic Biol Med Elsevier. 2015;85:250–8.CrossRef Pinto M, Moraes CT. Mechanisms linking mtDNA damage and aging. Free Radic Biol Med Elsevier. 2015;85:250–8.CrossRef
11.
Zurück zum Zitat Liou C-W, Lin T-K, Chen J-B, Tiao M-M, Weng S-W, Chen S-D, et al. Association between a common mitochondrial DNA D-loop polycytosine variant and alteration of mitochondrial copy number in human peripheral blood cells. J Med Genet. 2010;47:723–8.CrossRefPubMed Liou C-W, Lin T-K, Chen J-B, Tiao M-M, Weng S-W, Chen S-D, et al. Association between a common mitochondrial DNA D-loop polycytosine variant and alteration of mitochondrial copy number in human peripheral blood cells. J Med Genet. 2010;47:723–8.CrossRefPubMed
12.
Zurück zum Zitat Campbell CT, Kolesar JE, Kaufman B a. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim. Biophys. Acta. Elsevier B.V.; 2012;1819:921–9. Campbell CT, Kolesar JE, Kaufman B a. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim. Biophys. Acta. Elsevier B.V.; 2012;1819:921–9.
13.
Zurück zum Zitat Guo J, Zheng L, Liu W, Wang X, Wang Z, Wang Z, et al. Frequent truncating mutation of TFAM induces mitochondrial DNA depletion and apoptotic resistance in microsatellite-unstable colorectal cancer. Cancer Res. 2011;71:2978–87.CrossRefPubMedPubMedCentral Guo J, Zheng L, Liu W, Wang X, Wang Z, Wang Z, et al. Frequent truncating mutation of TFAM induces mitochondrial DNA depletion and apoptotic resistance in microsatellite-unstable colorectal cancer. Cancer Res. 2011;71:2978–87.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat van Osch FHM, Voets AM, Schouten LJ, Gottschalk RWH, Simons CCJM, van Engeland M, et al. Mitochondrial DNA copy number in colorectal cancer: between tissue comparisons, clinicopathological characteristics and survival. Carcinogenesis. 2015;36:1502–10.PubMed van Osch FHM, Voets AM, Schouten LJ, Gottschalk RWH, Simons CCJM, van Engeland M, et al. Mitochondrial DNA copy number in colorectal cancer: between tissue comparisons, clinicopathological characteristics and survival. Carcinogenesis. 2015;36:1502–10.PubMed
15.
Zurück zum Zitat Mi J, Tian G, Liu S, Li X, Ni T, Zhang L, et al. The relationship between altered mitochondrial DNA copy number and cancer risk: a meta-analysis. Sci. Rep. Nature Publishing Group; 2015;5:10039. Mi J, Tian G, Liu S, Li X, Ni T, Zhang L, et al. The relationship between altered mitochondrial DNA copy number and cancer risk: a meta-analysis. Sci. Rep. Nature Publishing Group; 2015;5:10039.
16.
Zurück zum Zitat Lin C-S, Wang L-S, Tsai C-M, Wei Y-H. Low copy number and low oxidative damage of mitochondrial DNA are associated with tumor progression in lung cancer tissues after neoadjuvant chemotherapy. Interact CardioVasc Thorac Surg. 2008;7:954–8.CrossRefPubMed Lin C-S, Wang L-S, Tsai C-M, Wei Y-H. Low copy number and low oxidative damage of mitochondrial DNA are associated with tumor progression in lung cancer tissues after neoadjuvant chemotherapy. Interact CardioVasc Thorac Surg. 2008;7:954–8.CrossRefPubMed
17.
Zurück zum Zitat Reznik E, Miller ML, Şenbabaoğlu Y, Riaz N, Sarungbam J, Tickoo SK, et al. Mitochondrial DNA copy number variation across human cancers. Elife. 2016;5:1–20.CrossRef Reznik E, Miller ML, Şenbabaoğlu Y, Riaz N, Sarungbam J, Tickoo SK, et al. Mitochondrial DNA copy number variation across human cancers. Elife. 2016;5:1–20.CrossRef
18.
Zurück zum Zitat Pyle A, Hudson G, Wilson IJ, Coxhead J, Smertenko T, Herbert M, et al. Extreme-depth re-sequencing of mitochondrial DNA Finds no evidence of paternal transmission in humans. PLoS Genet. 2015;11:e1005040.CrossRefPubMedPubMedCentral Pyle A, Hudson G, Wilson IJ, Coxhead J, Smertenko T, Herbert M, et al. Extreme-depth re-sequencing of mitochondrial DNA Finds no evidence of paternal transmission in humans. PLoS Genet. 2015;11:e1005040.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Ruiz-Pesini E, Mishmar D, Brandon M. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science (80-.). 2004;303:223–7. Ruiz-Pesini E, Mishmar D, Brandon M. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science (80-.). 2004;303:223–7.
20.
Zurück zum Zitat Coskun P, Wyrembak J, Schriner SE, Chen H-W, Marciniack C, Laferla F, et al. A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim. Biophys. Acta. Elsevier B.V.; 2012;1820:553–64. Coskun P, Wyrembak J, Schriner SE, Chen H-W, Marciniack C, Laferla F, et al. A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim. Biophys. Acta. Elsevier B.V.; 2012;1820:553–64.
21.
Zurück zum Zitat Wang C, Wang Y, Wang H, Zhang R, Guo Z. Mitochondrial DNA haplogroup N is associated good outcome of gastric cancer. Tumour Biol. 2014;35:12555–9.CrossRefPubMed Wang C, Wang Y, Wang H, Zhang R, Guo Z. Mitochondrial DNA haplogroup N is associated good outcome of gastric cancer. Tumour Biol. 2014;35:12555–9.CrossRefPubMed
22.
