Skip to main content
Erschienen in: Sports Medicine 1/2021

30.10.2020 | Review Article

Sprint Start Regulation in Athletics: A Critical Review

verfasst von: Matthieu Milloz, Kevin Hayes, Andrew J. Harrison

Erschienen in: Sports Medicine | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten

Abstract

The sprint start in athletics is strictly controlled to ensure the fairness of competition. World athletics (WA)-certified start information systems (SIS) record athletes’ response times in competition to ensure that no athletes gain an unfair advantage by responding in < 100 ms after the start signal. This critical review examines the legitimacy of the 100 ms rule, the factors that affect response times and the technologies and rules that support the regulation of the start in competition. The review shows that several SIS use different technologies to deliver the start signal and record response time (RT). The lack of scientific evidence about the definition of the 100 ms false start threshold by the WA is criticized in the literature and the 100 ms rule is challenged. SIS technologies, expertise and sex appear to affect the RT detected in competition. A lack of standardization in event detection has led to validity and reliability problems in RT determination. The onset of the foot response on the blocks is currently used to assess RT in athletics via block-mounted sensors; however, research shows that the onset of arm force reaction is the first detectable biomechanical event in the start. Further research and development should consider whether the onset of arm force can be used to improve the false start detection in competition. Further research is also needed to develop a precise understanding of the event sequence and motor control of the start to improve the SIS technology and rigorously determine the minimum limit of RT in the sprint start.
Literatur
1.
Zurück zum Zitat Harland MJ, Steele JR. Biomechanics of the sprint start. Sports Med. 1995;23:11–20. Harland MJ, Steele JR. Biomechanics of the sprint start. Sports Med. 1995;23:11–20.
3.
Zurück zum Zitat Gander RE, McClements JD, Sanderson LK, Rostad BA, Josephson KE, Pratt AJ. Sprint start instrumentation. IEEE Trans Instrum Meas. 1994;43:637–43. Gander RE, McClements JD, Sanderson LK, Rostad BA, Josephson KE, Pratt AJ. Sprint start instrumentation. IEEE Trans Instrum Meas. 1994;43:637–43.
4.
Zurück zum Zitat Lemaire ED, Robertson DGE. Force-time data acquisition system for sprint starting. Can J Sport Sci. 1990;15:149–52.PubMed Lemaire ED, Robertson DGE. Force-time data acquisition system for sprint starting. Can J Sport Sci. 1990;15:149–52.PubMed
5.
Zurück zum Zitat Willwacher S, Feldker M-K, Zohren S, Herrmann V, Brüggemann G-P. A novel method for the evaluation and certification of false start apparatus in sprint running. Procedia Eng. 2013;60:124–9. Willwacher S, Feldker M-K, Zohren S, Herrmann V, Brüggemann G-P. A novel method for the evaluation and certification of false start apparatus in sprint running. Procedia Eng. 2013;60:124–9.
6.
Zurück zum Zitat Mero A, Komi PV, Gregor RJ. Biomechanics of sprint running. Sports Med. 1992;13:376–92.PubMed Mero A, Komi PV, Gregor RJ. Biomechanics of sprint running. Sports Med. 1992;13:376–92.PubMed
7.
Zurück zum Zitat Bezodis NE, Willwacher S, Salo AIT. The biomechanics of the track and field sprint start: a narrative review. Sports Med. 2019;49:1345–64.PubMedPubMedCentral Bezodis NE, Willwacher S, Salo AIT. The biomechanics of the track and field sprint start: a narrative review. Sports Med. 2019;49:1345–64.PubMedPubMedCentral
9.
Zurück zum Zitat Julin AL, Dapena J. Sprinters at the 1996 Olympic Games in Atlanta did not hear the starter’s gun through the loudspeakers on the starting blocks. New Stud Athl. 2003;18:23–7. Julin AL, Dapena J. Sprinters at the 1996 Olympic Games in Atlanta did not hear the starter’s gun through the loudspeakers on the starting blocks. New Stud Athl. 2003;18:23–7.
10.
Zurück zum Zitat Komi PV, Ishikawa M, Jukka S. IAAF sprint start research project: is the 100ms limit still valid. New Stud Athl. 2009;24:37–47. Komi PV, Ishikawa M, Jukka S. IAAF sprint start research project: is the 100ms limit still valid. New Stud Athl. 2009;24:37–47.
11.
Zurück zum Zitat Brown AM, Kenwell ZR, Maraj BK, Collins DF. “ Go” signal intensity influences the sprint start. Med Sci Sports Exerc. 2008;40:1142–8.PubMed Brown AM, Kenwell ZR, Maraj BK, Collins DF. “ Go” signal intensity influences the sprint start. Med Sci Sports Exerc. 2008;40:1142–8.PubMed
12.
