Skip to main content
Erschienen in: Neurosurgical Review 5/2022

Open Access 29.07.2022 | Review

State of affairs regarding targeted pharmacological therapy of cancers metastasized to the brain

verfasst von: Hans-Jakob Steiger, Kathrin Vollmer, Susanne Rogers, Lucia Schwyzer

Erschienen in: Neurosurgical Review | Ausgabe 5/2022

Abstract

In 1999 a visionary short article by The Wall Street Journal writers Robert Langreth and Michael Waldholz popularized the new term “personalized medicine,” that is to say, the targeting of drugs to each unique genetic profile. From today’s perspective, targeted approaches have clearly found the widest use in the antineoplastic domain. The current review was initiated to review the progress that has been made regarding the treatment of patients with advanced cancer and brain metastases. PubMed was searched for the terms brain metastasis, brain metastases, or metastatic brain in the Title/Abstract. Selection was limited to randomized controlled trial (RCT) and publication date January 2010 to February 2022. Following visual review, 51 papers on metastatic lung cancer, 12 on metastatic breast cancer, and 9 on malignant melanoma were retained and underwent full analysis. Information was extracted from the papers giving specific numbers for intracranial response rate and/or overall survival. Since most pharmacological trials on advanced cancers excluded patients with brain metastases and since hardly any information on adjuvant radiotherapy and radiosurgery is available from the pharmacological trials, precise assessment of the effect of targeted medication for the subgroups with brain metastases is difficult. Some quantitative information regarding the success of targeted pharmacological therapy is only available for patients with breast and lung cancer and melanoma. Overall, targeted approaches approximately doubled the lifespan in the subgroups of brain metastases from tumors with targetable surface receptors such as anaplastic lymphoma kinase (ALK) fusion receptor in non-small cell lung cancer or human epidermal growth factor receptor 2 (HER2)–positive breast cancer. For these types, overall survival in the situation of brain metastases is now more than a year. For receptor-negative lung cancer and melanoma, introduction of immune checkpoint blockers brought a substantial advance, although overall survival for melanoma metastasized to the brain appears to remain in the range of 6 to 9 months. The outlook for small cell lung cancer metastasized to the brain apparently remains poor. The introduction of targeted therapy roughly doubled survival times of advanced cancers including those metastasized to the brain, but so far, targeted therapy does not differ essentially from chemotherapy, therefore also facing tumors developing escape mechanisms. With the improved perspective of patients suffering from brain metastases, it becomes important to further optimize treatment of this specific patient group within the framework of randomized trials.
Hinweise

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

In 1999 a visionary short article by The Wall Street Journal writers Robert Langreth and Michael Waldholz popularized the new term “personalized medicine” to mean the targeting of drugs to each unique genetic profile [43]. In the beginning, the idea of assembling a catalogue of the biological diversities was intended to find optimal therapies for individual genetic varieties of diseases with an inherited component. The term personalized medicine was quickly in everybody’s mouth, but alternative expressions such as individualized and targeted medicine were introduced. Pharmaceutical companies subsequently made huge investments to develop targeted drugs for a variety of congenital, neoplastic, degenerative, and inflammatory diseases. Malignancies were not the primary idea of personalized medicine, but it was the area with the widest applications during the coming years. Not only the individuality of the patient, but also the individuality of the tumors was subsequently targeted. Due to the instability of the tumor genome, the field of oncology is certainly one of the biggest challenges for personalized medicine.
Originally Langreth and Waldholz certainly thought of specifying therapies according to the genomic individuality of patients, therefore the term personalized medicine. Since the concept was most successful with cancer treatment and the genomic properties of the cancer gene became the target, the term for the concept had to be adapted. The terms precision or targeted therapy are used today for therapies focusing on the specific properties of individual cancers.
Management of CNS metastases primarily involves local therapy including stereotactic radiosurgery, whole-brain radiotherapy, and surgery [71]. Long-term outcome then depends on systemic control of the underlying disease and prevention of intracranial recurrences. Adjuvant therapies with proven intracranial activity are therefore critical.
In principle, therapeutic approaches can be targeted to any aspect of the complex cellular machinery, i.e., protein kinase B (PKB), also known as AKT, AMP-activated protein kinase (AMPK), apoptosis signaling, hormone signaling, Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling, mitogen-activated protein kinase (MAPK) signaling, mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, notch signaling, p53 signaling, transforming growth factor β (TGF-β) signaling, Toll-like receptor (TLR) pathways, vascular endothelial growth factor (VEGF) signaling, wingless-related integration site (WNT) signaling, and more. Interference certainly appears most promising in cases of pathway deficits or hyperactivity because of mutations or genetic defects.
From today’s perspective, targeted approaches have found clearly the widest use in the antineoplastic domain. Here, targeted approaches encompass hormone therapy, signal transduction blockade, gene expression modulation, and induction of apoptosis, anti-angiogenetic medication, immunotherapies, vaccines, and monoclonal antibodies carrying toxic substances (https://​www.​cancer.​gov).
Anti-hormone therapy slows or stops the growth of hormone-sensitive tumors that require specific hormones. Production of hormones in the body is stopped or the action of hormones is blocked. Anti-hormone therapy is important for the treatment of hormone sensitive prostate and breast cancer.
Signal transduction inhibitors block the activity of molecules involved in signal transduction, the process by which cells respond to environmental signals (Fig. 1). When a cell receives a particular signal, the signal is transmitted into the cell through a series of biochemical reactions that ultimately trigger the appropriate response. In some cancers, malignant cells internally generate a proliferation signal even without an external growth signal. Signaling inhibitors interrupt this inappropriate signaling.
Gene expression modifiers adapt the effect of peptides involved in the regulation of gene expression.
Apoptosis inducers cause apoptosis in cancer cells. Malignant cells have developed strategies to avoid apoptosis. Apoptosis-inducing agents can circumvent these strategies and cause cancer cells to die.
Angiogenesis inhibitors prevent the growth of new blood vessels in the tumor and therefore limit tumor growth. Treatments that inhibit angiogenesis can stop tumor growth. Some targeted therapies that inhibit angiogenesis block the action of VEGF, while others bind to the VEGF receptor or other molecules involved in angiogenesis.
Immunotherapy helps the immune system destroy malignant cells. Certain monoclonal antibodies bind to immune cells and help them avoid the escaping mechanisms developed by the tumor cells (Fig. 2). Other monoclonal antibodies support the effect of cytotoxic T-cells by binding to specific molecules on the surface of cancer cells.
Antibody–drug conjugates can specifically kill cancer cells. Once the antibody binds to the target cell, toxic molecules attached to the antibody, such as radioactive or toxic chemicals, are taken up into the cell, ultimately killing the cell. For cells that are not the target of antibodies, i.e., the majority of somatic cells, toxins have a much smaller effect.
Within the field of primary brain tumors, although prognostic biomarkers have been identified and a number of clinical phase I–II trials were conducted, so far no promising therapy has emerged for glioblastoma [85]. Bevacizumab, an antiangiogenic medication has been approved as symptomatic treatment for glioblastoma although studies do not indicate longer survival. Everolimus, an mTOR inhibitor, is approved for subependymal giant cell astrocytoma in adults and children aged 1 year or older who have tuberous sclerosis and are not able to have surgery. Moreover, the FDA has approved belzutifan for patients with von Hippel-Lindau (VHL) disease–associated tumors. VHL has a high incidence of renal cell carcinoma and other cancerous and non-cancerous tumors owing to VHL gene inactivation and constitutive activation of the transcription factor hypoxia-inducible factor 2α (HIF-2α) [39]. Larotrectinib, an inhibitor of neurotrophic receptor tyrosine kinase (NTRK), was recognized as an orphan drug by the US Food and Drug Administration in 2015 and later in Europe and was approved for the treatment of metastatic solid tumors with an NTRK fusion protein [18]. Finally, the rat fibrosarcoma (RAF) inhibitors dabrafenib plus trametinib showed clinically meaningful activity in patients with BRAF V600E mutation-positive high- and low-grade glioma, with a safety profile consistent with that in other indications [81]. BRAF V600E mutation appears to be also a critical driver mutation for other intra- and extracranial primary tumors, such as papillary craniopharyngioma and others. At the time of writing the FDA just granted approval of the BRAF inhibitors dabrafenib trametinib for the treatment of adult and pediatric patients 6 years of age and older with unresectable or metastatic solid tumors with BRAF V600E mutation who have progressed following prior treatment and have no satisfactory alternative treatment options (https://​www.​novartis.​com/​news/​media-releases/​novartis-tafinlar-mekinist-receives-fda-approval-first-tumor-agnostic-indication-braf-v600e-solid-tumors).
From the neurological and neurosurgical perspective, most progress regarding the targeted approach has been made in the field of metastatic brain tumors. Here, the targeted approach for the intracranial pathology and the systemic disease led to substantial improvement of survival in some cancer types. Although management of CNS metastases primarily involves local therapy including stereotactic radiosurgery, whole-brain radiotherapy, and surgery, long-term outcome then depends on systemic control of the underlying disease and prevention of intracranial recurrences. In some situations with proven intracranial efficacy, primary systemic therapy is now also an option, especially for asymptomatic lesions. Adjuvant therapies with proven intracranial activity are therefore critical. However, firm data from randomized controlled trials are available only for brain metastases from the most common types of cancers leading to intracranial dissemination, lung and breast cancer, and melanoma. A further complication is the fact that patients with brain metastases were excluded in most randomized trials. The purpose of the current review was to summarize the state of evidence regarding targeted adjuvant therapy in these types of brain metastases.

Methods

A PubMed search was done with the search terms: brain metastasis, brain metastases, or metastatic brain in the Title/Abstract. Selection was limited to randomized controlled trial (RCT) and publication date January 2010 to February 2022.
The search yielded 172 hits. The abstracts were screened, and publications not concerned with targeted therapies or corresponding to reports of non-pharmacological interventional studies, and papers not reporting outcome data, were eliminated. Fifty-one papers on metastatic lung cancer, 12 on metastatic breast cancer and 9 on malignant melanoma were retained and underwent full analysis.

Results

Breast cancer

Most trials investigating drug therapy for advanced cancer were restrictive regarding inclusion of patients with brain metastases. These patients either were excluded entirely or, if not, limited to brain metastases that had been treated and proven stable for defined periods.
Among the selected reports on brain metastases, 9 contained some specific information regarding the outcome of patients with brain metastases (see Table 1). Most targeted adjuvant concepts address human epidermal growth factor receptor 2 (HER2)–positive tumors. The overall outlook for HER2 + tumors remains substantially better than for triple-negative breast cancers, that is, tumors neither expressing estrogen nor progesterone receptors nor HER2. Although endocrine therapy using tamoxifen or aromatase blockers is a firm part of hormone receptor–positive breast cancer, no randomized studies could be found addressing the effect of these adjuvant therapies for the situation of advanced breast cancer with brain metastases.
Table 1
Metastatic breast cancer—pertinent studies allowing some prognostic assessment for patients with brain metastases
Year
Author
Drug/combination
Action
Control
1st/ 2nd line
PFS (experimental)
OS (experimental)
PFS (control)
OS (control)
Intracranial response (experimental)
Intracranial response (control)
OS with brain metastasis (experimental)
OS with brain metastasis (control)
Comments
2022
Cortes [12]
Trastuzumab-deruxtecan
Anti-HER2
Trastuzumab emtansine
2nd
25.1
 > 60
7.2
ca.60
    
AB-toxin, HER2 + , only asympt. BM allowed
2021
Curigliano [15]
Tucatinib or trastuzumab and capecitabine
Anti-HER2
Placebo + trastuzumab and capecitabine
2nd
7.6
24.7
4.9
19.2
  
18.8
11.4
OS of BM estimated
2021
Hurvitz [34]
Neratinib + capecitabine
Anti-pan-HER
Lapatinib + capecitabine
1sr/2nd
      
16.4
15.4
Sub-analysis from NALA trial
2021
Bardia [5]
Sacituzumab govitecan
Anti-Trop-2
Various chemotherapy
2nd
4.8
11.8
1.7
6.9
3%
0%
6.8
7.5
Triple negative BC, ASCENT trial, BM data estimated
2020
Seligmann [65]
Lapatinib + capecitabine
Anti-HER2
Trastuzumab + capecitabine
2nd
    
25%
71%
12
 > 12
LANTERN phase II focus only on BM, OS estimates
2020
Lin [46]
Tucatinib, trastuzumab + Capecitabine
Anti-HER2
Trastuzumab + capecitabine
2nd
9.9
18.1
4.2
12
47%
20%
18.1
12
HER2CLIMB sub-analysis for BM, PFS refers to CNS
2019
Iwata [36]
Atezolizumab + nab-paclitaxel
Anti-PD-L1
Placebo + nab-paclitaxel
1st
7.2
(brain 4.9)
21.3
5.5 (brain 4.4)
17.6
    