Zurück zum Zitat Kabekkodu SP, Bhat S, Mascarenhas R, Mallya S, Bhat M, Pandey D, et al. Mitochondrial DNA variation analysis in cervical cancer. Mitochondrion. © Elsevier B.V. and Mitochondria Research Society. All rights reserved.; 2014;16:73–82. Kabekkodu SP, Bhat S, Mascarenhas R, Mallya S, Bhat M, Pandey D, et al. Mitochondrial DNA variation analysis in cervical cancer. Mitochondrion. © Elsevier B.V. and Mitochondria Research Society. All rights reserved.; 2014;16:73–82.
23.
Zurück zum Zitat Wang Z, Choi S, Lee J, Huang Y-T, Chen F, Zhao Y, et al. Mitochondrial variations in non-small cell lung cancer (NSCLC) survival. Cancer Inf. 2015;14:1–9. Wang Z, Choi S, Lee J, Huang Y-T, Chen F, Zhao Y, et al. Mitochondrial variations in non-small cell lung cancer (NSCLC) survival. Cancer Inf. 2015;14:1–9.
24.
Zurück zum Zitat Weigl S, Paradiso A, Tommasi S. Mitochondria and familial predisposition to breast cancer. 2013;195–203. Weigl S, Paradiso A, Tommasi S. Mitochondria and familial predisposition to breast cancer. 2013;195–203.
25.
Zurück zum Zitat Blein S, Bardel C, Danjean V, McGuffog L, Healey S, Barrowdale D, et al. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers. Breast Cancer Res. 2015;17:61.CrossRefPubMedPubMedCentral Blein S, Bardel C, Danjean V, McGuffog L, Healey S, Barrowdale D, et al. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers. Breast Cancer Res. 2015;17:61.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Bai R-K, Leal SM, Covarrubias D, Liu A, Wong L-JC. Mitochondrial genetic background modifies breast cancer risk. Cancer Res. 2007;67:4687–94. Bai R-K, Leal SM, Covarrubias D, Liu A, Wong L-JC. Mitochondrial genetic background modifies breast cancer risk. Cancer Res. 2007;67:4687–94.
27.
Zurück zum Zitat Lam ET, Bracci PM, Holly E a, Chu C, Poon A, Wan E, et al. Mitochondrial DNA sequence variation and risk of pancreatic cancer. Cancer Res. 2012;72:686–95. Lam ET, Bracci PM, Holly E a, Chu C, Poon A, Wan E, et al. Mitochondrial DNA sequence variation and risk of pancreatic cancer. Cancer Res. 2012;72:686–95.
28.
Zurück zum Zitat Fang H, Shen L, Chen T, He J, Ding Z, Wei J, et al. Cancer type-specific modulation of mitochondrial haplogroups in breast, colorectal and thyroid cancer. BMC Cancer. 2010;10:421.CrossRefPubMedPubMedCentral Fang H, Shen L, Chen T, He J, Ding Z, Wei J, et al. Cancer type-specific modulation of mitochondrial haplogroups in breast, colorectal and thyroid cancer. BMC Cancer. 2010;10:421.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Booker LM, Habermacher GM, Jessie BC, Sun QC, Baumann AK, Amin M, et al. North American White Mitochondrial Haplogroups in Prostate and Renal Cancer. J Urol. 2006;175:468–73.CrossRefPubMed Booker LM, Habermacher GM, Jessie BC, Sun QC, Baumann AK, Amin M, et al. North American White Mitochondrial Haplogroups in Prostate and Renal Cancer. J Urol. 2006;175:468–73.CrossRefPubMed
30.
Zurück zum Zitat Gómez-Durán A, Pacheu-Grau D, López-Gallardo E, Díez-Sánchez C, Montoya J, López-Pérez MJ, et al. Unmasking the causes of multifactorial disorders: OXPHOS differences between mitochondrial haplogroups. Hum Mol Genet. 2010;19:3343–53.CrossRefPubMed Gómez-Durán A, Pacheu-Grau D, López-Gallardo E, Díez-Sánchez C, Montoya J, López-Pérez MJ, et al. Unmasking the causes of multifactorial disorders: OXPHOS differences between mitochondrial haplogroups. Hum Mol Genet. 2010;19:3343–53.CrossRefPubMed
31.
Zurück zum Zitat D’Aquila P, Rose G, Panno ML, Passarino G, Bellizzi D. SIRT3 gene expression: a link between inherited mitochondrial DNA variants and oxidative stress. Gene Elsevier B.V.; 2012;497:323–9. D’Aquila P, Rose G, Panno ML, Passarino G, Bellizzi D. SIRT3 gene expression: a link between inherited mitochondrial DNA variants and oxidative stress. Gene Elsevier B.V.; 2012;497:323–9.
32.
Zurück zum Zitat Pello, Martin MA, Carelli V, Nijtmans LG, Achilli A, Pala M, et al. Mitochondrial DNA background modulates the assembly kinetics of OXPHOS complexes in a cellular model of mitochondrial disease. Hum Mol Genet. 2008;17:4001–11. Pello, Martin MA, Carelli V, Nijtmans LG, Achilli A, Pala M, et al. Mitochondrial DNA background modulates the assembly kinetics of OXPHOS complexes in a cellular model of mitochondrial disease. Hum Mol Genet. 2008;17:4001–11.
33.