Zurück zum Zitat Pain MTG, Hibbs A. Sprint starts and the minimum auditory reaction time. J Sports Sci. 2007;25:79–86.PubMed Pain MTG, Hibbs A. Sprint starts and the minimum auditory reaction time. J Sports Sci. 2007;25:79–86.PubMed
13.
Zurück zum Zitat Brosnan KC, Hayes K, Harrison AJ. Effects of false-start disqualification rules on response-times of elite-standard sprinters. J Sports Sci. 2017;35:929–35.PubMed Brosnan KC, Hayes K, Harrison AJ. Effects of false-start disqualification rules on response-times of elite-standard sprinters. J Sports Sci. 2017;35:929–35.PubMed
14.
Zurück zum Zitat Lipps DB, Galecki AT, Ashton-Miller JA. On the implications of a sex difference in the reaction times of sprinters at the Beijing Olympics. PLoS ONE. 2011;6:e26141.PubMedPubMedCentral Lipps DB, Galecki AT, Ashton-Miller JA. On the implications of a sex difference in the reaction times of sprinters at the Beijing Olympics. PLoS ONE. 2011;6:e26141.PubMedPubMedCentral
15.
Zurück zum Zitat Collet C. Strategic aspects of reaction time in world-class sprinters. Percept Mot Skills. 1999;88:65–75.PubMed Collet C. Strategic aspects of reaction time in world-class sprinters. Percept Mot Skills. 1999;88:65–75.PubMed
16.
Zurück zum Zitat Edwards WH. Motor learning and control: from theory to practice. Belmont: Wadsworth Cengage Learning; 2011. Edwards WH. Motor learning and control: from theory to practice. Belmont: Wadsworth Cengage Learning; 2011.
17.
Zurück zum Zitat Pilianidis T, Kasabalis A, Mantzouranis N, Mavvidis A. Start reaction time and performance at the sprint events in the Olympic Games. Kinesiology. 2012;44:67–72. Pilianidis T, Kasabalis A, Mantzouranis N, Mavvidis A. Start reaction time and performance at the sprint events in the Olympic Games. Kinesiology. 2012;44:67–72.
18.
Zurück zum Zitat Pilianidis T, Mantzouranis N. Start reaction time and performance time in women’s sprint at the world championships in athletics. Stud Phys Cult Tour. 2011;18:271–5. Pilianidis T, Mantzouranis N. Start reaction time and performance time in women’s sprint at the world championships in athletics. Stud Phys Cult Tour. 2011;18:271–5.
19.
Zurück zum Zitat Smirniotou A, Katsikas C, Paradisis G, Argeitaki P, Zacharogiannis E, Tziortzis S. Strength-power parameters as predictors of sprinting performance. J Sports Med Phys Fit. 2008;48:447–54. Smirniotou A, Katsikas C, Paradisis G, Argeitaki P, Zacharogiannis E, Tziortzis S. Strength-power parameters as predictors of sprinting performance. J Sports Med Phys Fit. 2008;48:447–54.
20.
Zurück zum Zitat Tønnessen E, Haugen T, Shalfawi SA. Reaction time aspects of elite sprinters in athletic world championships. J Strength Cond Res. 2013;27:885–92.PubMed Tønnessen E, Haugen T, Shalfawi SA. Reaction time aspects of elite sprinters in athletic world championships. J Strength Cond Res. 2013;27:885–92.PubMed
22.
Zurück zum Zitat Gürses VV, Kamiş O. The relationship between reaction time and 60 m performance in elite athletes. J Educ Train Stud. 2019;6:64–9. Gürses VV, Kamiş O. The relationship between reaction time and 60 m performance in elite athletes. J Educ Train Stud. 2019;6:64–9.
23.
Zurück zum Zitat St Germain L, Smith V, Maslovat D, Carlsen A. Increased auditory stimulus intensity results in an earlier and faster rise in corticospinal excitability. Brain Res. 2019;1727:146559.PubMed St Germain L, Smith V, Maslovat D, Carlsen A. Increased auditory stimulus intensity results in an earlier and faster rise in corticospinal excitability. Brain Res. 2019;1727:146559.PubMed
24.
Zurück zum Zitat Heinz MG, Issa JB, Young ED. Auditory-nerve rate responses are inconsistent with common hypotheses for the neural correlates of loudness recruitment. J Assoc Res Oto. 2005;6:91–105. Heinz MG, Issa JB, Young ED. Auditory-nerve rate responses are inconsistent with common hypotheses for the neural correlates of loudness recruitment. J Assoc Res Oto. 2005;6:91–105.