Triple negative BC, sub-analysis from IMpassion130 trial, only asympt. BM allowed
2018
Takano [72]
Trastuzumab plus capecitabine
Anti-HER2
Lapatinib + capecitabine
2nd
6.1
31
7.1
50
  
18
30
ATTAIN, OS BM estimated
2015
Cortes [14]
Afatinib + vinorelbine
Anti-HER2
Investigator choice
2nd
3
12
4
12
10%
30%
12
12
small study focused on BM, high toxicity of study medication
2015
Perez [57]
Etirinotecan pegol
anti
topoisomerase-I
Investigator choice
2nd/3rd
3
12.4
3
10.3
  
10
4.8
not limited to receptor profile
BC breast cancer; BM brain metastasis; PFS progression-free survival in months; OS overall survival in months; HER2 human epidermal growth factor receptor 2; MEK mitogen-activated extracellular signal-regulated kinase; PD-L1 programmed cell death ligand 1
Regarding systemic efficacy, Cortés et al. recently reported results of second-line treatment of metastatic HER2 + cancer with trastuzumab-deruxtecan, an antibody drug conjugate in comparison with trastuzumab emtansine. In both arms, outcome was much better than in comparable trials before. Treatment with trastuzumab-deruxtecan provided a systemic progression-free survival (PFS) of 25.1 months and an overall survival (OS) of more than 60 months (DESTINY-Breast03) [12]. Brain-specific outcome data are not yet available.
Curigliano et al. reported the final results of the HER2CLIMB trial comparing tucatinib or placebo, in combination with trastuzumab and capecitabine as second-line treatment of advanced HER2 + breast cancer [15, 46]. Median duration of OS for all patients was 24.7 months for the tucatinib combination group versus 19.2 months for the placebo combination group. Median duration of PFS was 7.6 months for the tucatinib combination group versus 4.9 months for the placebo combination group. Regarding patients with brain metastasis, estimated OS for trastuzumab and capecitabine was 18.8 versus 11.4 months. Objective intracranial response rate was also higher in the tucatinib arm (47.3%) versus the control arm (20.0%, P = 0.03).
Hurvitz et al. reported efficacy of neratinib plus capecitabine compared to lapatinib plus capecitabine in the subgroup of patients with central nervous system involvement from the NALA Trial on metastatic HER2 + breast cancer [34]. Patients with treated or untreated asymptomatic or stable brain metastases were eligible. Eighty-one of 101 had received prior CNS-directed radiotherapy and/or surgery. In the CNS subgroup, mean PFS was 7.8 months in the neratinib plus capecitabine group versus 5.5 months in the control arm, and mean OS was 16.4 versus 15.4 months. At 12 months, the cumulative incidence of progressive CNS disease was 26.2% versus 41.6%, respectively. In patients with target CNS lesions at baseline, confirmed intracranial objective response rates were 26.3% and 15.4%, respectively.
Summarizing current results for patients with brain metastases from HER2 + breast cancer, it can be deduced that current treatment strategies achieve an overall survival of more than 1 year from the time of treatment initiation for tumor dissemination including the brain.
Regarding triple-negative breast cancer, the prognosis is clearly worse and fewer data are available. Recently, Bardia and coworkers reported on 468 patients with or without brain metastases from triple-negative breast cancer who were randomly assigned to receive the trophoblast cell surface antigen 2 (Trop-2) inhibitor sacituzumab govitecan or chemotherapy [5]. The median age was 54 years; all the patients had previously been exposed to taxanes. The median progression-free survival was 5.6 months and 1.7 months with chemotherapy. The median overall survival was 12.1 months with sacituzumab govitecan and 6.7 months with chemotherapy. The percentage of patients with an objective response was 35% with sacituzumab govitecan and 5% with chemotherapy. Sub-analysis of 61 patients with stable brain metastasis showed limited intracranial activity with an objective response rate (ORR) of 3% with sacituzumab govitecan versus 0% with chemotherapy [17]. The median PFS was 2.8 months with sacituzumab govitecan and 1.6 with chemotherapy. Median OS was 6.8 months with sacituzumab govitecan and 7.5 months with physician’s choice of treatment.
Immune checkpoint inhibitors were also trialed for these difficult to treat receptor negative breast cancers [13, 36, 63]. In the IMpassion130 trial, a small benefit for atezolizumab combined with nab-paclitaxel compared to placebo plus paclitaxel was shown for patients with advanced triple-negative breast cancer [36]. Sub-analysis indicated an intracranial PFS of 4.9 months versus 4.4 months. The benefit of immune checkpoint blockade for patients with brain metastases remains to be confirmed.

Melanoma

For disseminated melanoma, immune checkpoint inhibitors have become the mainstay of treatment, although some efficacy has also been shown for the anti proto oncogene B-Raf (BRAF) agents dabrafenib, trametinib, and other drugs in BRAF mutated tumors [2, 3, 16, 19, 20, 22, 28, 30444749, 51, 60, 73, 79, 80, 83]. The pertinent studies allowing some appreciation of intracranial efficacy are summarized in Table 2.
Table 2
Metastatic melanoma—pertinent studies allowing some prognostic assessment for patients with brain metastases
Year
Author
Drug/combination
Action
Control
1st/ 2nd line
PFS (experimental)
OS (experimental)
PFS (control)
OS (control)
Intracranial response (experimental)
Intracranial response (control)
OS with brain metastasis (experimental)
OS with brain metastasis (control)
Comments
2021
Tjulandin [76]
Prolgolimab 1 mg/kg 2-weekly
Anti-PD-1
Prolgolimab 3 mg/kg 3-weekly
1st
8.8
40
3.9
16.5
64%
46%
24
8
 
2020
Ascierto [2]
Ipilimumab 10 mg/kg 3-weekly
Anti-CTLA-4
Ipilimumab 3 mg/kg 3-weekly
1st/2nd
 
16
 
12
  
7
6
 
2018
Long [48]
Nivolumab + ipilimumab
Anti-PD-1/CTLA-4
Nivolumab
1st/2nd
3
9
2
7
46%
20%
9
7
Includes only patients with BM
2016
Gupta [27]
Vandetanib + WBRT
Anti-VEGFR
WBRT + placebo
1st/2nd
3.3
4.6
2.5
2.5
  
4.6
2.5
Includes only patients with BM
BM brain metastasis; PFS progression-free survival in months; OS overall survival in months; PD-1 programmed cell death protein 1; CTLA-4 cytotoxic T-lymphocyte-associated protein 4; VEGFR, vascular endothelial growth factor receptor; WBRT whole-brain radio therapy
In 2022, Wolchok and collaborators reported long-term results of the CheckMate 067 trial comparing combination therapy of ipilimumab and nivolumab compared to either one alone for disseminated melanoma [82]. These results showed the longest median OS in a phase III melanoma trial reported to date and showed durable, improved clinical outcomes with nivolumab plus ipilimumab. Median OS in the combination arm was 72 months. Brain-specific results of the combination nivolumab plus ipilimumab were reported by Long et Al. [48]. In this smaller phase II trial, 79 patients were enrolled. Intracranial responses were achieved by 46% of the combination cohort compared to 20% with nivolumab alone. Median overall survival was 9 months for the combination group versus 7 for nivolumab monotherapy. These results were better than reported before and set the new standard.
Tawbi et al. reported the long-term outcomes of combination therapy in patients with active melanoma brain metastases treated with combination nivolumab plus ipilimumab (CheckMate 204) [75]. Nivolumab 1 mg/kg plus ipilimumab 3 mg/kg was given intravenously every 3 weeks for four doses, followed by nivolumab 3 mg/kg every 2 weeks for up to 2 years, until disease progression or unacceptable toxicity. One hundred one patients were asymptomatic and 18 were symptomatic. Investigator-assessed intracranial clinical benefit was observed in 57.4% of asymptomatic patients and 16.7% of symptomatic patients. Investigator-assessed objective response was observed in 53.5% patients in asymptomatic and 16.7% in symptomatic patients. For the asymptomatic group, 36-month intracranial PFS was 54.1% and OS 71.9%. For patients in the symptomatic group, 36-month intracranial PFS was 18.9% and OS 36.6%. The incidence of grade 3–4 toxicity was similar to the response rate at 55%.
The current focus of research lies on newer and hopefully more efficient immune checkpoint inhibitors. Tjulandin et al. reported results of the MIRACULUM study, exploring the potential of prolgolimab, an advanced anti-PD-1 (programmed cell death protein 1) monoclonal antibody at two different dosing schemes [76]. An objective intracranial response was seen in approximately 50%, and the averaged OS of the patients with brain metastases was 11 months.
Tawbi reported recently early results of relatlimab, a lymphocyte-activation gene 3(LAG-3)-blocking antibody, and nivolumab versus nivolumab alone in untreated advanced melanoma (RELATIVITY-047trial) [74]. The median PFS was 10.1 months with relatlimab nivolumab as compared with 4.6 months with nivolumab monotherapy. Thus, the inhibition of two immune checkpoints, LAG-3 and PD-1, provided a greater benefit with regard to progression-free survival than inhibition of PD-1 alone in patients with previously untreated metastatic or unresectable melanoma. So far, brain-specific outcome data are not available.

Lung cancer

Although pathological classification of lung cancer is quite differentiated and biomarkers that could potentially be used as therapeutic targets are almost limitless, from a practical perspective, subclassification remains straightforward [88]. Some 12–15% are classified as small cell lung cancer (SCLC). For these, no specific molecular targets have been identified, except PD-L1, allowing for immunotherapy, although the predictive value for outcome remains unclear. The remainder of lung cancers, the non-small cell lung cancers (NSCLC), express amplifying EGFR (epidermal growth factor receptor) mutations in some 10% and amplifying ALK rearrangements in 4–7%. In addition, during recent years, a number of new and potentially targetable driver mutations have been identified, including BRAF, ROS1 (c-ros oncogene 1), EGFR, HER2, RET (Ret proto-oncogene), MET (Met proto-oncogene), NTRK (neurotrophic receptor tyrosine kinase 1), KRAS (Kirsten RAt sarcoma virus gene), and others [29, 62].
The pertinent studies on targeted therapy allowing some estimate of treatment effect and the outcome of the subgroup with brain metastases are summarized in Table 3.
Table 3
Metastatic lung cancer—pertinent studies allowing some prognostic assessment for patients with brain metastases
Year
Author
Experimental drug/combination
Action
Control drug/combination
1st/ 2nd line
PFS (experimental)
OS (experimental)
PFS (control)
OS (control)
Intracranial response (experimental)
Intracranial response (control)
OS with brain metastasis (experimental)
OS with brain metastasis (control)
Comments
2021
Ma [50]
Atezolizumab
Anti-PD-L1
Docetaxel
       
16
9
NSCLC, reevaluation POLAR and OAK trials
2021
Horn [31]
Ensartinib
Anti-ALK
Crizotinib
1st/2nd
25.8
 > 40
12.7
 > 40
64%
21%
  
NSCLC. ALK + 
2020
Shaw [66]
Lorlatinib
Anti-ALK
Crizotinib
1st
 > 36
 > 36
9.3
 > 36
82%
23%
  
ALK + NSCLC, CROWN trial
2020
Gadgeel [23]
Pembrolizumab + pemetrexed + platinum
Anti-PD-1
Pemetrexed + platinum
1st/2nd
9
22
4.9
10.7
  
19.2
7.5
NSCLC, KEYNOTE-189 trial, symptomatic BM excluded
2020
Jiang [37]
Anlotinib
Anti-angiogenetic
Placebo
1st/2nd
      
8.6
4.6
NSCLC, focused on BM, ALTER0303 trial
2019
Huber [33]
Brigatinib 90 mg
Anti-ALK
Brigatinib 180 mg
2nd
9.2
29.5
16.7
34.1
50%
67%
29.5
34.1
NSCLC, ALK + , ALTA trial
2018
Yang [87]
Gefitinib-WBRT
Anti-EGFR
Bevacizumab + gefitinib + WBRT
2nd
    
70%
80%
10
20
NSCLC, focused on patients with BM
2018
Wu [84]
Osimertinib
Anti-EGFR
Platinum-pemetrexed
 
11.7
 
5.6
 
63%
25%
  
NSCLC, data from AURA3 trial, only patients with BM
2018
Gadgeel [24]
Alectinib
Anti-ALK
Crizotinib
1st/2nd
9.2
 