Zurück zum Zitat Kenney MC, Chwa M, Atilano SR, Falatoonzadeh P, Ramirez C, Malik D, et al. Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: implications for population susceptibility to diseases. Biochim. Biophys. Acta. Elsevier B.V.; 2014;1842:208–19. Kenney MC, Chwa M, Atilano SR, Falatoonzadeh P, Ramirez C, Malik D, et al. Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: implications for population susceptibility to diseases. Biochim. Biophys. Acta. Elsevier B.V.; 2014;1842:208–19.
34.
Zurück zum Zitat Abbott J a, Francklyn CS, Robey-Bond SM. Transfer RNA and human disease. Front Genet. 2014;5:158. Abbott J a, Francklyn CS, Robey-Bond SM. Transfer RNA and human disease. Front Genet. 2014;5:158.
35.
Zurück zum Zitat Damas J, Samuels DC, Carneiro J, Amorim A, Pereira F. Mitochondrial DNA rearrangements in health and disease—a comprehensive study. Hum Mutat. 2014;35:1–14.CrossRefPubMed Damas J, Samuels DC, Carneiro J, Amorim A, Pereira F. Mitochondrial DNA rearrangements in health and disease—a comprehensive study. Hum Mutat. 2014;35:1–14.CrossRefPubMed
36.
Zurück zum Zitat Datta S, Ray A, Roy R, Roy B. Association of DNA sequence variation in mitochondrial DNA polymerase with mitochondrial DNA synthesis and risk of oral cancer. Gene. Elsevier B.V.; 2016;575:650–4. Datta S, Ray A, Roy R, Roy B. Association of DNA sequence variation in mitochondrial DNA polymerase with mitochondrial DNA synthesis and risk of oral cancer. Gene. Elsevier B.V.; 2016;575:650–4.
37.
Zurück zum Zitat Popanda O, Seibold P, Nikolov I, Oakes CC, Burwinkel B, Hausmann S, et al. Germline variants of base excision repair genes and breast cancer: a polymorphism in DNA polymerase gamma modifies gene expression and breast cancer risk. Int J Cancer. 2013;132:55–62.CrossRefPubMed Popanda O, Seibold P, Nikolov I, Oakes CC, Burwinkel B, Hausmann S, et al. Germline variants of base excision repair genes and breast cancer: a polymorphism in DNA polymerase gamma modifies gene expression and breast cancer risk. Int J Cancer. 2013;132:55–62.CrossRefPubMed
38.
Zurück zum Zitat Ratanajaraya C, Nishiyama H, Takahashi M, Kawaguchi T, Saito R, Mikami Y, et al. A polymorphism of the POLG2 gene is genetically associated with the invasiveness of urinary bladder cancer in Japanese males. J Hum Genet. 2011;56:572–6.CrossRefPubMed Ratanajaraya C, Nishiyama H, Takahashi M, Kawaguchi T, Saito R, Mikami Y, et al. A polymorphism of the POLG2 gene is genetically associated with the invasiveness of urinary bladder cancer in Japanese males. J Hum Genet. 2011;56:572–6.CrossRefPubMed
40.
Zurück zum Zitat Gandhi VV, Samuels DC. Correlated tissue expression of genes of cytoplasmic and mitochondrial nucleotide metabolisms in normal tissues is disrupted in transformed tissues. Nucleosides, Nucleotides Nucleic Acids. 2012;31:112–29.CrossRefPubMedPubMedCentral Gandhi VV, Samuels DC. Correlated tissue expression of genes of cytoplasmic and mitochondrial nucleotide metabolisms in normal tissues is disrupted in transformed tissues. Nucleosides, Nucleotides Nucleic Acids. 2012;31:112–29.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Singh KK, Ayyasamy V, Owens KM, Koul MS, Vujcic M. Mutations in mitochondrial DNA polymerase-γ promote breast tumorigenesis. J. Hum. Genet. Nature Publishing Group. 2009;54:516–24. Singh KK, Ayyasamy V, Owens KM, Koul MS, Vujcic M. Mutations in mitochondrial DNA polymerase-γ promote breast tumorigenesis. J. Hum. Genet. Nature Publishing Group. 2009;54:516–24.
42.
Zurück zum Zitat Chen P-L, Chen C-F, Chen Y, Guo XE, Huang C-K, Shew J-Y, et al. Mitochondrial genome instability resulting from SUV3 haploinsufficiency leads to tumorigenesis and shortened lifespan. Oncogene. 2013;32:1193–201.CrossRefPubMed Chen P-L, Chen C-F, Chen Y, Guo XE, Huang C-K, Shew J-Y, et al. Mitochondrial genome instability resulting from SUV3 haploinsufficiency leads to tumorigenesis and shortened lifespan. Oncogene. 2013;32:1193–201.CrossRefPubMed
43.
Zurück zum Zitat Yadav N, Chandra D. Mitochondrial DNA mutations and breast tumorigenesis. Biochim. Biophys. Acta - Rev. Cancer. Elsevier B.V.; 2013;1836:336–44. Yadav N, Chandra D. Mitochondrial DNA mutations and breast tumorigenesis. Biochim. Biophys. Acta - Rev. Cancer. Elsevier B.V.; 2013;1836:336–44.
44.