25.
Zurück zum Zitat Kohfeld DL, Santee JL, Wallace ND. Loudness and reaction time: I. Percept Psychophys. 1981;29:535–49.PubMed Kohfeld DL, Santee JL, Wallace ND. Loudness and reaction time: I. Percept Psychophys. 1981;29:535–49.PubMed
26.
Zurück zum Zitat Carlsen AN, Chua R, Inglis JT, Sanderson DJ, Franks IM. Can prepared responses be stored subcortically? Exp Brain Res. 2004;159:301–9.PubMed Carlsen AN, Chua R, Inglis JT, Sanderson DJ, Franks IM. Can prepared responses be stored subcortically? Exp Brain Res. 2004;159:301–9.PubMed
27.
Zurück zum Zitat Otsuka M, Kurihara T, Isaka T. Timing of gun fire influences sprinters’ multiple joint reaction times of whole body in block start. Front Psychol. 2017;8:810.PubMedPubMedCentral Otsuka M, Kurihara T, Isaka T. Timing of gun fire influences sprinters’ multiple joint reaction times of whole body in block start. Front Psychol. 2017;8:810.PubMedPubMedCentral
28.
Zurück zum Zitat Haugen TA, Shalfawi S, Tønnessen E. The effect of different starting procedures on sprinters’ reaction time. J Sports Sci. 2013;31:699–705.PubMed Haugen TA, Shalfawi S, Tønnessen E. The effect of different starting procedures on sprinters’ reaction time. J Sports Sci. 2013;31:699–705.PubMed
29.
Zurück zum Zitat MacDonald CJ, Meck WH. Systems-level integration of interval timing and reaction time. Neurosci Biobehav Rev. 2004;28:747–69.PubMed MacDonald CJ, Meck WH. Systems-level integration of interval timing and reaction time. Neurosci Biobehav Rev. 2004;28:747–69.PubMed
30.
Zurück zum Zitat Zahn TP, Rosenthal D. Simple reaction time as a function of the relative frequency of the preparatory interval. J Exp Psychol. 1966;72:15–9.PubMed Zahn TP, Rosenthal D. Simple reaction time as a function of the relative frequency of the preparatory interval. J Exp Psychol. 1966;72:15–9.PubMed
31.
Zurück zum Zitat Kennefick M, Maslovat D, Carlsen AN. The time course of corticospinal excitability during a simple reaction time task. Antal A, editor. PLoS ONE. 2014;9:e113563.PubMedPubMedCentral Kennefick M, Maslovat D, Carlsen AN. The time course of corticospinal excitability during a simple reaction time task. Antal A, editor. PLoS ONE. 2014;9:e113563.PubMedPubMedCentral
32.
Zurück zum Zitat Graham-Smith P, Natera A, Saunders S. Contribution of the arms in the sprint start and their influence on force and velocity characteristics. ISBS Conference Proceedings Archive of the 32nd Conference of the International Society of Biomechanics in Sports [Internet]. 2014. Available from: https://ojs.ub.uni-konstanz.de/cpa/article/view/6027. Accessed 9 Dec 2019. Graham-Smith P, Natera A, Saunders S. Contribution of the arms in the sprint start and their influence on force and velocity characteristics. ISBS Conference Proceedings Archive of the 32nd Conference of the International Society of Biomechanics in Sports [Internet]. 2014. Available from: https://​ojs.​ub.​uni-konstanz.​de/​cpa/​article/​view/​6027. Accessed 9 Dec 2019.
33.
Zurück zum Zitat Otsuka M, Shim JK, Kurihara T, Yoshioka S, Nokata M, Isaka T. Effect of expertise on 3D force application during the starting block phase and subsequent steps in sprint running. J Appl Biomech. 2014;30:390–400.PubMed Otsuka M, Shim JK, Kurihara T, Yoshioka S, Nokata M, Isaka T. Effect of expertise on 3D force application during the starting block phase and subsequent steps in sprint running. J Appl Biomech. 2014;30:390–400.PubMed
34.
Zurück zum Zitat Aerenhouts D, Delecluse C, Hagman F, Taeymans J, Debaere S, Van Gheluwe B, et al. Comparison of anthropometric characteristics and sprint start performance between elite adolescent and adult sprint athletes. Eur J Sport Sci. 2012;12:9–15. Aerenhouts D, Delecluse C, Hagman F, Taeymans J, Debaere S, Van Gheluwe B, et al. Comparison of anthropometric characteristics and sprint start performance between elite adolescent and adult sprint athletes. Eur J Sport Sci. 2012;12:9–15.