7.4
 
81%
50%
  
NSCLC ALK + , ALEX trial, with or wo prev. WBRT
2018
Camidge [10]
Brigatinib
Anti-ALK
Crizotinib
1st
    
78%
29%
  
NSCLC, ALK + , ALTA 1L trial,
2018
Camidge [9]
Brigatinib 90 mg
Anti-ALK
Brigatinib 180 mg
2nd
8.8
 
12.9
 
53%
67%
 > 40
 > 20
NSCLC, ALK + , ALTA trial
2017
Yang [86]
Icotinib
Anti-EGFR
WBRT
1st/2nd
6.8
18
3.4
20.5
  
18
20.5
NSCLC, EGFR mutated with BM, PFS focused on intracranial control
2017
Shaw [67]
Ceritinib
Anti-ALK
Chemotherapy
2nd
5.4
18.1
1.6
20.1
35%
5%
  
NSCLC ALK + , ASCEND-5 trial
2017
Kim [40]
Brigatinib
Anti-ALK
Different dose
2nd
9.2
 > 2 years
12.9
 > 2 years
42%
67%
  
NSCLC ALK + , ca 70% with BM, ALTA trial
2017
Soria [69]
Ceritinib
Anti-ALK, MET, and ROS1
Platinum chemotherapy
1st
16.6
 > 35
8.1
30
46%
21%
  
NSCLC, ALK + , ASCEND 4 trial
2016
Chabot [11]
Veliparib + WBRT
Anti-PARP
Placebo + WBRT
1st/2nd
7.5
7
8.3
6
40%
41%
6.7
6.7
NSCLC with BM
2016
Solomon [68]
Crizotinib
Anti-ALK, MET, and ROS1
Chemotherapy
1st
9
 
4
 
77%
28%
  
NSCLC, ALK + , PROFILE 1014 study, focused on intracranial efficacy, for patients with BM PFS
2015
Besse [7]
Bevacizumab + chemotherapy
Anti-VEGFR
 
1st
6.7
16
  
61%
 
16
 
NSCLC, with BM, BRAIN trial, WBRT added post trial in most patients
2014
Schuler [64]
Afatinib
Anti-HER family
Chemotherapy
1st
8.2
22.4
5.4
25
73%
24%
22.4
25
NSCLC, sub-analysis from LUX lung 3 and 6, PFS for patients with BM
2014
Wang [78]
gefitinib + WBRT
Anti-VEGFR
VMP chemotherapy + WBRT
  
13.3
 
11.7
54%
47%
13.3
11.7
NSCLC with BM
2013
Jiang [38]
Endostatin + WBRT
Anti-VEGFR
WBRT
1st/2nd
 
10
 
8
  
10
8
NSCLC with BM
2012
Gronberg [26]
Enzastaurin + WBRT
Anti-PKC
Placebo + WBRT
1st/2nd
 
3.8
 
5.1
  
3.8
5.1
both SCLC and NSCLC with BM
2011
Pesce [58]
Gefitinib + WBRT
Anti-VEGFR
Temozolomide + WBRT
  
6.3
 
4.9
  
6.3
4.9
NSCLC
BM brain metastasis; PFS progression-free survival in months; OS overall survival in months; PD-1 programmed cell death protein 1; PD-L1 programmed cell death ligand 1; ALK anaplastic lymphoma kinase; CTLA-4 cytotoxic T lymphocyte–associated protein 4; WBRT whole-brain radio therapy; VEGF vascular endothelial growth factor; VEGFR vascular endothelial growth factor receptor; EGFR epidermal growth factor receptor; MET Met tyrosine-protein kinase also known as hepatocyte growth factor receptor (HGFR); PARP poly-ADP-ribose-polymerase; ROS-1 proto-oncogene 1; PKC protein kinase C; SCLC small cell lung cancer; NSCLC non-small cell lung cancer

Small cell lung cancer (SCLC)

Specific data regarding intracranial response and survival times are unavailable at the present time for SCLC. Overall prognosis of disseminated SCLC remains poor with overall survival in the range of 6 months. Regarding overall perspective of advanced SCLC, Allen and colleagues reported on a phase II trial of weekly topotecan with and without ziv-aflibercept, a VEGF-trapping agent, in patients with advanced platinum-treated small-cell lung cancer [4]. Overall survival was not significantly improved by addition of ziv-aflibercept (6 versus 4.6 months), but severe toxicities were more common with the addition of ziv-aflibercept.
Based on the negative experience with targeted approaches for SCLC, Morabito and co-workers reported on a trial using either cisplatin plus etoposide at a fixed dose or cisplatin plus etoposide at a variable dose [53]. Seventy percent of patients had no known brain metastases. Response rate was 54.4% and 58.2% in the control and experimental arms, respectively. No significant differences were found in terms of PFS (6 versus 5.6 months) and OS (9.6 versus 9.2 months). The most frequent cause of death was neutropenia with infection. Severe toxicity was more frequent in the experimental arm.
Immune checkpoint inhibitors also raised new hope for SCLC. In 2018, Ready and coworkers reported the results of the CheckMate 032 trial comparing nivolumab monotherapy with a combination of nivolumab plus ipilimumab as second- or third-line treatment in patients with extensive systemic disease [59]. Both arms were comparable: Median PFS with nivolumab monotherapy was 1.4 months and median overall survival 5.6 months.
In the IMpower133 trial, Horn and coworkers reported a substantial benefit by the addition of the PD-L1 blocker atezolizumab to chemotherapy in the first-line treatment of extensive-stage SCLC, which resulted in significantly longer overall survival and progression-free survival than chemotherapy alone [32]. At a median follow-up of 13.9 months, the median OS was 12.3 months in the atezolizumab group and 10.3 months in the placebo group. The median PFS was 5.2 months and 4.3 months, respectively.
The CASPIAN trial confirmed significantly longer overall survival following first-line treatment with the PD-L1 antagonist durvalumab in addition to platinum-based chemotherapy in patients with extensive stage SCLC [56]. Median OS was 13.0 months in the durvalumab plus platinum-etoposide group versus 10.3 months in the platinum-etoposide group.
Owonikoko et al. reported on the effect of the Aurora A kinase inhibitor, alisertib, plus paclitaxel as second-line treatment for SCLC [55]. The median PFS was 3.32 months with alisertib plus paclitaxel versus 2.17 months with placebo plus paclitaxel. Overall survival was 6.1 months versus 5.4 months.
Spigel et al. presented recently the results of Checkmate 331 comparing nivolumab monotherapy with chemotherapy for relapsed SCLC [70]. No significant improvement in OS was seen with nivolumab versus chemotherapy (median OS 7.5 versus 8.4 months). Median progression-free survival was 1.4 versus 3.8 months. Objective response rate was 13.7% versus 16.5% and median duration of response was 8.3 versus 4.5 months. Rates of grade 3 or 4 treatment-related adverse events were 13.8% versus 73.2%.
In summary, perspective for disseminated SCLC remains poor, independent of any CNS involvement.

Non-small cell lung cancer (NSCLC)

The abovementioned EGFR and ALK alterations have proved fruitful targets for specific therapy and the overall perspective of these subgroups has markedly improved over the past years. Ten years ago, targeted therapy focused on anti-VEGFR [38, 58, 87]. Overall survival in patients with disseminated disease remained in the range of 6 to 9 months. The introduction of ALK-directed therapy yielded a clear benefit for the ALK + subgroup. In 2016, Solomon and coauthors reported on the intracranial efficacy of first-line crizotinib versus chemotherapy (PROFILE 1014 study) [68]. Patients with stable treated brain metastases were eligible. Twenty-three percent of patients had CNS involvement at baseline. Among these patients, intracranial disease control was significantly higher with crizotinib versus chemotherapy at 12 weeks (85% versus 45%) and at 24 weeks (56% versus 25%). Progression-free survival was significantly longer with crizotinib versus chemotherapy in both subgroups, with brain metastasis at baseline 9.0 versus 4.0 months, and without brain metastasis 11.1 versus 7.2 months.
Further developments brought better efficacy than crizotinib and second-line options after the development of acquired resistance. In a phase II trial in 2017, Kim et al. reported on the efficacy of brigatinib in patients with crizotinib-refractory ALK + NSCLC (ALTA trial) [40]. Patients were stratified by brain metastases and best response to crizotinib. They were randomly assigned to brigatinib 90 mg once daily (arm A) or 180 mg once daily (arm B). Investigator-assessed confirmed objective response rate was the primary endpoint. Seventy percent had baseline brain metastases. Median progression-free survival was 9.2 months and 12.9 months in arms A and B, respectively. Intracranial objective response rate in patients with measurable brain metastases at baseline was 42% in arm A and 67% in arm B. Therefore, brigatinib yielded substantial whole-body and intracranial responses as well as robust progression-free survival; 180 mg showed consistently better efficacy than 90 mg, with acceptable safety.
Further analyses confirmed the superior systemic and intracranial efficacy of brigatinib [9, 10]. Huber et al. focused on the long-term outcome of patients with CNS involvement in the ALTA trial [33]. As mentioned, patients were randomized to brigatinib 90 mg once daily (arm A) or 180 mg once daily with a 7-day lead-in at 90 mg (arm B). At baseline, 71% and 67% had brain lesions among A and B arms, respectively. Objective response rate was 46% versus 56%. Median PFS was 9.2 months versus 16.7 months. Median OS was 29.5 months versus 34.1 months. Intracranial objective response rate in patients with measurable baseline brain lesions was 50% in arm A versus 67% in arm B; median duration of intracranial response was 9.4 versus 16.6 months.
Alectinib, lorlatinib, and ensartinib were further recent developments of anti ALK therapy with superior CNS efficacy. Gadgeel and company reported the results of the ALEX-trial comparing alectinib with crizotinib [24]. In total, 122 patients had CNS metastases and 46 had received prior radiotherapy. CNS objective response rate was 85.7% with alectinib versus 71.4% with crizotinib in patients who received prior radiotherapy and 78.6% versus 40.0%, respectively, in those who had not.
Shaw et al. compared lorlatinib with crizotinib as first-line therapy of advanced ALK + NSCLC [66]. The percentage of patients who were alive without disease progression at 12 months was 78% in the lorlatinib group and 39% in the crizotinib group. An objective response occurred in 76% of the patients in the lorlatinib group and 58% of those in the crizotinib group. Among those with measurable brain metastases, 82% and 23%, respectively, had an intracranial response, and 71% of the patients who received lorlatinib had an intracranial complete response. The most common adverse events with lorlatinib were hyperlipidemia, edema, increased weight, peripheral neuropathy, and cognitive effects. Lorlatinib was associated with more grade 3 or 4 adverse events than crizotinib (72% versus 56%). Discontinuation of treatment because of adverse events occurred in 7% and 9% of the patients, respectively. Horn et al. reported similar systemic and intracranial efficacy of ensartinib compared to crizotinib for advanced ALK + NSCLC [31]. Median PFS was significantly longer with ensartinib than with crizotinib (25.8 versus 12.7 months). The intracranial response rate confirmed by a blinded independent review committee was 63.6% with ensartinib and 21.1% with crizotinib for patients with brain metastases at baseline.
Regarding other targets, Wu et al. reported high CNS efficacy of osimertinib in patients with EGFR T790M mutated advanced NSCLC (AURA3 trial) [84]. Patients with asymptomatic, stable CNS metastases were eligible for enrollment and were randomly assigned 2:1 to osimertinib 80 mg once daily or platinum-pemetrexed. The group evaluable for CNS response included only patients with one or more measurable CNS lesions. Of 419 patients randomly assigned to treatment, 116 had measurable and/or non-measurable CNS lesions, including 46 patients with measurable CNS lesions. CNS objective response rate in patients with one or more measurable CNS lesions was 70% with osimertinib and 31% with platinum-pemetrexed. The objective response rate was 40% and 17%, respectively, in patients with measurable and/or non-measurable CNS lesions. Median CNS duration of response in patients with measurable and/or non-measurable CNS lesions was 8.9 months for osimertinib and 5.7 months for platinum-pemetrexed. Median CNS progression-free survival was 11.7 months and 5.6 months, respectively.
For ALK- and other NSCLC without driver mutation, anti-PD-(L)1 immunotherapy has become the main focus of development. The KEYNOTE-189 trial compared pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic non-squamous NSCLC [23]. Median OS was 22.0 months in the pembrolizumab-combination group versus 10.7 months in the placebo-combination group. Median PFS was 9.0 months and 4.9 months, respectively. OS and PFS benefits with pembrolizumab were observed regardless of PD-L1 expression or presence of liver/brain metastases. Overall survival in the subgroup with brain metastases was 19.2 months with pembrolizumab versus 7.5 months.
In summary, for the patients with intracranial dissemination of NSCLC, intracranial response rates of up to some 80% and overall survival of up to 2 years are reported for ALK + entities with intracranial dissemination. Anti-PD-1 immunotherapy appears to be also promising for ALK + and ALK- varieties with intracranial dissemination, but data are currently not yet sufficient, and the question of combination immunotherapeutic and addition of chemotherapy remains unsolved for NSLC without driver mutation.