Zurück zum Zitat Yuan Y, Wang W, Li H, Yu Y, Tao J, Huang S, et al. Nonsense and Missense Mutation of Mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma. BMC Cancer. 2015;15:346.CrossRefPubMedPubMedCentral Yuan Y, Wang W, Li H, Yu Y, Tao J, Huang S, et al. Nonsense and Missense Mutation of Mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma. BMC Cancer. 2015;15:346.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Xu H, He W, Jiang H-G, Zhao H, Peng X-H, Wei Y-H, et al. Prognostic value of mitochondrial DNA content and G10398A polymorphism in non-small cell lung cancer. Oncol Rep. 2013;30:3006–12.PubMed Xu H, He W, Jiang H-G, Zhao H, Peng X-H, Wei Y-H, et al. Prognostic value of mitochondrial DNA content and G10398A polymorphism in non-small cell lung cancer. Oncol Rep. 2013;30:3006–12.PubMed
46.
Zurück zum Zitat Hey-Mogensen M, Goncalves RLS, Orr AL, Brand MD. Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria. Free Radic Biol Med. 2014;72:149–55.CrossRefPubMed Hey-Mogensen M, Goncalves RLS, Orr AL, Brand MD. Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria. Free Radic Biol Med. 2014;72:149–55.CrossRefPubMed
47.
Zurück zum Zitat Fisher-Wellman KH, Gilliam LAA, Lin C-T, Cathey BL, Lark DS, Neufer PD. Mitochondrial glutathione depletion reveals a novel role for the pyruvate dehydrogenase complex as a key H2O2-emitting source under conditions of nutrient overload. Free Radic Biol Med. 2013;65:1201–8.CrossRefPubMedPubMedCentral Fisher-Wellman KH, Gilliam LAA, Lin C-T, Cathey BL, Lark DS, Neufer PD. Mitochondrial glutathione depletion reveals a novel role for the pyruvate dehydrogenase complex as a key H2O2-emitting source under conditions of nutrient overload. Free Radic Biol Med. 2013;65:1201–8.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Mailloux RJ. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol Elsevier. 2015;4C:381–98.CrossRef Mailloux RJ. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol Elsevier. 2015;4C:381–98.CrossRef
49.
Zurück zum Zitat Bleier L, Wittig I, Heide H, Steger M, Brandt U, Dröse S. Generator-specific targets of mitochondrial reactive oxygen species. Free Radic Biol Med Elsevier. 2015;78:1–10.CrossRef Bleier L, Wittig I, Heide H, Steger M, Brandt U, Dröse S. Generator-specific targets of mitochondrial reactive oxygen species. Free Radic Biol Med Elsevier. 2015;78:1–10.CrossRef
50.
Zurück zum Zitat Peralta D, Bronowska AK, Morgan B, Dóka É, Van Laer K, Nagy P, et al. A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat Chem Biol 2015;11. Peralta D, Bronowska AK, Morgan B, Dóka É, Van Laer K, Nagy P, et al. A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat Chem Biol 2015;11.
51.
Zurück zum Zitat Desouki MM, Kulawiec M, Bansal S, Das GC, Singh KK. Cross talk between mitochondria and superoxide generating NADPH oxidase in breast and ovarian tumors. Cancer Biol. Ther. Landes Bioscience Inc.; 2005;4:1367–73. Desouki MM, Kulawiec M, Bansal S, Das GC, Singh KK. Cross talk between mitochondria and superoxide generating NADPH oxidase in breast and ovarian tumors. Cancer Biol. Ther. Landes Bioscience Inc.; 2005;4:1367–73.
52.
Zurück zum Zitat Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A. 2010/04/28 ed. 2010;107:8788–93. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A. 2010/04/28 ed. 2010;107:8788–93.
53.
Zurück zum Zitat Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res. 2010/12/29 ed. 2011;21:103–15. Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res. 2010/12/29 ed. 2011;21:103–15.
54.
Zurück zum Zitat Sharma LK, Fang H, Liu J, Vartak R, Deng J, Bai Y. Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation. Hum Mol Genet. 2011/09/06 ed. 2011;20:4605–16. Sharma LK, Fang H, Liu J, Vartak R, Deng J, Bai Y. Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation. Hum Mol Genet. 2011/09/06 ed. 2011;20:4605–16.
55.
Zurück zum Zitat Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. Elsevier Inc.; 2010;40:294–309. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. Elsevier Inc.; 2010;40:294–309.
56.
Zurück zum Zitat Porporato PE, Payen VL, Pérez-Escuredo J, De Saedeleer CJ, Danhier P, Copetti T, et al. A mitochondrial switch promotes tumor metastasis. Cell Rep. 2014;8:754–66.CrossRefPubMed Porporato PE, Payen VL, Pérez-Escuredo J, De Saedeleer CJ, Danhier P, Copetti T, et al. A mitochondrial switch promotes tumor metastasis. Cell Rep. 2014;8:754–66.CrossRefPubMed
57.
Zurück zum Zitat Cruz-Bermúdez A, Vallejo C, Vicente-blanco RJ, Gallardo ME, Fernandez-Moreno MA, Quintanilla M, et al. Enhanced tumorigenicity by mitochondrial DNA mild mutations. Oncotarget. 2015;6:13628–43.CrossRefPubMedPubMedCentral Cruz-Bermúdez A, Vallejo C, Vicente-blanco RJ, Gallardo ME, Fernandez-Moreno MA, Quintanilla M, et al. Enhanced tumorigenicity by mitochondrial DNA mild mutations. Oncotarget. 2015;6:13628–43.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Formentini L, Sanchez-Arago M, Sanchez-Cenizo L, Cuezva JM. The mitochondrial ATPase inhibitory factor 1 triggers a ROS-mediated retrograde prosurvival and proliferative response. Mol Cell. 2012;45:731–42.CrossRefPubMed Formentini L, Sanchez-Arago M, Sanchez-Cenizo L, Cuezva JM. The mitochondrial ATPase inhibitory factor 1 triggers a ROS-mediated retrograde prosurvival and proliferative response. Mol Cell. 2012;45:731–42.CrossRefPubMed
59.