35.
Zurück zum Zitat Eikenberry A, McAuliffe J, Welsh TN, Zerpa C, McPherson M, Newhouse I. Starting with the “right” foot minimizes sprint start time. Acta Psychol. 2008;127:495–500. Eikenberry A, McAuliffe J, Welsh TN, Zerpa C, McPherson M, Newhouse I. Starting with the “right” foot minimizes sprint start time. Acta Psychol. 2008;127:495–500.
36.
Zurück zum Zitat Kovacs AJ, Miles GF, Baweja HS. Thinking outside the block: external focus of attention improves reaction times and movement preparation times in collegiate track sprinters. Sports. 2018;6:120.PubMedCentral Kovacs AJ, Miles GF, Baweja HS. Thinking outside the block: external focus of attention improves reaction times and movement preparation times in collegiate track sprinters. Sports. 2018;6:120.PubMedCentral
37.
Zurück zum Zitat Salo AI, Colyer SL, Chen P, Davies AM, Morgan MF, Page S. Kinetic determinants of athletics sprint start performance. ISBS-Conference Proceedings Archive of the 35th Conference of the International Society of Biomechanics in Sports [Internet]. 2017. Available from: https://commons.nmu.edu/isbs/vol35/iss1/274/. Accessed 9 Dec 2019. Salo AI, Colyer SL, Chen P, Davies AM, Morgan MF, Page S. Kinetic determinants of athletics sprint start performance. ISBS-Conference Proceedings Archive of the 35th Conference of the International Society of Biomechanics in Sports [Internet]. 2017. Available from: https://​commons.​nmu.​edu/​isbs/​vol35/​iss1/​274/​. Accessed 9 Dec 2019.
38.
Zurück zum Zitat Čoh M, Jošt B, Škof B, Tomažin K, Dolenec A. Kinematic and kinetic parameters of the sprint start and start acceleration model of top sprinters. Gymnica. 1998;28:33–42. Čoh M, Jošt B, Škof B, Tomažin K, Dolenec A. Kinematic and kinetic parameters of the sprint start and start acceleration model of top sprinters. Gymnica. 1998;28:33–42.
39.
Zurück zum Zitat Mero A, Komi PV. Reaction time and electromyographic activity during a sprint start. Eur J Appl Physiol. 1990;61:73–80. Mero A, Komi PV. Reaction time and electromyographic activity during a sprint start. Eur J Appl Physiol. 1990;61:73–80.
40.
Zurück zum Zitat Bezodis NE, Walton SP, Nagahara R. Understanding the track and field sprint start through a functional analysis of the external force features which contribute to higher levels of block phase performance. J Sports Sci. 2019;37:560–7.PubMed Bezodis NE, Walton SP, Nagahara R. Understanding the track and field sprint start through a functional analysis of the external force features which contribute to higher levels of block phase performance. J Sports Sci. 2019;37:560–7.PubMed
41.
Zurück zum Zitat Babiç V, Delalija A. Reaction time trends in the women’s sprint and hurdle events at the 2004 Olympic Games. New Stud Athl. 2009;24:49–57. Babiç V, Delalija A. Reaction time trends in the women’s sprint and hurdle events at the 2004 Olympic Games. New Stud Athl. 2009;24:49–57.
42.
Zurück zum Zitat Harrison, AJ, Barr T, Hayes K. A comparison of hand force and starting block-based response times in the sprint start. ISBS-Conference Proceedings Archive of the 36th Conference of the International Society of Biomechanics in Sports [Internet]. NMU Commons; 2018. https://commons.nmu.edu/isbs/vol36/iss1/219/. Accessed 9 Dec 2019. Harrison, AJ, Barr T, Hayes K. A comparison of hand force and starting block-based response times in the sprint start. ISBS-Conference Proceedings Archive of the 36th Conference of the International Society of Biomechanics in Sports [Internet]. NMU Commons; 2018. https://​commons.​nmu.​edu/​isbs/​vol36/​iss1/​219/​. Accessed 9 Dec 2019.
43.
Zurück zum Zitat Terczyński R. The influence of sprint block start elements on initial velocity of 100 metre race. Cent Eur J Sport Sci Med. 2014;8:87–96. Terczyński R. The influence of sprint block start elements on initial velocity of 100 metre race. Cent Eur J Sport Sci Med. 2014;8:87–96.
44.