Discussion

Reviewing the currently available data unveiled a clear deficit of information regarding cancer patients with very advanced stage of disease, i.e., patients suffering of intracranial dissemination. In the majority of pharmacological studies, patients suffering of intracranial dissemination were excluded a priori. In the others, inclusion is limited to variably defined stable disease. Interpretation is further hindered by the lack of information regarding adjuvant radiotherapy.
The reviewed data suggest that introduction of targeted therapies brought a clear improvement of survival for the subgroups of cancers expressing an addressable target. For example, according to our analysis and the meta-analysis of Cameron et al., for the 4–7% of ALK + NSCLC, introduction of ALK inhibitors resulted in a large increase in PFS and increase of ORR including patients with measurable baseline brain metastases when compared to chemotherapy [8]. ALK inhibitors improved OS to a lesser degree than PFS.
The introduction of next-generation ALK inhibitors alectinib, brigatinib, and lorlatinib again resulted in a clear improvement of PFS and ORR compared to the first generation ALK inhibitor crizotinib, particularly in participants with baseline brain metastases. Next-generation inhibitors likely improve also OS to some degree.
In the case of NSCLC exhibiting EGFR mutations, our analysis confirms the meta-analysis of Erickson, Brastianos, and Das, that only introduction of osimertinib brought measurable progress regarding PFS and objective response rate, while effects of other substances are minimal for the case of advanced disease with brain metastases [21].
Generally, the new targeted therapies for advanced cancer often appear also to benefit patients with brain metastases. However, more or less solid evidence is only available for breast and lung cancer and melanoma. Targeted therapies have become accepted for other types of cancer; i.e., tyrosine kinase inhibitors and immune checkpoint inhibitors are a firm part of adjuvant first- or second-line therapy of renal cancer, but so far, there are no data available that allow an estimate of intracranial efficacy [54].
Intracranial escape of metastases due to the blood–brain barrier is a well-known problem in cancer therapy [41]. Intracranial metastases may respond to targeted therapy worse than extracranial dissemination. Therefore, in the absence of data showing intracranial efficacy, we cannot just substitute results of extracranial efficacy.
Further problems are potential differences between primary tumor profiles and metastasis, e.g., hormone receptors in breast cancer, where conversion of estrogen and progesterone receptors is not uncommon. Stereotactic biopsy could potentially clarify variations between primary and metastasis. However, appreciating the clinical importance is difficult, since we do not have any substantial data on the efficacy of anti-hormone therapy for brain metastases from breast cancer. Taken these aspects together and in view of the risk of stereotactic biopsy, including tumor seeding, we believe that at the moment, there is no indication for brain biopsy with the aim to clarify receptor or mutational status of intracranial metastases.
Radiotherapy, surgery, and radiosurgery have also achieved significant progress during the last decades [25, 61]. One perspective could be that control of intracranial manifestation can today be achieved by possibly repeated radiosurgery [52]. This would lead to the view that intracranial efficacy of the pharmaceutical adjuvant therapy is of lesser importance. As of today, this approach is certainly the pragmatic one for cancer types with missing data regarding intracranial efficacy of adjuvant pharmacological therapy. The combination of radiosurgery with targeted therapies particularly BRAF inhibitors may increase the risk of radionecrosis [42] and the optimal sequencing of such combined-modality therapy is the subject of numerous open clinical trials.
Although directed therapy for the cancer subgroups with an appropriate target has an effect, the latter is still limited in extent and duration. Anti-ALK-directed therapy of ALK + lung cancers does not lead to the disappearance of these cells. Moreover, the duration of tumor control appears to be generally limited, and after a certain time tumors find escape mechanisms and then progress again. In that respect, targeted therapy does not differ from traditional chemotherapy and both modalities act on vital cellular pathways, which are also important for normal cells. Completely blocking these pathways would also kill normal cells.
As mentioned earlier, firm data on the brain-specific effect of targeted therapies are only available for the most common cancers. For the others, we have no good evidence and have to estimate the potential effect of targeted therapies based on the effect on the primary tumor or on the basis of non-randomized studies, as, for example, in the case of renal cell carcinoma [35]. Data pertaining to the prognosis of the different subgroups are also lacking. Data regarding the efficacy on intracranial dissemination are particularly scarce for the more benign tumor variants. For example, the multikinase blocker palbociclib is used in combination with endocrine therapy for hormone receptor–positive breast cancer [77], but we do not have solid information on the efficacy in the case of intracranial dissemination [45]. As the case report of Abused and colleagues shows, it may be very effective [1].
Current targeted approaches address only a few of many possible pathways. Reviewing the last decade, identification and exploration of new targets appears to be accelerating. At the time of writing, new preliminary data from the TUXEDO-1 trial suggest high intracranial response rates of trastuzumab-deruxtecan in HER2-positive breast cancer patients with active brain metastases, with a progression free survival of 14 months [6]. With the advent of new potential targets and drug combinations, clinical validation will be a major challenge.
Although current targeted therapies have advanced, the gain for patients with cancer disseminated to the brain remains limited. It appears therefore particularly important to focus in the future also on the quality of life during the last months of life.

Conclusion

In conclusion, the introduction of targeted therapy roughly doubled survival times of many advanced cancers including those metastasized to the brain. Currently only few cell signal pathways have been targeted, i.e. pathways that are also important for the healthy cells. Therefore today’s targeted therapy does not differ essentially from chemotherapy, in that it hurts both cancer and healthy cells, only with some stronger effect on the cancer cells. However, there are many more potential molecular targets, and the hope remains that targets can be found that are much more specific for cancer cells than the ones so far explored. Further clinical trials will also have to address quality of live in addition to pure length of survival.

Declarations

Not applicable.
Not applicable.

Competing interests

None of the authors declares any competing interests in context with the current study.

Human and animal ethics

Not applicable.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Die Chirurgie

Print-Titel

Das Abo mit mehr Tiefe

Mit der Zeitschrift Die Chirurgie erhalten Sie zusätzlich Online-Zugriff auf weitere 43 chirurgische Fachzeitschriften, CME-Fortbildungen, Webinare, Vorbereitungskursen zur Facharztprüfung und die digitale Enzyklopädie e.Medpedia.

Bis 30. April 2024 bestellen und im ersten Jahr nur 199 € zahlen!