Zurück zum Zitat Maranzana E, Barbero G, Falasca AI, Lenaz G, Genova ML. Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid Redox Signal. 2013/04/16 ed. 2013;19:1469–80. Maranzana E, Barbero G, Falasca AI, Lenaz G, Genova ML. Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid Redox Signal. 2013/04/16 ed. 2013;19:1469–80.
60.
Zurück zum Zitat Tello D, Balsa E, Acosta-Iborra B, Fuertes-Yebra E, Elorza A, Ordóñez Á, et al. Induction of the mitochondrial NDUFA4L2 protein by HIF-1α decreases oxygen consumption by inhibiting Complex I activity. Cell Metab. 2011;14:768–79.CrossRefPubMed Tello D, Balsa E, Acosta-Iborra B, Fuertes-Yebra E, Elorza A, Ordóñez Á, et al. Induction of the mitochondrial NDUFA4L2 protein by HIF-1α decreases oxygen consumption by inhibiting Complex I activity. Cell Metab. 2011;14:768–79.CrossRefPubMed
61.
Zurück zum Zitat Mailloux RJ, Harper M-E. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic. Biol. Med. Elsevier Inc.; 2011;51:1106–15. Mailloux RJ, Harper M-E. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic. Biol. Med. Elsevier Inc.; 2011;51:1106–15.
62.
Zurück zum Zitat Dröse S, Brandt U, Wittig I. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation. Biochim. Biophys. Acta. Elsevier B.V.; 2014;1844:1344–54. Dröse S, Brandt U, Wittig I. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation. Biochim. Biophys. Acta. Elsevier B.V.; 2014;1844:1344–54.
63.
Zurück zum Zitat Tuppen H a L, Blakely EL, Turnbull DM, Taylor RW. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta. Elsevier B.V.; 2010;1797:113–28. Tuppen H a L, Blakely EL, Turnbull DM, Taylor RW. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta. Elsevier B.V.; 2010;1797:113–28.
64.
Zurück zum Zitat Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 2008;320:661–4.CrossRefPubMed Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 2008;320:661–4.CrossRefPubMed
65.
66.
Zurück zum Zitat King MP, Attardi G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science (80-.). 1989/10/27 ed. 1989;246:500–3. King MP, Attardi G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science (80-.). 1989/10/27 ed. 1989;246:500–3.
67.
Zurück zum Zitat Yarham JW, Al-Dosary M, Blakely EL, Alston CL, Taylor RW, Elson JL, et al. A comparative analysis approach to determining the pathogenicity of mitochondrial tRNA mutations. Hum Mutat. 2011;32:1319–25.CrossRefPubMed Yarham JW, Al-Dosary M, Blakely EL, Alston CL, Taylor RW, Elson JL, et al. A comparative analysis approach to determining the pathogenicity of mitochondrial tRNA mutations. Hum Mutat. 2011;32:1319–25.CrossRefPubMed
68.
Zurück zum Zitat Howell a N, Sager R. Tumorigenicity and its suppression in cybrids of mouse and Chinese hamster cell lines. Proc Natl Acad Sci USA. 1978;75:2358–62. Howell a N, Sager R. Tumorigenicity and its suppression in cybrids of mouse and Chinese hamster cell lines. Proc Natl Acad Sci USA. 1978;75:2358–62.
69.
Zurück zum Zitat Hayashi J, Werbin H, Shay JW. Effects of normal human fibroblast mitochondrial DNA on segregation of HeLaTG Mitochondrial DNA and on tumorigenicity of HeLaTG cells. Cancer Res. 1986;46:4001–6.PubMed Hayashi J, Werbin H, Shay JW. Effects of normal human fibroblast mitochondrial DNA on segregation of HeLaTG Mitochondrial DNA and on tumorigenicity of HeLaTG cells. Cancer Res. 1986;46:4001–6.PubMed
70.
Zurück zum Zitat Hayashi J, Takemitsu M, Nonaka I. Recovery of the missing tumorigenicity in mitochondrial DNA-less HeLa cells by introduction of mitochondrial DNA from normal human cells. Somat Cell Mol Genet. 1992;18:123–9.CrossRefPubMed Hayashi J, Takemitsu M, Nonaka I. Recovery of the missing tumorigenicity in mitochondrial DNA-less HeLa cells by introduction of mitochondrial DNA from normal human cells. Somat Cell Mol Genet. 1992;18:123–9.CrossRefPubMed
71.
Zurück zum Zitat Imanishi H, Hattori K, Wada R, Ishikawa K, Fukuda S, Takenaga K, et al. Mitochondrial DNA mutations regulate metastasis of human breast cancer cells. PLoS One. 2011;6:e23401. Imanishi H, Hattori K, Wada R, Ishikawa K, Fukuda S, Takenaga K, et al. Mitochondrial DNA mutations regulate metastasis of human breast cancer cells. PLoS One. 2011;6:e23401.
72.
Zurück zum Zitat Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA. 2005;102:719–24.CrossRefPubMedPubMedCentral Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA. 2005;102:719–24.CrossRefPubMedPubMedCentral
73.
Zurück zum Zitat Shidara Y, Yamagata K, Kanamori T, Nakano K, Kwong JQ, Manfredi G, et al. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res. 2005;65:1655–63.CrossRefPubMed Shidara Y, Yamagata K, Kanamori T, Nakano K, Kwong JQ, Manfredi G, et al. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res. 2005;65:1655–63.CrossRefPubMed
74.