Zurück zum Zitat Fortier S, Basset FA, Mbourou GA, Favérial J, Teasdale N. Starting block performance in sprinters: a statistical method for identifying discriminative parameters of the performance and an analysis of the effect of providing feedback over a 6-week period. J Sports Sci Med. 2005;4:134–43.PubMedPubMedCentral Fortier S, Basset FA, Mbourou GA, Favérial J, Teasdale N. Starting block performance in sprinters: a statistical method for identifying discriminative parameters of the performance and an analysis of the effect of providing feedback over a 6-week period. J Sports Sci Med. 2005;4:134–43.PubMedPubMedCentral
45.
Zurück zum Zitat Hodges PW, Bui BH. A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography. Electroencephalogr Clin Neurophysiol. 1996;101:511–9.PubMed Hodges PW, Bui BH. A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography. Electroencephalogr Clin Neurophysiol. 1996;101:511–9.PubMed
46.
Zurück zum Zitat Staude G, Wolf W. Objective motor response onset detection in surface myoelectric signals. Med Eng Phys. 1999;21:449–67.PubMed Staude G, Wolf W. Objective motor response onset detection in surface myoelectric signals. Med Eng Phys. 1999;21:449–67.PubMed
47.
Zurück zum Zitat Allison GT. Trunk muscle onset detection technique for EMG signals with ECG artefact. J Electromyogr Kinesiol. 2003;13:209–16.PubMed Allison GT. Trunk muscle onset detection technique for EMG signals with ECG artefact. J Electromyogr Kinesiol. 2003;13:209–16.PubMed
48.
Zurück zum Zitat Tillin N, Jimenez-Reyes P, Pain M, Folland J. Neuromuscular performance of explosive power athletes versus untrained individuals. Med Sci Sports Exerc. 2010;42:781–90.PubMed Tillin N, Jimenez-Reyes P, Pain M, Folland J. Neuromuscular performance of explosive power athletes versus untrained individuals. Med Sci Sports Exerc. 2010;42:781–90.PubMed
49.
Zurück zum Zitat Otsuka M, Potthast W, Willwacher S, Goldmann J-P, Kurihara T, Isaka T. Validity of block start performance without arm forces or by kinematics-only methods. Sports Biomech. 2019;18:229–44.PubMed Otsuka M, Potthast W, Willwacher S, Goldmann J-P, Kurihara T, Isaka T. Validity of block start performance without arm forces or by kinematics-only methods. Sports Biomech. 2019;18:229–44.PubMed
50.
Zurück zum Zitat Bezodis NE, Salo AI, Trewartha G. Choice of sprint start performance measure affects the performance-based ranking within a group of sprinters: which is the most appropriate measure? Sports Biomech. 2010;9:258–69.PubMed Bezodis NE, Salo AI, Trewartha G. Choice of sprint start performance measure affects the performance-based ranking within a group of sprinters: which is the most appropriate measure? Sports Biomech. 2010;9:258–69.PubMed
51.
Zurück zum Zitat Slawinski J, Dumas R, Cheze L, Ontanon G, Miller C, Mazure-Bonnefoy A. 3D kinematic of bunched, medium and elongated sprint start. Int J Sports Med. 2012;33:555–60.PubMed Slawinski J, Dumas R, Cheze L, Ontanon G, Miller C, Mazure-Bonnefoy A. 3D kinematic of bunched, medium and elongated sprint start. Int J Sports Med. 2012;33:555–60.PubMed
52.
Zurück zum Zitat Slawinski J, Bonnefoy A, Ontanon G, Leveque J-M, Miller C, Riquet A, et al. Segment-interaction in sprint start: analysis of 3D angular velocity and kinetic energy in elite sprinters. J Biomech. 2010;43:1494–502.PubMed Slawinski J, Bonnefoy A, Ontanon G, Leveque J-M, Miller C, Riquet A, et al. Segment-interaction in sprint start: analysis of 3D angular velocity and kinetic energy in elite sprinters. J Biomech. 2010;43:1494–502.PubMed
53.
Zurück zum Zitat Slawinski J, Bonnefoy A, Levêque J-M, Ontanon G, Riquet A, Dumas R, et al. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start. J Strength Cond Res. 2010;24:896–905.PubMed Slawinski J, Bonnefoy A, Levêque J-M, Ontanon G, Riquet A, Dumas R, et al. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start. J Strength Cond Res. 2010;24:896–905.PubMed
54.
Zurück zum Zitat Brazil A, Exell T, Wilson C, Willwacher S, Bezodis IN, Irwin G. Joint kinetic determinants of starting block performance in athletic sprinting. J Sports Sci. 2018;36:1656–62.PubMed Brazil A, Exell T, Wilson C, Willwacher S, Bezodis IN, Irwin G. Joint kinetic determinants of starting block performance in athletic sprinting. J Sports Sci. 2018;36:1656–62.PubMed
55.