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Weitere Produktempfehlungen anzeigen
Literatur
2.
Zurück zum Zitat Ascierto PA, Del Vecchio M, Mackiewicz A, Robert C, Chiarion-Sileni V, Arance A, Lebbé C, Svane IM, McNeil C, Rutkowski P, Loquai C, Mortier L, Hamid O, Bastholt L, Dreno B, Schadendorf D, Garbe C, Nyakas M, Grob JJ, Thomas L, Liszkay G, Smylie M, Hoeller C, Ferraresi V, Grange F, Gutzmer R, Pikiel J, Hosein F, Simsek B, Maio M (2020) Overall survival at 5 years of follow-up in a phase III trial comparing ipilimumab 10 mg/kg with 3 mg/kg in patients with advanced melanoma. J Immunother Cancer 8(1):e000391. https://doi.org/10.1136/jitc-2019-000391. Erratum in: J Immunother Cancer 8(2)CrossRefPubMedPubMedCentral Ascierto PA, Del Vecchio M, Mackiewicz A, Robert C, Chiarion-Sileni V, Arance A, Lebbé C, Svane IM, McNeil C, Rutkowski P, Loquai C, Mortier L, Hamid O, Bastholt L, Dreno B, Schadendorf D, Garbe C, Nyakas M, Grob JJ, Thomas L, Liszkay G, Smylie M, Hoeller C, Ferraresi V, Grange F, Gutzmer R, Pikiel J, Hosein F, Simsek B, Maio M (2020) Overall survival at 5 years of follow-up in a phase III trial comparing ipilimumab 10 mg/kg with 3 mg/kg in patients with advanced melanoma. J Immunother Cancer 8(1):e000391. https://​doi.​org/​10.​1136/​jitc-2019-000391. Erratum in: J Immunother Cancer 8(2)CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Ascierto PA, Dummer R, Gogas HJ, Flaherty KT, Arance A, Mandala M, Liszkay G, Garbe C, Schadendorf D, Krajsova I, Gutzmer R, de Groot JWB, Loquai C, Gollerkeri A, Pickard MD, Robert C (2020) Update on tolerability and overall survival in COLUMBUS: landmark analysis of a randomised phase 3 trial of encorafenib plus binimetinib vs vemurafenib or encorafenib in patients with BRAF V600-mutant melanoma. Eur J Cancer 126:33–44. https://doi.org/10.1016/j.ejca.2019.11.016CrossRefPubMed Ascierto PA, Dummer R, Gogas HJ, Flaherty KT, Arance A, Mandala M, Liszkay G, Garbe C, Schadendorf D, Krajsova I, Gutzmer R, de Groot JWB, Loquai C, Gollerkeri A, Pickard MD, Robert C (2020) Update on tolerability and overall survival in COLUMBUS: landmark analysis of a randomised phase 3 trial of encorafenib plus binimetinib vs vemurafenib or encorafenib in patients with BRAF V600-mutant melanoma. Eur J Cancer 126:33–44. https://​doi.​org/​10.​1016/​j.​ejca.​2019.​11.​016CrossRefPubMed
5.
Zurück zum Zitat Bardia A, Hurvitz SA, Tolaney SM, Loirat D, Punie K, Oliveira M, Brufsky A, Sardesai SD, Kalinsky K, Zelnak AB, Weaver R, Traina T, Dalenc F, Aftimos P, Lynce F, Diab S, Cortés J, O’Shaughnessy J, Diéras V, Ferrario C, Schmid P, Carey LA, Gianni L, Piccart MJ, Loibl S, Goldenberg DM, Hong Q, Olivo MS, Itri LM, Rugo HS, ASCENT Clinical trial investigators (2021) Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med 384(16):1529–1541. https://doi.org/10.1056/NEJMoa2028485CrossRefPubMed Bardia A, Hurvitz SA, Tolaney SM, Loirat D, Punie K, Oliveira M, Brufsky A, Sardesai SD, Kalinsky K, Zelnak AB, Weaver R, Traina T, Dalenc F, Aftimos P, Lynce F, Diab S, Cortés J, O’Shaughnessy J, Diéras V, Ferrario C, Schmid P, Carey LA, Gianni L, Piccart MJ, Loibl S, Goldenberg DM, Hong Q, Olivo MS, Itri LM, Rugo HS, ASCENT Clinical trial investigators (2021) Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med 384(16):1529–1541. https://​doi.​org/​10.​1056/​NEJMoa2028485CrossRefPubMed
6.
Zurück zum Zitat Bartsch R, Berghoff AS, Furtner J, Marhold M, Bergen ES, Roider-Schur S, Starzer AM, Forstner H, Rottenmanner B, Dieckmann K, Bago-Horvath ZA, Widhalm G, Ilhan-Mutlu A, Minichsdorfer C, Fuereder T, Singer CF, Weltermann A, Puhr R, Preusser M (2022) 165MO Trastuzumab-deruxtecan (T-DXd) in HER2-positive breast cancer patients (pts) with active brain metastases: primary outcome analysis from the TUXEDO-1 trial. Ann Oncol 33(Supplement 3):S198. ISSN 0923-7534. https://doi.org/10.1016/j.annonc.2022.03.184CrossRef Bartsch R, Berghoff AS, Furtner J, Marhold M, Bergen ES, Roider-Schur S, Starzer AM, Forstner H, Rottenmanner B, Dieckmann K, Bago-Horvath ZA, Widhalm G, Ilhan-Mutlu A, Minichsdorfer C, Fuereder T, Singer CF, Weltermann A, Puhr R, Preusser M (2022) 165MO Trastuzumab-deruxtecan (T-DXd) in HER2-positive breast cancer patients (pts) with active brain metastases: primary outcome analysis from the TUXEDO-1 trial. Ann Oncol 33(Supplement 3):S198. ISSN 0923-7534. https://​doi.​org/​10.​1016/​j.​annonc.​2022.​03.​184CrossRef
7.
Zurück zum Zitat Besse B, Le Moulec S, Mazières J, Senellart H, Barlesi F, Chouaid C, Dansin E, Bérard H, Falchero L, Gervais R, Robinet G, Ruppert AM, Schott R, Léna H, Clément-Duchêne C, Quantin X, Souquet PJ, Trédaniel J, Moro-Sibilot D, Pérol M, Madroszyk AC, Soria JC (2015) Bevacizumab in patients with nonsquamous non-small cell lung cancer and asymptomatic, untreated brain metastases (BRAIN): a nonrandomized, phase II study. Clin Cancer Res 21(8):1896–1903. https://doi.org/10.1158/1078-0432.CCR-14-2082CrossRefPubMed Besse B, Le Moulec S, Mazières J, Senellart H, Barlesi F, Chouaid C, Dansin E, Bérard H, Falchero L, Gervais R, Robinet G, Ruppert AM, Schott R, Léna H, Clément-Duchêne C, Quantin X, Souquet PJ, Trédaniel J, Moro-Sibilot D, Pérol M, Madroszyk AC, Soria JC (2015) Bevacizumab in patients with nonsquamous non-small cell lung cancer and asymptomatic, untreated brain metastases (BRAIN): a nonrandomized, phase II study. Clin Cancer Res 21(8):1896–1903. https://​doi.​org/​10.​1158/​1078-0432.​CCR-14-2082CrossRefPubMed
9.
Zurück zum Zitat Camidge DR, Kim DW, Tiseo M, Langer CJ, Ahn MJ, Shaw AT, Huber RM, Hochmair MJ, Lee DH, Bazhenova LA, Gold KA, Ou SI, West HL, Reichmann W, Haney J, Clackson T, Kerstein D, Gettinger SN (2018) Exploratory analysis of brigatinib activity in patients with anaplastic lymphoma kinase-positive non-small-cell lung cancer and brain metastases in two clinical trials. J Clin Oncol 36(26):2693–2701. https://doi.org/10.1200/JCO.2017.77.5841CrossRefPubMed Camidge DR, Kim DW, Tiseo M, Langer CJ, Ahn MJ, Shaw AT, Huber RM, Hochmair MJ, Lee DH, Bazhenova LA, Gold KA, Ou SI, West HL, Reichmann W, Haney J, Clackson T, Kerstein D, Gettinger SN (2018) Exploratory analysis of brigatinib activity in patients with anaplastic lymphoma kinase-positive non-small-cell lung cancer and brain metastases in two clinical trials. J Clin Oncol 36(26):2693–2701. https://​doi.​org/​10.​1200/​JCO.​2017.​77.​5841CrossRefPubMed
10.
Zurück zum Zitat Camidge DR, Kim HR, Ahn MJ, Yang JC, Han JY, Lee JS, Hochmair MJ, Li JY, Chang GC, Lee KH, Gridelli C, Delmonte A, Garcia Campelo R, Kim DW, Bearz A, Griesinger F, Morabito A, Felip E, Califano R, Ghosh S, Spira A, Gettinger SN, Tiseo M, Gupta N, Haney J, Kerstein D, Popat S (2018) Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N Engl J Med 379(21):2027–2039. https://doi.org/10.1056/NEJMoa1810171CrossRefPubMed Camidge DR, Kim HR, Ahn MJ, Yang JC, Han JY, Lee JS, Hochmair MJ, Li JY, Chang GC, Lee KH, Gridelli C, Delmonte A, Garcia Campelo R, Kim DW, Bearz A, Griesinger F, Morabito A, Felip E, Califano R, Ghosh S, Spira A, Gettinger SN, Tiseo M, Gupta N, Haney J, Kerstein D, Popat S (2018) Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N Engl J Med 379(21):2027–2039. https://​doi.​org/​10.​1056/​NEJMoa1810171CrossRefPubMed
11.
Zurück zum Zitat Chabot P, Hsia TC, Ryu JS, Gorbunova V, Belda-Iniesta C, Ball D, Kio E, Mehta M, Papp K, Qin Q, Qian J, Holen KD, Giranda V, Suh JH (2017) Veliparib in combination with whole-brain radiation therapy for patients with brain metastases from non-small cell lung cancer: results of a randomized, global, placebo-controlled study. J Neurooncol 131(1):105–115. https://doi.org/10.1007/s11060-016-2275-xCrossRefPubMed Chabot P, Hsia TC, Ryu JS, Gorbunova V, Belda-Iniesta C, Ball D, Kio E, Mehta M, Papp K, Qin Q, Qian J, Holen KD, Giranda V, Suh JH (2017) Veliparib in combination with whole-brain radiation therapy for patients with brain metastases from non-small cell lung cancer: results of a randomized, global, placebo-controlled study. J Neurooncol 131(1):105–115. https://​doi.​org/​10.​1007/​s11060-016-2275-xCrossRefPubMed
12.
Zurück zum Zitat Cortés J, Kim SB, Chung WP, Im SA, Park YH, Hegg R, Kim MH, Tseng LM, Petry V, Chung CF, Iwata H, Hamilton E, Curigliano G, Xu B, Huang CS, Kim JH, Chiu JWY, Pedrini JL, Lee C, Liu Y, Cathcart J, Bako E, Verma S, Hurvitz SA, DESTINY-Breast03 Trial Investigators (2022) Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N Engl J Med 386(12):1143–1154. https://doi.org/10.1056/NEJMoa2115022CrossRefPubMed Cortés J, Kim SB, Chung WP, Im SA, Park YH, Hegg R, Kim MH, Tseng LM, Petry V, Chung CF, Iwata H, Hamilton E, Curigliano G, Xu B, Huang CS, Kim JH, Chiu JWY, Pedrini JL, Lee C, Liu Y, Cathcart J, Bako E, Verma S, Hurvitz SA, DESTINY-Breast03 Trial Investigators (2022) Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N Engl J Med 386(12):1143–1154. https://​doi.​org/​10.​1056/​NEJMoa2115022CrossRefPubMed
13.
Zurück zum Zitat Cortés J, Cescon DW, Rugo HS, Nowecki Z, Im SA, Yusof MM, Gallardo C, Lipatov O, Barrios CH, Holgado E, Iwata H, Masuda N, Otero MT, Gokmen E, Loi S, Guo Z, Zhao J, Aktan G, Karantza V, Schmid P, KEYNOTE-355 Investigators (2020) Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet 396(10265):1817–1828. https://doi.org/10.1016/S0140-6736(20)32531-9CrossRefPubMed Cortés J, Cescon DW, Rugo HS, Nowecki Z, Im SA, Yusof MM, Gallardo C, Lipatov O, Barrios CH, Holgado E, Iwata H, Masuda N, Otero MT, Gokmen E, Loi S, Guo Z, Zhao J, Aktan G, Karantza V, Schmid P, KEYNOTE-355 Investigators (2020) Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet 396(10265):1817–1828. https://​doi.​org/​10.​1016/​S0140-6736(20)32531-9CrossRefPubMed
14.
Zurück zum Zitat Cortés J, Dieras V, Ro J, Barriere J, Bachelot T, Hurvitz S, Le Rhun E, Espié M, Kim SB, Schneeweiss A, Sohn JH, Nabholtz JM, Kellokumpu-Lehtinen PL, Taguchi J, Piacentini F, Ciruelos E, Bono P, Ould-Kaci M, Roux F, Joensuu H (2015) Afatinib alone or afatinib plus vinorelbine versus investigator’s choice of treatment for HER2-positive breast cancer with progressive brain metastases after trastuzumab, lapatinib, or both (LUX-Breast 3): a randomised, open-label, multicentre, phase 2 trial. Lancet Oncol 16(16):1700–1710. https://doi.org/10.1016/S1470-2045(15)00373-3CrossRefPubMed Cortés J, Dieras V, Ro J, Barriere J, Bachelot T, Hurvitz S, Le Rhun E, Espié M, Kim SB, Schneeweiss A, Sohn JH, Nabholtz JM, Kellokumpu-Lehtinen PL, Taguchi J, Piacentini F, Ciruelos E, Bono P, Ould-Kaci M, Roux F, Joensuu H (2015) Afatinib alone or afatinib plus vinorelbine versus investigator’s choice of treatment for HER2-positive breast cancer with progressive brain metastases after trastuzumab, lapatinib, or both (LUX-Breast 3): a randomised, open-label, multicentre, phase 2 trial. Lancet Oncol 16(16):1700–1710. https://​doi.​org/​10.​1016/​S1470-2045(15)00373-3CrossRefPubMed
15.