Zurück zum Zitat Park JS, Sharma LK, Li H, Xiang R, Holstein D, Wu J, et al. A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Hum Mol Genet. 2009;18:1578–89.CrossRefPubMedPubMedCentral Park JS, Sharma LK, Li H, Xiang R, Holstein D, Wu J, et al. A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Hum Mol Genet. 2009;18:1578–89.CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat Kaipparettu BA, Ma Y, Wong LJ. Functional effects of cancer mitochondria on energy metabolism and tumorigenesis: utility of transmitochondrial cybrids. Ann N Y Acad Sci. 2010;1201:137–46.CrossRefPubMed Kaipparettu BA, Ma Y, Wong LJ. Functional effects of cancer mitochondria on energy metabolism and tumorigenesis: utility of transmitochondrial cybrids. Ann N Y Acad Sci. 2010;1201:137–46.CrossRefPubMed
76.
Zurück zum Zitat Iommarini L, Kurelac I, Capristo M, Calvaruso MA, Giorgio V, Bergamini C, et al. Different mtDNA mutations modify tumor progression in dependence of the degree of respiratory complex I impairment. Hum Mol Genet. 2014;23:1453–66.CrossRefPubMed Iommarini L, Kurelac I, Capristo M, Calvaruso MA, Giorgio V, Bergamini C, et al. Different mtDNA mutations modify tumor progression in dependence of the degree of respiratory complex I impairment. Hum Mol Genet. 2014;23:1453–66.CrossRefPubMed
77.
Zurück zum Zitat Calabrese C, Iommarini L, Kurelac I, Calvaruso MA, Capristo M, Lollini PL, et al. Respiratory complex I is essential to induce a Warburg profile in mitochondria-defective tumor cells. Cancer Metab. 2013;1:11. Calabrese C, Iommarini L, Kurelac I, Calvaruso MA, Capristo M, Lollini PL, et al. Respiratory complex I is essential to induce a Warburg profile in mitochondria-defective tumor cells. Cancer Metab. 2013;1:11.
78.
Zurück zum Zitat Tan AS, Baty JW, Dong L-F, Bezawork-Geleta A, Endaya B, Goodwin J, et al. Mitochondrial Genome Acquisition Restores Respiratory Function and Tumorigenic Potential of Cancer Cells without Mitochondrial DNA. Cell Metab. Elsevier Inc.; 2015;21:81–94. Tan AS, Baty JW, Dong L-F, Bezawork-Geleta A, Endaya B, Goodwin J, et al. Mitochondrial Genome Acquisition Restores Respiratory Function and Tumorigenic Potential of Cancer Cells without Mitochondrial DNA. Cell Metab. Elsevier Inc.; 2015;21:81–94.
79.
Zurück zum Zitat Berridge MV, Dong L, Neuzil J. Mitochondrial DNA in tumor initiation, progression, and metastasis: role of horizontal mtDNA transfer. Cancer Res. 2015;75:3203–8.CrossRefPubMed Berridge MV, Dong L, Neuzil J. Mitochondrial DNA in tumor initiation, progression, and metastasis: role of horizontal mtDNA transfer. Cancer Res. 2015;75:3203–8.CrossRefPubMed
80.
Zurück zum Zitat Wallace DC. Mitochondria and cancer. Nat. Rev. Cancer. Nature Publishing Group; 2012;12:685–98. Wallace DC. Mitochondria and cancer. Nat. Rev. Cancer. Nature Publishing Group; 2012;12:685–98.
81.
Zurück zum Zitat Horan MP, Gemmell NJ, Wolff JN. From evolutionary bystander to master manipulator: the emerging roles for the mitochondrial genome as a modulator of nuclear gene expression. Eur J Hum Genet. 2013;21:1335–7.CrossRefPubMedPubMedCentral Horan MP, Gemmell NJ, Wolff JN. From evolutionary bystander to master manipulator: the emerging roles for the mitochondrial genome as a modulator of nuclear gene expression. Eur J Hum Genet. 2013;21:1335–7.CrossRefPubMedPubMedCentral
82.
Zurück zum Zitat Ward PS, Thompson CB. metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. Elsevier. 2012;21:297–308.CrossRef Ward PS, Thompson CB. metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. Elsevier. 2012;21:297–308.CrossRef
83.
Zurück zum Zitat Picard M, Zhang J, Hancock S, Derbeneva O, Golhar R, Golik P, et al. Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. Proc Natl Acad Sci USA. 2014;111:E4033–42.CrossRefPubMedPubMedCentral Picard M, Zhang J, Hancock S, Derbeneva O, Golhar R, Golik P, et al. Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. Proc Natl Acad Sci USA. 2014;111:E4033–42.CrossRefPubMedPubMedCentral
84.
Zurück zum Zitat Amuthan G, Biswas G, Zhang SY, Klein-Szanto a, Vijayasarathy C, Avadhani NG. Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J. 2001;20:1910–20. Amuthan G, Biswas G, Zhang SY, Klein-Szanto a, Vijayasarathy C, Avadhani NG. Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J. 2001;20:1910–20.
85.