Zurück zum Zitat Brazil A, Exell T, Wilson C, Willwacher S, Bezodis I, Irwin G. Lower limb joint kinetics in the starting blocks and first stance in athletic sprinting. J Sports Sci. 2017;35:1629–35.PubMed Brazil A, Exell T, Wilson C, Willwacher S, Bezodis I, Irwin G. Lower limb joint kinetics in the starting blocks and first stance in athletic sprinting. J Sports Sci. 2017;35:1629–35.PubMed
56.
Zurück zum Zitat Čoh M, Peharec S, Bačić P, Mackala K. Biomechanical differences in the sprint start between faster and slower high-level sprinters. J Hum Kinet. 2017;56:29–38.PubMedPubMedCentral Čoh M, Peharec S, Bačić P, Mackala K. Biomechanical differences in the sprint start between faster and slower high-level sprinters. J Hum Kinet. 2017;56:29–38.PubMedPubMedCentral
57.
Zurück zum Zitat Willwacher S, Herrmann V, Heinrich K, Funken J, Strutzenberger G, Goldmann J-P, et al. Sprint start kinetics of amputee and non-amputee sprinters. PLoS ONE. 2016;11:e0166219.PubMedPubMedCentral Willwacher S, Herrmann V, Heinrich K, Funken J, Strutzenberger G, Goldmann J-P, et al. Sprint start kinetics of amputee and non-amputee sprinters. PLoS ONE. 2016;11:e0166219.PubMedPubMedCentral
59.
Zurück zum Zitat Brazil A, Irwin G, Exell T, Bezodis I, Wilson C, Willwacher S. Magnitude and technical characteristics of external force production in the starting blocks: relationship with performance. ISBS-Conference Proceedings Archive of the 33rd Conference of the International Society of Biomechanics in Sports [Internet]. 2015. https://ojs.ub.unikonstanz.de/cpa/article/view/6442. Accessed 9 Dec 2019. Brazil A, Irwin G, Exell T, Bezodis I, Wilson C, Willwacher S. Magnitude and technical characteristics of external force production in the starting blocks: relationship with performance. ISBS-Conference Proceedings Archive of the 33rd Conference of the International Society of Biomechanics in Sports [Internet]. 2015. https://​ojs.​ub.​unikonstanz.​de/​cpa/​article/​view/​6442. Accessed 9 Dec 2019.
60.
Zurück zum Zitat Colyer SL, Graham-Smith P, Salo AIT. Analysis of sprint start transition phases and their associations with performance. ISBS-Conference Proceedings Archive of the 37th Conference of the International Society of Biomechanics in Sports [Internet]. 2019. https://commons.nmu.edu/isbs/vol37/iss1/122/. Accessed 9 Dec 2019. Colyer SL, Graham-Smith P, Salo AIT. Analysis of sprint start transition phases and their associations with performance. ISBS-Conference Proceedings Archive of the 37th Conference of the International Society of Biomechanics in Sports [Internet]. 2019. https://​commons.​nmu.​edu/​isbs/​vol37/​iss1/​122/​. Accessed 9 Dec 2019.
61.
Zurück zum Zitat Macadam P, Cronin JB, Uthoff AM, Johnston M, Knicker AJ. Role of arm mechanics during sprint running: a review of the literature and practical applications. Strength Cond J. 2018;40:14–23. Macadam P, Cronin JB, Uthoff AM, Johnston M, Knicker AJ. Role of arm mechanics during sprint running: a review of the literature and practical applications. Strength Cond J. 2018;40:14–23.
62.
Zurück zum Zitat Otsuka M, Kurihara T, Isaka T. Effect of a wide stance on block start performance in sprint running. PLoS ONE. 2015;10:e0142230.PubMedPubMedCentral Otsuka M, Kurihara T, Isaka T. Effect of a wide stance on block start performance in sprint running. PLoS ONE. 2015;10:e0142230.PubMedPubMedCentral
63.
Zurück zum Zitat Kesoglou I, Smirniotou A. Reaction time and spatiotemporal variables as markers of sprint start performance. Am J Sports Sci. 2019;7:121–6. Kesoglou I, Smirniotou A. Reaction time and spatiotemporal variables as markers of sprint start performance. Am J Sports Sci. 2019;7:121–6.
64.
Zurück zum Zitat Jain A, Bansal R, Kumar A, Singh KD. A comparative study of visual and auditory reaction times on the basis of gender and physical activity levels of medical first year students. Int J Appl Basic Med Res. 2015;5:124–7.PubMedPubMedCentral Jain A, Bansal R, Kumar A, Singh KD. A comparative study of visual and auditory reaction times on the basis of gender and physical activity levels of medical first year students. Int J Appl Basic Med Res. 2015;5:124–7.PubMedPubMedCentral
65.