Zurück zum Zitat Curigliano G, Mueller V, Borges V, Hamilton E, Hurvitz S, Loi S, Murthy R, Okines A, Paplomata E, Cameron D, Carey LA, Gelmon K, Hortobagyi GN, Krop I, Loibl S, Pegram M, Slamon D, Ramos J, Feng W, Winer E (2022) Tucatinib versus placebo added to trastuzumab and capecitabine for patients with pretreated HER2+ metastatic breast cancer with and without brain metastases (HER2CLIMB): final overall survival analysis. Ann Oncol 33(3):321–329. https://doi.org/10.1016/j.annonc.2021.12.005CrossRefPubMed Curigliano G, Mueller V, Borges V, Hamilton E, Hurvitz S, Loi S, Murthy R, Okines A, Paplomata E, Cameron D, Carey LA, Gelmon K, Hortobagyi GN, Krop I, Loibl S, Pegram M, Slamon D, Ramos J, Feng W, Winer E (2022) Tucatinib versus placebo added to trastuzumab and capecitabine for patients with pretreated HER2+ metastatic breast cancer with and without brain metastases (HER2CLIMB): final overall survival analysis. Ann Oncol 33(3):321–329. https://​doi.​org/​10.​1016/​j.​annonc.​2021.​12.​005CrossRefPubMed
16.
Zurück zum Zitat Davies MA, Saiag P, Robert C, Grob JJ, Flaherty KT, Arance A, Chiarion-Sileni V, Thomas L, Lesimple T, Mortier L, Moschos SJ, Hogg D, Márquez-Rodas I, Del Vecchio M, Lebbé C, Meyer N, Zhang Y, Huang Y, Mookerjee B, Long GV (2017) Dabrafenib plus trametinib in patients with BRAFV600-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol 18(7):863–873. https://doi.org/10.1016/S1470-2045(17)30429-1CrossRefPubMedPubMedCentral Davies MA, Saiag P, Robert C, Grob JJ, Flaherty KT, Arance A, Chiarion-Sileni V, Thomas L, Lesimple T, Mortier L, Moschos SJ, Hogg D, Márquez-Rodas I, Del Vecchio M, Lebbé C, Meyer N, Zhang Y, Huang Y, Mookerjee B, Long GV (2017) Dabrafenib plus trametinib in patients with BRAFV600-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol 18(7):863–873. https://​doi.​org/​10.​1016/​S1470-2045(17)30429-1CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Diéras V, Weaver R, Tolaney SM et al (2020) Subgroup analysis of patients with brain metastases from the phase 3 ASCENT study of sacituzumab govitecan versus chemotherapy in metastatic triple-negative breast cancer. Presented at the 2020 San Antonio Breast Cancer Symposium; December 8–11, 2020. Abstract PD13–04 Diéras V, Weaver R, Tolaney SM et al (2020) Subgroup analysis of patients with brain metastases from the phase 3 ASCENT study of sacituzumab govitecan versus chemotherapy in metastatic triple-negative breast cancer. Presented at the 2020 San Antonio Breast Cancer Symposium; December 8–11, 2020. Abstract PD13–04
18.
Zurück zum Zitat Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, Nathenson M, Doebele RC, Farago AF, Pappo AS, Turpin B, Dowlati A, Brose MS, Mascarenhas L, Federman N, Berlin J, El-Deiry WS, Baik C, Deeken J, Boni V, Nagasubramanian R, Taylor M, Rudzinski ER, Meric-Bernstam F, Sohal DPS, Ma PC, Raez LE, Hechtman JF, Benayed R, Ladanyi M, Tuch BB, Ebata K, Cruickshank S, Ku NC, Cox MC, Hawkins DS, Hong DS, Hyman DM (2018) Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 378(8):731–739. https://doi.org/10.1056/NEJMoa1714448CrossRefPubMedPubMedCentral Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, Nathenson M, Doebele RC, Farago AF, Pappo AS, Turpin B, Dowlati A, Brose MS, Mascarenhas L, Federman N, Berlin J, El-Deiry WS, Baik C, Deeken J, Boni V, Nagasubramanian R, Taylor M, Rudzinski ER, Meric-Bernstam F, Sohal DPS, Ma PC, Raez LE, Hechtman JF, Benayed R, Ladanyi M, Tuch BB, Ebata K, Cruickshank S, Ku NC, Cox MC, Hawkins DS, Hong DS, Hyman DM (2018) Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 378(8):731–739. https://​doi.​org/​10.​1056/​NEJMoa1714448CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Dummer R, Ascierto PA, Gogas HJ, Arance A, Mandala M, Liszkay G, Garbe C, Schadendorf D, Krajsova I, Gutzmer R, Chiarion Sileni V, Dutriaux C, de Groot JWB, Yamazaki N, Loquai C, Moutouh-de Parseval LA, Pickard MD, Sandor V, Robert C, Flaherty KT (2018) Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 19(10):1315–1327. https://doi.org/10.1016/S1470-2045(18)30497-2. Erratum in: Lancet Oncol 19(10):e509CrossRefPubMed Dummer R, Ascierto PA, Gogas HJ, Arance A, Mandala M, Liszkay G, Garbe C, Schadendorf D, Krajsova I, Gutzmer R, Chiarion Sileni V, Dutriaux C, de Groot JWB, Yamazaki N, Loquai C, Moutouh-de Parseval LA, Pickard MD, Sandor V, Robert C, Flaherty KT (2018) Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 19(10):1315–1327. https://​doi.​org/​10.​1016/​S1470-2045(18)30497-2. Erratum in: Lancet Oncol 19(10):e509CrossRefPubMed
20.
Zurück zum Zitat Dummer R, Schadendorf D, Ascierto PA, Arance A, Dutriaux C, Di Giacomo AM, Rutkowski P, Del Vecchio M, Gutzmer R, Mandala M, Thomas L, Demidov L, Garbe C, Hogg D, Liszkay G, Queirolo P, Wasserman E, Ford J, Weill M, Sirulnik LA, Jehl V, Bozón V, Long GV, Flaherty K (2017) Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 18(4):435–445. https://doi.org/10.1016/S1470-2045(17)30180-8CrossRefPubMed Dummer R, Schadendorf D, Ascierto PA, Arance A, Dutriaux C, Di Giacomo AM, Rutkowski P, Del Vecchio M, Gutzmer R, Mandala M, Thomas L, Demidov L, Garbe C, Hogg D, Liszkay G, Queirolo P, Wasserman E, Ford J, Weill M, Sirulnik LA, Jehl V, Bozón V, Long GV, Flaherty K (2017) Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 18(4):435–445. https://​doi.​org/​10.​1016/​S1470-2045(17)30180-8CrossRefPubMed
22.
Zurück zum Zitat Ferrucci PF, Di Giacomo AM, Del Vecchio M, Atkinson V, Schmidt H, Schachter J, Queirolo P, Long GV, Stephens R, Svane IM, Lotem M, Abu-Amna M, Gasal E, Ghori R, Diede SJ, Croydon ES, Ribas A, Ascierto PA, KEYNOTE-022 international team (2020) KEYNOTE-022 part 3: a randomized, double-blind, phase 2 study of pembrolizumab, dabrafenib, and trametinib in BRAF-mutant melanoma. J Immunother Cancer 8(2):e001806. https://doi.org/10.1136/jitc-2020-001806. Erratum in: J Immunother Cancer 9(11)CrossRefPubMedPubMedCentral Ferrucci PF, Di Giacomo AM, Del Vecchio M, Atkinson V, Schmidt H, Schachter J, Queirolo P, Long GV, Stephens R, Svane IM, Lotem M, Abu-Amna M, Gasal E, Ghori R, Diede SJ, Croydon ES, Ribas A, Ascierto PA, KEYNOTE-022 international team (2020) KEYNOTE-022 part 3: a randomized, double-blind, phase 2 study of pembrolizumab, dabrafenib, and trametinib in BRAF-mutant melanoma. J Immunother Cancer 8(2):e001806. https://​doi.​org/​10.​1136/​jitc-2020-001806. Erratum in: J Immunother Cancer 9(11)CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Gadgeel S, Rodríguez-Abreu D, Speranza G, Esteban E, Felip E, Dómine M, Hui R, Hochmair MJ, Clingan P, Powell SF, Cheng SY, Bischoff HG, Peled N, Grossi F, Jennens RR, Reck M, Garon EB, Novello S, Rubio-Viqueira B, Boyer M, Kurata T, Gray JE, Yang J, Bas T, Pietanza MC, Garassino MC (2020) Updated analysis from KEYNOTE-189: pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non-small-cell lung cancer. J Clin Oncol 38(14):1505–1517. https://doi.org/10.1200/JCO.19.03136CrossRefPubMed Gadgeel S, Rodríguez-Abreu D, Speranza G, Esteban E, Felip E, Dómine M, Hui R, Hochmair MJ, Clingan P, Powell SF, Cheng SY, Bischoff HG, Peled N, Grossi F, Jennens RR, Reck M, Garon EB, Novello S, Rubio-Viqueira B, Boyer M, Kurata T, Gray JE, Yang J, Bas T, Pietanza MC, Garassino MC (2020) Updated analysis from KEYNOTE-189: pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non-small-cell lung cancer. J Clin Oncol 38(14):1505–1517. https://​doi.​org/​10.​1200/​JCO.​19.​03136CrossRefPubMed
24.
Zurück zum Zitat Gadgeel S, Peters S, Mok T, Shaw AT, Kim DW, Ou SI, Pérol M, Wrona A, Novello S, Rosell R, Zeaiter A, Liu T, Nüesch E, Balas B, Camidge DR (2018) Alectinib versus crizotinib in treatment-naive anaplastic lymphoma kinase-positive (ALK+) non-small-cell lung cancer: CNS efficacy results from the ALEX study. Ann Oncol 29(11):2214–2222. https://doi.org/10.1093/annonc/mdy405CrossRefPubMedPubMedCentral Gadgeel S, Peters S, Mok T, Shaw AT, Kim DW, Ou SI, Pérol M, Wrona A, Novello S, Rosell R, Zeaiter A, Liu T, Nüesch E, Balas B, Camidge DR (2018) Alectinib versus crizotinib in treatment-naive anaplastic lymphoma kinase-positive (ALK+) non-small-cell lung cancer: CNS efficacy results from the ALEX study. Ann Oncol 29(11):2214–2222. https://​doi.​org/​10.​1093/​annonc/​mdy405CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Grønberg BH, Ciuleanu T, Fløtten Ø, Knuuttila A, Abel E, Langer SW, Krejcy K, Liepa AM, Munoz M, Hahka-Kemppinen M, Sundstrøm S (2012) A placebo-controlled, randomized phase II study of maintenance enzastaurin following whole brain radiation therapy in the treatment of brain metastases from lung cancer. Lung Cancer 78(1):63–69. https://doi.org/10.1016/j.lungcan.2012.07.007CrossRefPubMed Grønberg BH, Ciuleanu T, Fløtten Ø, Knuuttila A, Abel E, Langer SW, Krejcy K, Liepa AM, Munoz M, Hahka-Kemppinen M, Sundstrøm S (2012) A placebo-controlled, randomized phase II study of maintenance enzastaurin following whole brain radiation therapy in the treatment of brain metastases from lung cancer. Lung Cancer 78(1):63–69. https://​doi.​org/​10.​1016/​j.​lungcan.​2012.​07.​007CrossRefPubMed
27.
28.
Zurück zum Zitat Hauschild A, Ascierto PA, Schadendorf D, Grob JJ, Ribas A, Kiecker F, Dutriaux C, Demidov LV, Lebbé C, Rutkowski P, Blank CU, Gutzmer R, Millward M, Kefford R, Haas T, D’Amelio A Jr, Gasal E, Mookerjee B, Chapman PB (2020) Long-term outcomes in patients with BRAF V600-mutant metastatic melanoma receiving dabrafenib monotherapy: analysis from phase 2 and 3 clinical trials. Eur J Cancer 125:114–120. https://doi.org/10.1016/j.ejca.2019.10.033CrossRefPubMedPubMedCentral Hauschild A, Ascierto PA, Schadendorf D, Grob JJ, Ribas A, Kiecker F, Dutriaux C, Demidov LV, Lebbé C, Rutkowski P, Blank CU, Gutzmer R, Millward M, Kefford R, Haas T, D’Amelio A Jr, Gasal E, Mookerjee B, Chapman PB (2020) Long-term outcomes in patients with BRAF V600-mutant metastatic melanoma receiving dabrafenib monotherapy: analysis from phase 2 and 3 clinical trials. Eur J Cancer 125:114–120. https://​doi.​org/​10.​1016/​j.​ejca.​2019.​10.​033CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Hodi FS, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Cowey CL, Lao CD, Schadendorf D, Wagstaff J, Dummer R, Ferrucci PF, Smylie M, Hill A, Hogg D, Marquez-Rodas I, Jiang J, Rizzo J, Larkin J, Wolchok JD (2018) Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol 19(11):1480–1492. https://doi.org/10.1016/S1470-2045(18)30700-9. Erratum in: Lancet Oncol. 2018 Nov;19(11):e581CrossRefPubMed Hodi FS, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Cowey CL, Lao CD, Schadendorf D, Wagstaff J, Dummer R, Ferrucci PF, Smylie M, Hill A, Hogg D, Marquez-Rodas I, Jiang J, Rizzo J, Larkin J, Wolchok JD (2018) Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol 19(11):1480–1492. https://​doi.​org/​10.​1016/​S1470-2045(18)30700-9. Erratum in: Lancet Oncol. 2018 Nov;19(11):e581CrossRefPubMed
31.