Zurück zum Zitat Tang W, Chowdhury AR, Guha M, Huang L, Van Winkle T, Rustgi AK, et al. Silencing of IkBβ mRNA causes disruption of mitochondrial retrograde signaling and suppression of tumor growth in vivo. Carcinogenesis. 2012;33:1762–8.CrossRefPubMedPubMedCentral Tang W, Chowdhury AR, Guha M, Huang L, Van Winkle T, Rustgi AK, et al. Silencing of IkBβ mRNA causes disruption of mitochondrial retrograde signaling and suppression of tumor growth in vivo. Carcinogenesis. 2012;33:1762–8.CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Mitsushita J, Lambeth JD, Kamata T. The superoxide-generating oxidase Nox1 is functionally required for Ras oncogene transformation. Cancer Res. 2004;64:3580–5.CrossRefPubMed Mitsushita J, Lambeth JD, Kamata T. The superoxide-generating oxidase Nox1 is functionally required for Ras oncogene transformation. Cancer Res. 2004;64:3580–5.CrossRefPubMed
87.
Zurück zum Zitat Veatch JR, McMurray M a, Nelson ZW, Gottschling DE. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell. Elsevier Ltd; 2009;137:1247–58. Veatch JR, McMurray M a, Nelson ZW, Gottschling DE. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell. Elsevier Ltd; 2009;137:1247–58.
88.
Zurück zum Zitat Pelicano H, Xu RH, Du M, Feng L, Sasaki R, Carew JS, et al. Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol. 2006;175:913–23.CrossRefPubMedPubMedCentral Pelicano H, Xu RH, Du M, Feng L, Sasaki R, Carew JS, et al. Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol. 2006;175:913–23.CrossRefPubMedPubMedCentral
89.
Zurück zum Zitat Lee C, Zeng J, Drew BG, Sallam T, Martin-Montalvo A, Wan J, et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 2015;21:443–54.CrossRefPubMedPubMedCentral Lee C, Zeng J, Drew BG, Sallam T, Martin-Montalvo A, Wan J, et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 2015;21:443–54.CrossRefPubMedPubMedCentral
90.
Zurück zum Zitat Yen K, Lee C, Mehta H, Cohen P. The emerging role of the mitochondrial-derived peptide humanin in stress resistance. J Mol Endocrinol. 2013;50:R11–9.CrossRefPubMedPubMedCentral Yen K, Lee C, Mehta H, Cohen P. The emerging role of the mitochondrial-derived peptide humanin in stress resistance. J Mol Endocrinol. 2013;50:R11–9.CrossRefPubMedPubMedCentral
91.
Zurück zum Zitat Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, et al. Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature. 2003/05/07 ed. 2003;423:456–61. Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, et al. Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature. 2003/05/07 ed. 2003;423:456–61.
92.
Zurück zum Zitat Mottaghi-Dastjerdi N, Soltany-Rezaee-Rad M, Sepehrizadeh Z, Roshandel G, Ebrahimifard F, Setayesh N. Genome expression analysis by suppression subtractive hybridization identified overexpression of Humanin, a target gene in gastric cancer chemoresistance. Daru. 2014/01/10 ed. 2014;22:14. Mottaghi-Dastjerdi N, Soltany-Rezaee-Rad M, Sepehrizadeh Z, Roshandel G, Ebrahimifard F, Setayesh N. Genome expression analysis by suppression subtractive hybridization identified overexpression of Humanin, a target gene in gastric cancer chemoresistance. Daru. 2014/01/10 ed. 2014;22:14.
93.
Zurück zum Zitat Monaghan RM, Whitmarsh AJ. mitochondrial proteins moonlighting in the nucleus. Trends Biochem. Sci. Elsevier Ltd; 2015;xx:1–8. Monaghan RM, Whitmarsh AJ. mitochondrial proteins moonlighting in the nucleus. Trends Biochem. Sci. Elsevier Ltd; 2015;xx:1–8.
94.
Zurück zum Zitat Ye X-Q, Li Q, Wang G-H, Sun F-F, Huang G-J, Bian X-W, et al. Mitochondrial and energy metabolism-related properties as novel indicators of lung cancer stem cells. Int J Cancer. 2011;129:820–31.CrossRefPubMed Ye X-Q, Li Q, Wang G-H, Sun F-F, Huang G-J, Bian X-W, et al. Mitochondrial and energy metabolism-related properties as novel indicators of lung cancer stem cells. Int J Cancer. 2011;129:820–31.CrossRefPubMed
95.
Zurück zum Zitat Menendez JA, Alarcón T. Metabostemness: a new cancer hallmark. Front. Oncol. 2014;4:262. Menendez JA, Alarcón T. Metabostemness: a new cancer hallmark. Front. Oncol. 2014;4:262.
96.
Zurück zum Zitat Guha M, Srinivasan S, Ruthel G, Kashina AK, Carstens RP, Mendoza A, et al. Mitochondrial retrograde signaling induces epithelial-mesenchymal transition and generates breast cancer stem cells. Oncogene. Macmillan Publishers Limited; 2014;33:5238–50. Guha M, Srinivasan S, Ruthel G, Kashina AK, Carstens RP, Mendoza A, et al. Mitochondrial retrograde signaling induces epithelial-mesenchymal transition and generates breast cancer stem cells. Oncogene. Macmillan Publishers Limited; 2014;33:5238–50.
97.
Zurück zum Zitat Yang M, Yan M, Zhang R, Li J, Luo Z. Side population cells isolated from human osteosarcoma are enriched with tumor-initiating cells. Cancer Sci. 2011;102:1774–81.CrossRefPubMed Yang M, Yan M, Zhang R, Li J, Luo Z. Side population cells isolated from human osteosarcoma are enriched with tumor-initiating cells. Cancer Sci. 2011;102:1774–81.CrossRefPubMed
98.