Zurück zum Zitat Shelton J, Kumar GP. Comparison between auditory and visual simple reaction times. Neurosci Med. 2010;01:30–2. Shelton J, Kumar GP. Comparison between auditory and visual simple reaction times. Neurosci Med. 2010;01:30–2.
66.
Zurück zum Zitat Paradisis GP. Reaction time and performance in the short sprints. New Stud Athl. 2013;28:95–103. Paradisis GP. Reaction time and performance in the short sprints. New Stud Athl. 2013;28:95–103.
67.
Zurück zum Zitat Ditroilo M, Kilding A. Has the new false start rule affected the reaction time of elite sprinters? New Stud Athl. 2004;19:13–9. Ditroilo M, Kilding A. Has the new false start rule affected the reaction time of elite sprinters? New Stud Athl. 2004;19:13–9.
68.
Zurück zum Zitat Mendoza L, Schöllhorn W. Training of the sprint start technique with biomechanical feedback. J Sports Sci. 1993;11:25–9.PubMed Mendoza L, Schöllhorn W. Training of the sprint start technique with biomechanical feedback. J Sports Sci. 1993;11:25–9.PubMed
69.
Zurück zum Zitat Borysiuk Z, Waśkiewicz Z, Piechota K, Pakosz P, Konieczny M, Błaszczyszyn M, et al. Coordination aspects of an effective sprint start. Front Physiol. 2018;9:1138.PubMedPubMedCentral Borysiuk Z, Waśkiewicz Z, Piechota K, Pakosz P, Konieczny M, Błaszczyszyn M, et al. Coordination aspects of an effective sprint start. Front Physiol. 2018;9:1138.PubMedPubMedCentral
70.
Zurück zum Zitat Gavkare AM, Nanaware NL, Surdi AD. Auditory reaction time, visual reaction time and whole body reaction time in athletes. Ind Med Gaz. 2013;6:214–9. Gavkare AM, Nanaware NL, Surdi AD. Auditory reaction time, visual reaction time and whole body reaction time in athletes. Ind Med Gaz. 2013;6:214–9.
71.
Zurück zum Zitat Kaur P, Paul M, Sandhu J. Auditory and visual reaction time in athletes, healthy controls, and patients of type 1 diabetes mellitus: a comparative study. Int J Diabetes Dev Ctries. 2006;26:112–5. Kaur P, Paul M, Sandhu J. Auditory and visual reaction time in athletes, healthy controls, and patients of type 1 diabetes mellitus: a comparative study. Int J Diabetes Dev Ctries. 2006;26:112–5.
72.
Zurück zum Zitat Kuan YM, Zuhairi NA, Manan FA, Knight VF, Omar R. Visual reaction time and visual anticipation time between athletes and non-athletes. Malays J Public Health Med. 2018;1:135–41. Kuan YM, Zuhairi NA, Manan FA, Knight VF, Omar R. Visual reaction time and visual anticipation time between athletes and non-athletes. Malays J Public Health Med. 2018;1:135–41.
73.
Zurück zum Zitat Akarsu S, Çalişkam E, Dane Ş. Athletes have faster eye-hand visual reaction times and higher scores on visuospatial intelligence than nonathletes. Turk J Med Sci. 2009;39:871–4. Akarsu S, Çalişkam E, Dane Ş. Athletes have faster eye-hand visual reaction times and higher scores on visuospatial intelligence than nonathletes. Turk J Med Sci. 2009;39:871–4.
74.
Zurück zum Zitat Nuri L, Shadmehr A, Ghotbi N, Attarbashi MB. Reaction time and anticipatory skill of athletes in open and closed skill-dominated sport. Eur J Sport Sci. 2013;13:431–6.PubMed Nuri L, Shadmehr A, Ghotbi N, Attarbashi MB. Reaction time and anticipatory skill of athletes in open and closed skill-dominated sport. Eur J Sport Sci. 2013;13:431–6.PubMed
75.
Zurück zum Zitat Papic C, Sinclair P, Fornusek C, Sanders R. The effect of auditory stimulus training on swimming start reaction time. Sports Biomech. 2019;18:378–89.PubMed Papic C, Sinclair P, Fornusek C, Sanders R. The effect of auditory stimulus training on swimming start reaction time. Sports Biomech. 2019;18:378–89.PubMed
76.