Zurück zum Zitat Horn L, Wang Z, Wu G, Poddubskaya E, Mok T, Reck M, Wakelee H, Chiappori AA, Lee DH, Breder V, Orlov S, Cicin I, Cheng Y, Liu Y, Fan Y, Whisenant JG, Zhou Y, Oertel V, Harrow K, Liang C, Mao L, Selvaggi G, Wu YL (2021) Ensartinib vs crizotinib for patients with anaplastic lymphoma kinase-positive non-small cell lung cancer: a randomized clinical trial. JAMA Oncol 7(11):1617–1625. https://doi.org/10.1001/jamaoncol.2021.3523CrossRefPubMed Horn L, Wang Z, Wu G, Poddubskaya E, Mok T, Reck M, Wakelee H, Chiappori AA, Lee DH, Breder V, Orlov S, Cicin I, Cheng Y, Liu Y, Fan Y, Whisenant JG, Zhou Y, Oertel V, Harrow K, Liang C, Mao L, Selvaggi G, Wu YL (2021) Ensartinib vs crizotinib for patients with anaplastic lymphoma kinase-positive non-small cell lung cancer: a randomized clinical trial. JAMA Oncol 7(11):1617–1625. https://​doi.​org/​10.​1001/​jamaoncol.​2021.​3523CrossRefPubMed
32.
Zurück zum Zitat Horn L, Mansfield AS, Szczęsna A, Havel L, Krzakowski M, Hochmair MJ, Huemer F, Losonczy G, Johnson ML, Nishio M, Reck M, Mok T, Lam S, Shames DS, Liu J, Ding B, Lopez-Chavez A, Kabbinavar F, Lin W, Sandler A, Liu SV, IMpower133 Study Group (2018) First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med 379(23):2220–2229. https://doi.org/10.1056/NEJMoa1809064CrossRefPubMed Horn L, Mansfield AS, Szczęsna A, Havel L, Krzakowski M, Hochmair MJ, Huemer F, Losonczy G, Johnson ML, Nishio M, Reck M, Mok T, Lam S, Shames DS, Liu J, Ding B, Lopez-Chavez A, Kabbinavar F, Lin W, Sandler A, Liu SV, IMpower133 Study Group (2018) First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med 379(23):2220–2229. https://​doi.​org/​10.​1056/​NEJMoa1809064CrossRefPubMed
33.
Zurück zum Zitat Huber RM, Hansen KH, Paz-Ares Rodríguez L, West HL, Reckamp KL, Leighl NB, Tiseo M, Smit EF, Kim DW, Gettinger SN, Hochmair MJ, Kim SW, Langer CJ, Ahn MJ, Kim ES, Kerstein D, Groen HJM, Camidge DR (2020) Brigatinib in crizotinib-refractory ALK+ NSCLC: 2-year follow-up on systemic and intracranial outcomes in the phase 2 ALTA trial. J Thorac Oncol 15(3):404–415. https://doi.org/10.1016/j.jtho.2019.11.004CrossRefPubMed Huber RM, Hansen KH, Paz-Ares Rodríguez L, West HL, Reckamp KL, Leighl NB, Tiseo M, Smit EF, Kim DW, Gettinger SN, Hochmair MJ, Kim SW, Langer CJ, Ahn MJ, Kim ES, Kerstein D, Groen HJM, Camidge DR (2020) Brigatinib in crizotinib-refractory ALK+ NSCLC: 2-year follow-up on systemic and intracranial outcomes in the phase 2 ALTA trial. J Thorac Oncol 15(3):404–415. https://​doi.​org/​10.​1016/​j.​jtho.​2019.​11.​004CrossRefPubMed
34.
Zurück zum Zitat Hurvitz SA, Saura C, Oliveira M, Trudeau ME, Moy B, Delaloge S, Gradishar W, Kim SB, Haley B, Ryvo L, Dai MS, Milovanov V, Alarcón J, Kalmadi S, Cronemberger E, Souza C, Landeiro L, Bose R, Bebchuk J, Kabbinavar F, Bryce R, Keyvanjah K, Brufsky AM (2021) Efficacy of neratinib plus capecitabine in the subgroup of patients with central nervous system involvement from the NALA trial. Oncologist 26(8):e1327–e1338. https://doi.org/10.1002/onco.13830CrossRefPubMedPubMedCentral Hurvitz SA, Saura C, Oliveira M, Trudeau ME, Moy B, Delaloge S, Gradishar W, Kim SB, Haley B, Ryvo L, Dai MS, Milovanov V, Alarcón J, Kalmadi S, Cronemberger E, Souza C, Landeiro L, Bose R, Bebchuk J, Kabbinavar F, Bryce R, Keyvanjah K, Brufsky AM (2021) Efficacy of neratinib plus capecitabine in the subgroup of patients with central nervous system involvement from the NALA trial. Oncologist 26(8):e1327–e1338. https://​doi.​org/​10.​1002/​onco.​13830CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Kim DW, Tiseo M, Ahn MJ, Reckamp KL, Hansen KH, Kim SW, Huber RM, West HL, Groen HJM, Hochmair MJ, Leighl NB, Gettinger SN, Langer CJ, Paz-Ares Rodríguez LG, Smit EF, Kim ES, Reichmann W, Haluska FG, Kerstein D, Camidge DR (2017) Brigatinib in patients with crizotinib-refractory anaplastic lymphoma kinase-positive non-small-cell lung cancer: a randomized, multicenter phase II trial. J Clin Oncol 35(22):2490–2498. https://doi.org/10.1200/JCO.2016.71.5904CrossRefPubMed Kim DW, Tiseo M, Ahn MJ, Reckamp KL, Hansen KH, Kim SW, Huber RM, West HL, Groen HJM, Hochmair MJ, Leighl NB, Gettinger SN, Langer CJ, Paz-Ares Rodríguez LG, Smit EF, Kim ES, Reichmann W, Haluska FG, Kerstein D, Camidge DR (2017) Brigatinib in patients with crizotinib-refractory anaplastic lymphoma kinase-positive non-small-cell lung cancer: a randomized, multicenter phase II trial. J Clin Oncol 35(22):2490–2498. https://​doi.​org/​10.​1200/​JCO.​2016.​71.​5904CrossRefPubMed
43.
Zurück zum Zitat Langreth R, Waldholz M (1999) New era of personalized medicine: targeting drugs for each unique genetic profile. Oncologist 4(5):426–427CrossRef Langreth R, Waldholz M (1999) New era of personalized medicine: targeting drugs for each unique genetic profile. Oncologist 4(5):426–427CrossRef
44.
Zurück zum Zitat Larkin J, Minor D, D’Angelo S, Neyns B, Smylie M, Miller WH Jr, Gutzmer R, Linette G, Chmielowski B, Lao CD, Lorigan P, Grossmann K, Hassel JC, Sznol M, Daud A, Sosman J, Khushalani N, Schadendorf D, Hoeller C, Walker D, Kong G, Horak C, Weber J (2018) Overall survival in patients with advanced melanoma who received nivolumab versus investigator’s choice chemotherapy in CheckMate 037: a randomized, controlled, open-label phase III trial. J Clin Oncol 36(4):383–390. https://doi.org/10.1200/JCO.2016.71.8023CrossRefPubMed Larkin J, Minor D, D’Angelo S, Neyns B, Smylie M, Miller WH Jr, Gutzmer R, Linette G, Chmielowski B, Lao CD, Lorigan P, Grossmann K, Hassel JC, Sznol M, Daud A, Sosman J, Khushalani N, Schadendorf D, Hoeller C, Walker D, Kong G, Horak C, Weber J (2018) Overall survival in patients with advanced melanoma who received nivolumab versus investigator’s choice chemotherapy in CheckMate 037: a randomized, controlled, open-label phase III trial. J Clin Oncol 36(4):383–390. https://​doi.​org/​10.​1200/​JCO.​2016.​71.​8023CrossRefPubMed
45.
Zurück zum Zitat Le Rhun E, Guckenberger M, Smits M, Dummer R, Bachelot T, Sahm F, Galldiks N, de Azambuja E, Berghoff AS, Metellus P, Peters S, Hong YK, Winkler F, Schadendorf D, van den Bent M, Seoane J, Stahel R, Minniti G, Wesseling P, Weller M, Preusser M, EANO Executive Board and ESMO Guidelines Committee (2021) EANO-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up of patients with brain metastasis from solid tumours. Ann Oncol 32(11):1332–1347. https://doi.org/10.1016/j.annonc.2021.07.016CrossRefPubMed Le Rhun E, Guckenberger M, Smits M, Dummer R, Bachelot T, Sahm F, Galldiks N, de Azambuja E, Berghoff AS, Metellus P, Peters S, Hong YK, Winkler F, Schadendorf D, van den Bent M, Seoane J, Stahel R, Minniti G, Wesseling P, Weller M, Preusser M, EANO Executive Board and ESMO Guidelines Committee (2021) EANO-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up of patients with brain metastasis from solid tumours. Ann Oncol 32(11):1332–1347. https://​doi.​org/​10.​1016/​j.​annonc.​2021.​07.​016CrossRefPubMed
46.
Zurück zum Zitat Lin NU, Borges V, Anders C, Murthy RK, Paplomata E, Hamilton E, Hurvitz S, Loi S, Okines A, Abramson V, Bedard PL, Oliveira M, Mueller V, Zelnak A, DiGiovanna MP, Bachelot T, Chien AJ, O’Regan R, Wardley A, Conlin A, Cameron D, Carey L, Curigliano G, Gelmon K, Loibl S, Mayor J, McGoldrick S, An X, Winer EP (2020) Intracranial efficacy and survival with tucatinib plus trastuzumab and capecitabine for previously treated HER2-positive breast cancer with brain metastases in the her2climb trial. J Clin Oncol 38(23):2610–2619. https://doi.org/10.1200/JCO.20.00775CrossRefPubMedPubMedCentral Lin NU, Borges V, Anders C, Murthy RK, Paplomata E, Hamilton E, Hurvitz S, Loi S, Okines A, Abramson V, Bedard PL, Oliveira M, Mueller V, Zelnak A, DiGiovanna MP, Bachelot T, Chien AJ, O’Regan R, Wardley A, Conlin A, Cameron D, Carey L, Curigliano G, Gelmon K, Loibl S, Mayor J, McGoldrick S, An X, Winer EP (2020) Intracranial efficacy and survival with tucatinib plus trastuzumab and capecitabine for previously treated HER2-positive breast cancer with brain metastases in the her2climb trial. J Clin Oncol 38(23):2610–2619. https://​doi.​org/​10.​1200/​JCO.​20.​00775CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Long GV, Dummer R, Hamid O, Gajewski TF, Caglevic C, Dalle S, Arance A, Carlino MS, Grob JJ, Kim TM, Demidov L, Robert C, Larkin J, Anderson JR, Maleski J, Jones M, Diede SJ, Mitchell TC (2019) Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol 20(8):1083–1097. https://doi.org/10.1016/S1470-2045(19)30274-8CrossRefPubMed Long GV, Dummer R, Hamid O, Gajewski TF, Caglevic C, Dalle S, Arance A, Carlino MS, Grob JJ, Kim TM, Demidov L, Robert C, Larkin J, Anderson JR, Maleski J, Jones M, Diede SJ, Mitchell TC (2019) Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol 20(8):1083–1097. https://​doi.​org/​10.​1016/​S1470-2045(19)30274-8CrossRefPubMed
48.
49.
Zurück zum Zitat Long GV, Flaherty KT, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, Garbe C, Jouary T, Hauschild A, Chiarion-Sileni V, Lebbe C, Mandalà M, Millward M, Arance A, Bondarenko I, Haanen JBAG, Hansson J, Utikal J, Ferraresi V, Mohr P, Probachai V, Schadendorf D, Nathan P, Robert C, Ribas A, Davies MA, Lane SR, Legos JJ, Mookerjee B, Grob JJ (2017) Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study. Ann Oncol 28(7):1631–1639. https://doi.org/10.1093/annonc/mdx176. Erratum in: Ann Oncol. 2019 Nov 1;30(11):1848CrossRefPubMedPubMedCentral Long GV, Flaherty KT, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, Garbe C, Jouary T, Hauschild A, Chiarion-Sileni V, Lebbe C, Mandalà M, Millward M, Arance A, Bondarenko I, Haanen JBAG, Hansson J, Utikal J, Ferraresi V, Mohr P, Probachai V, Schadendorf D, Nathan P, Robert C, Ribas A, Davies MA, Lane SR, Legos JJ, Mookerjee B, Grob JJ (2017) Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study. Ann Oncol 28(7):1631–1639. https://​doi.​org/​10.​1093/​annonc/​mdx176. Erratum in: Ann Oncol. 2019 Nov 1;30(11):1848CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat McWilliams RR, Allred JB, Slostad JA, Katipamula R, Dronca RS, Rumilla KM, Erickson LA, Bryce AH, Joseph RW, Kottschade LA, King DM, Leitch JM, Markovic SN (2018) NCCTG N0879 (Alliance): A randomized phase 2 cooperative group trial of carboplatin, paclitaxel, and bevacizumab ± everolimus for metastatic melanoma. Cancer 124(3):537–545. https://doi.org/10.1002/cncr.31072CrossRefPubMed McWilliams RR, Allred JB, Slostad JA, Katipamula R, Dronca RS, Rumilla KM, Erickson LA, Bryce AH, Joseph RW, Kottschade LA, King DM, Leitch JM, Markovic SN (2018) NCCTG N0879 (Alliance): A randomized phase 2 cooperative group trial of carboplatin, paclitaxel, and bevacizumab ± everolimus for metastatic melanoma. Cancer 124(3):537–545. https://​doi.​org/​10.​1002/​cncr.​31072CrossRefPubMed
53.
Zurück zum Zitat Morabito A, Daniele G, Costanzo R, Favaretto AG, Filipazzi V, Rossi A, Gebbia V, Castiglione F, Cavanna L, Maiello E, Sandomenico C, Bonanno L, Piazza E, Maione P, Piccirillo MC, Di Maio M, Rocco G, Gallo C, Perrone F, Gridelli C (2017) A multicenter, randomized, phase 3 trial comparing fixed dose versus toxicity-adjusted dose of cisplatin + etoposide in extensive small-cell lung cancer (SCLC) patients: the small-cell-lung cancer toxicity adjusted dosing (STAD-1) trial. Lung Cancer 108:15–21. https://doi.org/10.1016/j.lungcan.2017.02.016CrossRefPubMed Morabito A, Daniele G, Costanzo R, Favaretto AG, Filipazzi V, Rossi A, Gebbia V, Castiglione F, Cavanna L, Maiello E, Sandomenico C, Bonanno L, Piazza E, Maione P, Piccirillo MC, Di Maio M, Rocco G, Gallo C, Perrone F, Gridelli C (2017) A multicenter, randomized, phase 3 trial comparing fixed dose versus toxicity-adjusted dose of cisplatin + etoposide in extensive small-cell lung cancer (SCLC) patients: the small-cell-lung cancer toxicity adjusted dosing (STAD-1) trial. Lung Cancer 108:15–21. https://​doi.​org/​10.​1016/​j.​lungcan.​2017.​02.​016CrossRefPubMed