Zurück zum Zitat Martins-Neves SR, Lopes ÁO, do Carmo A, Paiva A a, Simões PC, Abrunhosa AJ, et al. Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line. BMC Cancer. BioMed Central Ltd; 2012;12:139. Martins-Neves SR, Lopes ÁO, do Carmo A, Paiva A a, Simões PC, Abrunhosa AJ, et al. Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line. BMC Cancer. BioMed Central Ltd; 2012;12:139.
99.
Zurück zum Zitat Heiden M Vander, Cantley L, Thompson C. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (80-.). 2009;324:1029–34. Heiden M Vander, Cantley L, Thompson C. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (80-.). 2009;324:1029–34.
100.
Zurück zum Zitat Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429:417–23.CrossRefPubMed Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429:417–23.CrossRefPubMed
102.
Zurück zum Zitat Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, et al. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science (80-.). 2000;287:1997–9. Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, et al. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science (80-.). 2000;287:1997–9.
103.
Zurück zum Zitat Takeuchi H, Fujimoto A, Hoon DSB. Detection of mitochondrial DNA alterations in plasma of malignant melanoma patients. Ann N Y Acad Sci. 2004;1022:50–4.CrossRefPubMed Takeuchi H, Fujimoto A, Hoon DSB. Detection of mitochondrial DNA alterations in plasma of malignant melanoma patients. Ann N Y Acad Sci. 2004;1022:50–4.CrossRefPubMed
104.
Zurück zum Zitat Okochi O, Hibi K, Uemura T, Inoue S, Takeda S, Kanek T, et al. Detection of mitochondrial DNA alterations in the serum of hepatocellular carcinoma patients. Clin Cancer Res. 2002;8:2875–8.PubMed Okochi O, Hibi K, Uemura T, Inoue S, Takeda S, Kanek T, et al. Detection of mitochondrial DNA alterations in the serum of hepatocellular carcinoma patients. Clin Cancer Res. 2002;8:2875–8.PubMed
105.
Zurück zum Zitat Hibi K, Nakayama H, Yamazaki T, Takase T, Taguchi M, Kasai Y, et al. Detection of mitochondrial DNA alterations in primary tumors and corresponding serum of colorectal cancer patients. Int J Cancer. 2001;94:429–31.CrossRefPubMed Hibi K, Nakayama H, Yamazaki T, Takase T, Taguchi M, Kasai Y, et al. Detection of mitochondrial DNA alterations in primary tumors and corresponding serum of colorectal cancer patients. Int J Cancer. 2001;94:429–31.CrossRefPubMed
106.
Zurück zum Zitat Yu M, Wan YF, Zou QH. Cell-free circulating mitochondrial DNA in the serum: a potential non-invasive biomarker for Ewing’s Sarcoma. Arch Med Res Elsevier Inc; 2012;43:389–94. Yu M, Wan YF, Zou QH. Cell-free circulating mitochondrial DNA in the serum: a potential non-invasive biomarker for Ewing’s Sarcoma. Arch Med Res Elsevier Inc; 2012;43:389–94.
107.
Zurück zum Zitat Duberow DP, Brait M, Hoque MO, Theodorescu D, Sidransky D, Dasgupta S, et al. High-performance detection of somatic D-loop mutation in urothelial cell carcinoma patients by polymorphism ratio sequencing. 2016;94:1015–1024. Duberow DP, Brait M, Hoque MO, Theodorescu D, Sidransky D, Dasgupta S, et al. High-performance detection of somatic D-loop mutation in urothelial cell carcinoma patients by polymorphism ratio sequencing. 2016;94:1015–1024.
108.
Zurück zum Zitat Jerónimo C, Nomoto S, Caballero OL, Usadel H, Henrique R, Varzim G, et al. Mitochondrial mutations in early stage prostate cancer and bodily fluids. Oncogene. 2001;20:5195–8.CrossRefPubMed Jerónimo C, Nomoto S, Caballero OL, Usadel H, Henrique R, Varzim G, et al. Mitochondrial mutations in early stage prostate cancer and bodily fluids. Oncogene. 2001;20:5195–8.CrossRefPubMed
109.
Zurück zum Zitat Wong LJC, Lueth M, Li XN, Lau CC, Vogel H. Detection of mitochondrial DNA mutations in the tumor and cerebrospinal fluid of medulloblastoma patients. Cancer Res. 2003;63:3866–71.PubMed Wong LJC, Lueth M, Li XN, Lau CC, Vogel H. Detection of mitochondrial DNA mutations in the tumor and cerebrospinal fluid of medulloblastoma patients. Cancer Res. 2003;63:3866–71.PubMed
110.
Zurück zum Zitat Zhu W, Qin W, Bradley P, Wessel A, Puckett CL, Sauter ER. Mitochondrial DNA mutations in breast cancer tissue and in matched nipple aspirate fluid. Carcinogenesis. 2005;26:145–52.CrossRefPubMed Zhu W, Qin W, Bradley P, Wessel A, Puckett CL, Sauter ER. Mitochondrial DNA mutations in breast cancer tissue and in matched nipple aspirate fluid. Carcinogenesis. 2005;26:145–52.CrossRefPubMed
Metadaten
Titel
Spotlight on the relevance of mtDNA in cancer
verfasst von
A. Cruz-Bermúdez
R. J. Vicente-Blanco
E. Gonzalez-Vioque
M. Provencio
M. Á. Fernández-Moreno
R. Garesse
Publikationsdatum
24.10.2016
Verlag
Springer International Publishing
Erschienen in
Clinical and Translational Oncology / Ausgabe 4/2017
Print ISSN: 1699-048X
Elektronische ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-016-1561-6

Weitere Artikel der Ausgabe 4/2017

Clinical and Translational Oncology 4/2017 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.