Zurück zum Zitat Don M, Ponton CW, Eggermont JJ, Masuda A. Gender differences in cochlear response time: an explanation for gender amplitude differences in the unmasked auditory brain-stem response. J Acoust Soc Am. 1993;94:2135–48.PubMed Don M, Ponton CW, Eggermont JJ, Masuda A. Gender differences in cochlear response time: an explanation for gender amplitude differences in the unmasked auditory brain-stem response. J Acoust Soc Am. 1993;94:2135–48.PubMed
77.
Zurück zum Zitat Uth N. Anthropometric comparison of world-class sprinters and normal populations. J Sports Sci Med. 2005;4:608–16.PubMedPubMedCentral Uth N. Anthropometric comparison of world-class sprinters and normal populations. J Sports Sci Med. 2005;4:608–16.PubMedPubMedCentral
78.
Zurück zum Zitat Mirshams Shahshahani P, Lipps DB, Galecki AT, Ashton-Miller JA. On the apparent decrease in Olympic sprinter reaction times. PLoS ONE. 2018;13:e0198633.PubMedPubMedCentral Mirshams Shahshahani P, Lipps DB, Galecki AT, Ashton-Miller JA. On the apparent decrease in Olympic sprinter reaction times. PLoS ONE. 2018;13:e0198633.PubMedPubMedCentral
79.
Zurück zum Zitat Babiç V, Delalija A. Reaction time trends in the sprint and hurdle events at the 2004 Olympic games: differences between male and female athletes. New Stud Athl. 2009;24:59–68. Babiç V, Delalija A. Reaction time trends in the sprint and hurdle events at the 2004 Olympic games: differences between male and female athletes. New Stud Athl. 2009;24:59–68.
80.
Zurück zum Zitat Pavlovi R, Bonacin D, Bonacin D. Differences in time of start reaction in the sprint disciplines in the finals of the Olympic games (Athens, 2004-London, 2012). Acta Kinesiol. 2014;8:53–61. Pavlovi R, Bonacin D, Bonacin D. Differences in time of start reaction in the sprint disciplines in the finals of the Olympic games (Athens, 2004-London, 2012). Acta Kinesiol. 2014;8:53–61.
81.
Zurück zum Zitat Martin DE, Buoncristiani JF. Influence of reaction time on athletic performance. New Stud Athl. 1995;10:67–9. Martin DE, Buoncristiani JF. Influence of reaction time on athletic performance. New Stud Athl. 1995;10:67–9.
82.
Zurück zum Zitat Der G, Deary IJ. Age and sex differences in reaction time in adulthood: results from the United Kingdom Health and Lifestyle Survey. Psychol Aging. 2006;21:62–73.PubMed Der G, Deary IJ. Age and sex differences in reaction time in adulthood: results from the United Kingdom Health and Lifestyle Survey. Psychol Aging. 2006;21:62–73.PubMed
83.
Zurück zum Zitat Spierer DK, Petersen RA, Duffy K, Corcoran BM, Rawls-Martin T. Gender influence on response time to sensory stimuli. J Strength Cond Res. 2010;24:957–63.PubMed Spierer DK, Petersen RA, Duffy K, Corcoran BM, Rawls-Martin T. Gender influence on response time to sensory stimuli. J Strength Cond Res. 2010;24:957–63.PubMed
84.
Zurück zum Zitat Silverman IW. Sex differences in simple visual reaction time: a historical meta-analysis. Sex Roles. 2006;54:57–68. Silverman IW. Sex differences in simple visual reaction time: a historical meta-analysis. Sex Roles. 2006;54:57–68.
85.
Zurück zum Zitat Kemp BJ. Reaction time of young and elderly subjects in relation to perceptual deprivation and signal-on versus signal-off conditions. Dev Psychol. 1973;8:268–72. Kemp BJ. Reaction time of young and elderly subjects in relation to perceptual deprivation and signal-on versus signal-off conditions. Dev Psychol. 1973;8:268–72.
86.
Zurück zum Zitat Erwin RJ, Buchwald JS. Midlatency auditory evoked responses: differential recovery cycle characteristics. Electroencephalogr Clin Neurophysiol. 1986;64:417–23.PubMed Erwin RJ, Buchwald JS. Midlatency auditory evoked responses: differential recovery cycle characteristics. Electroencephalogr Clin Neurophysiol. 1986;64:417–23.PubMed
Metadaten
Titel
Sprint Start Regulation in Athletics: A Critical Review
verfasst von
Matthieu Milloz
Kevin Hayes
Andrew J. Harrison
Publikationsdatum
30.10.2020
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 1/2021
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-020-01350-4

Weitere Artikel der Ausgabe 1/2021

Sports Medicine 1/2021 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.