54.
Zurück zum Zitat Motzer RJ, Escudier B, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Plimack ER, Procopio G, McDermott DF, Castellano D, Choueiri TK, Donskov F, Gurney H, Oudard S, Richardet M, Peltola K, Alva AS, Carducci M, Wagstaff J, Chevreau C, Fukasawa S, Tomita Y, Gauler TC, Kollmannsberger CK, Schutz FA, Larkin J, Cella D, McHenry MB, Saggi SS, Tannir NM (2020) Nivolumab versus everolimus in patients with advanced renal cell carcinoma: Updated results with long-term follow-up of the randomized, open-label, phase 3 CheckMate 025 trial. Cancer 126(18):4156–4167. https://doi.org/10.1002/cncr.33033CrossRefPubMed Motzer RJ, Escudier B, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Plimack ER, Procopio G, McDermott DF, Castellano D, Choueiri TK, Donskov F, Gurney H, Oudard S, Richardet M, Peltola K, Alva AS, Carducci M, Wagstaff J, Chevreau C, Fukasawa S, Tomita Y, Gauler TC, Kollmannsberger CK, Schutz FA, Larkin J, Cella D, McHenry MB, Saggi SS, Tannir NM (2020) Nivolumab versus everolimus in patients with advanced renal cell carcinoma: Updated results with long-term follow-up of the randomized, open-label, phase 3 CheckMate 025 trial. Cancer 126(18):4156–4167. https://​doi.​org/​10.​1002/​cncr.​33033CrossRefPubMed
55.
Zurück zum Zitat Owonikoko TK, Niu H, Nackaerts K, Csoszi T, Ostoros G, Mark Z, Baik C, Joy AA, Chouaid C, Jaime JC, Kolek V, Majem M, Roubec J, Santos ES, Chiang AC, Speranza G, Belani CP, Chiappori A, Patel MR, Czebe K, Byers L, Bahamon B, Li C, Sheldon-Waniga E, Kong EF, Williams M, Badola S, Shin H, Bedford L, Ecsedy JA, Bryant M, Jones S, Simmons J, Leonard EJ, Ullmann CD, Spigel DR, C14018 study investigators (2020) Randomized phase II study of paclitaxel plus alisertib versus paclitaxel plus placebo as second-line therapy for SCLC: primary and correlative biomarker analyses. J Thorac Oncol 15(2):274–287. https://doi.org/10.1016/j.jtho.2019.10.013CrossRefPubMed Owonikoko TK, Niu H, Nackaerts K, Csoszi T, Ostoros G, Mark Z, Baik C, Joy AA, Chouaid C, Jaime JC, Kolek V, Majem M, Roubec J, Santos ES, Chiang AC, Speranza G, Belani CP, Chiappori A, Patel MR, Czebe K, Byers L, Bahamon B, Li C, Sheldon-Waniga E, Kong EF, Williams M, Badola S, Shin H, Bedford L, Ecsedy JA, Bryant M, Jones S, Simmons J, Leonard EJ, Ullmann CD, Spigel DR, C14018 study investigators (2020) Randomized phase II study of paclitaxel plus alisertib versus paclitaxel plus placebo as second-line therapy for SCLC: primary and correlative biomarker analyses. J Thorac Oncol 15(2):274–287. https://​doi.​org/​10.​1016/​j.​jtho.​2019.​10.​013CrossRefPubMed
56.
Zurück zum Zitat Paz-Ares L, Dvorkin M, Chen Y, Reinmuth N, Hotta K, Trukhin D, Statsenko G, Hochmair MJ, Özgüroğlu M, Ji JH, Voitko O, Poltoratskiy A, Ponce S, Verderame F, Havel L, Bondarenko I, Kazarnowicz A, Losonczy G, Conev NV, Armstrong J, Byrne N, Shire N, Jiang H, Goldman JW, CASPIAN investigators (2019) Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. Lancet 394(10212):1929–1939. https://doi.org/10.1016/S0140-6736(19)32222-6CrossRefPubMed Paz-Ares L, Dvorkin M, Chen Y, Reinmuth N, Hotta K, Trukhin D, Statsenko G, Hochmair MJ, Özgüroğlu M, Ji JH, Voitko O, Poltoratskiy A, Ponce S, Verderame F, Havel L, Bondarenko I, Kazarnowicz A, Losonczy G, Conev NV, Armstrong J, Byrne N, Shire N, Jiang H, Goldman JW, CASPIAN investigators (2019) Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. Lancet 394(10212):1929–1939. https://​doi.​org/​10.​1016/​S0140-6736(19)32222-6CrossRefPubMed
57.
Zurück zum Zitat Perez EA, Awada A, O’Shaughnessy J, Rugo HS, Twelves C, Im SA, Gómez-Pardo P, Schwartzberg LS, Diéras V, Yardley DA, Potter DA, Mailliez A, Moreno-Aspitia A, Ahn JS, Zhao C, Hoch U, Tagliaferri M, Hannah AL, Cortes J (2015) Etirinotecan pegol (NKTR-102) versus treatment of physician’s choice in women with advanced breast cancer previously treated with an anthracycline, a taxane, and capecitabine (BEACON): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol 16(15):1556–1568. https://doi.org/10.1016/S1470-2045(15)00332-0CrossRefPubMed Perez EA, Awada A, O’Shaughnessy J, Rugo HS, Twelves C, Im SA, Gómez-Pardo P, Schwartzberg LS, Diéras V, Yardley DA, Potter DA, Mailliez A, Moreno-Aspitia A, Ahn JS, Zhao C, Hoch U, Tagliaferri M, Hannah AL, Cortes J (2015) Etirinotecan pegol (NKTR-102) versus treatment of physician’s choice in women with advanced breast cancer previously treated with an anthracycline, a taxane, and capecitabine (BEACON): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol 16(15):1556–1568. https://​doi.​org/​10.​1016/​S1470-2045(15)00332-0CrossRefPubMed
58.
Zurück zum Zitat Pesce GA, Klingbiel D, Ribi K, Zouhair A, von Moos R, Schlaeppi M, Caspar CB, Fischer N, Anchisi S, Peters S, Cathomas R, Bernhard J, Kotrubczik NM, D’Addario G, Pilop C, Weber DC, Bodis S, Pless M, Mayer M, Stupp R (2012) Outcome, quality of life and cognitive function of patients with brain metastases from non-small cell lung cancer treated with whole brain radiotherapy combined with gefitinib or temozolomide. A randomised phase II trial of the Swiss Group for Clinical Cancer Research (SAKK 70/03). Eur J Cancer 48(3):377–84. https://doi.org/10.1016/j.ejca.2011.10.016CrossRefPubMed Pesce GA, Klingbiel D, Ribi K, Zouhair A, von Moos R, Schlaeppi M, Caspar CB, Fischer N, Anchisi S, Peters S, Cathomas R, Bernhard J, Kotrubczik NM, D’Addario G, Pilop C, Weber DC, Bodis S, Pless M, Mayer M, Stupp R (2012) Outcome, quality of life and cognitive function of patients with brain metastases from non-small cell lung cancer treated with whole brain radiotherapy combined with gefitinib or temozolomide. A randomised phase II trial of the Swiss Group for Clinical Cancer Research (SAKK 70/03). Eur J Cancer 48(3):377–84. https://​doi.​org/​10.​1016/​j.​ejca.​2011.​10.​016CrossRefPubMed
60.
Zurück zum Zitat Robert C, Flaherty K, Nathan P, Hersey P, Garbe C, Milhem M, Demidov L, Mohr P, Hassel JC, Rutkowski P, Dummer R, Utikal J, Kiecker F, Larkin J, D’Amelio A Jr, Mookerjee B, Schadendorf D (2019) Five-year outcomes from a phase 3 METRIC study in patients with BRAF V600 E/K-mutant advanced or metastatic melanoma. Eur J Cancer 109:61–69. https://doi.org/10.1016/j.ejca.2018.12.015CrossRefPubMed Robert C, Flaherty K, Nathan P, Hersey P, Garbe C, Milhem M, Demidov L, Mohr P, Hassel JC, Rutkowski P, Dummer R, Utikal J, Kiecker F, Larkin J, D’Amelio A Jr, Mookerjee B, Schadendorf D (2019) Five-year outcomes from a phase 3 METRIC study in patients with BRAF V600 E/K-mutant advanced or metastatic melanoma. Eur J Cancer 109:61–69. https://​doi.​org/​10.​1016/​j.​ejca.​2018.​12.​015CrossRefPubMed
61.
63.
Zurück zum Zitat Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Diéras V, Hegg R, Im SA, Shaw Wright G, Henschel V, Molinero L, Chui SY, Funke R, Husain A, Winer EP, Loi S, Emens LA, IMpassion130 Trial Investigators (2018) Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379(22):2108–2121. https://doi.org/10.1056/NEJMoa1809615CrossRefPubMed Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Diéras V, Hegg R, Im SA, Shaw Wright G, Henschel V, Molinero L, Chui SY, Funke R, Husain A, Winer EP, Loi S, Emens LA, IMpassion130 Trial Investigators (2018) Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379(22):2108–2121. https://​doi.​org/​10.​1056/​NEJMoa1809615CrossRefPubMed
64.
65.
Zurück zum Zitat Seligmann JF, Wright-Hughes A, Pottinger A, Velikova G, Oughton JB, Murden G, Rizwanullah M, Price C, Passant H, Heudtlass P, Marshall H, Johnston S, Dodwell D (2020) Lapatinib plus capecitabine versus trastuzumab plus capecitabine in the treatment of human epidermal growth factor receptor 2-positive metastatic breast cancer with central nervous system metastases for patients currently or previously treated with trastuzumab (lantern): a phase II randomised trial. Clin Oncol (R Coll Radiol) 32(10):656–664. https://doi.org/10.1016/j.clon.2020.06.003CrossRef Seligmann JF, Wright-Hughes A, Pottinger A, Velikova G, Oughton JB, Murden G, Rizwanullah M, Price C, Passant H, Heudtlass P, Marshall H, Johnston S, Dodwell D (2020) Lapatinib plus capecitabine versus trastuzumab plus capecitabine in the treatment of human epidermal growth factor receptor 2-positive metastatic breast cancer with central nervous system metastases for patients currently or previously treated with trastuzumab (lantern): a phase II randomised trial. Clin Oncol (R Coll Radiol) 32(10):656–664. https://​doi.​org/​10.​1016/​j.​clon.​2020.​06.​003CrossRef
66.
Zurück zum Zitat Shaw AT, Bauer TM, de Marinis F, Felip E, Goto Y, Liu G, Mazieres J, Kim DW, Mok T, Polli A, Thurm H, Calella AM, Peltz G, Solomon BJ, Trial Investigators CROWN (2020) First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer. N Engl J Med 383(21):2018–2029. https://doi.org/10.1056/NEJMoa2027187CrossRefPubMed Shaw AT, Bauer TM, de Marinis F, Felip E, Goto Y, Liu G, Mazieres J, Kim DW, Mok T, Polli A, Thurm H, Calella AM, Peltz G, Solomon BJ, Trial Investigators CROWN (2020) First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer. N Engl J Med 383(21):2018–2029. https://​doi.​org/​10.​1056/​NEJMoa2027187CrossRefPubMed
67.
Zurück zum Zitat Shaw AT, Kim TM, Crinò L, Gridelli C, Kiura K, Liu G, Novello S, Bearz A, Gautschi O, Mok T, Nishio M, Scagliotti G, Spigel DR, Deudon S, Zheng C, Pantano S, Urban P, Massacesi C, Viraswami-Appanna K, Felip E (2017) Ceritinib versus chemotherapy in patients with ALK-rearranged non-small-cell lung cancer previously given chemotherapy and crizotinib (ASCEND-5): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol:874-886.https://doi.org/10.1016/S1470-2045(17)30339-X Shaw AT, Kim TM, Crinò L, Gridelli C, Kiura K, Liu G, Novello S, Bearz A, Gautschi O, Mok T, Nishio M, Scagliotti G, Spigel DR, Deudon S, Zheng C, Pantano S, Urban P, Massacesi C, Viraswami-Appanna K, Felip E (2017) Ceritinib versus chemotherapy in patients with ALK-rearranged non-small-cell lung cancer previously given chemotherapy and crizotinib (ASCEND-5): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol:874-886.https://​doi.​org/​10.​1016/​S1470-2045(17)30339-X
68.
Zurück zum Zitat Solomon BJ, Cappuzzo F, Felip E, Blackhall FH, Costa DB, Kim DW, Nakagawa K, Wu YL, Mekhail T, Paolini J, Tursi J, Usari T, Wilner KD, Selaru P, Mok TS (2016) Intracranial efficacy of crizotinib versus chemotherapy in patients with advanced ALK-positive non-small-cell lung cancer: results from pROFILE 1014. J Clin Oncol 34(24):2858–2865. https://doi.org/10.1200/JCO.2015.63.5888CrossRefPubMed Solomon BJ, Cappuzzo F, Felip E, Blackhall FH, Costa DB, Kim DW, Nakagawa K, Wu YL, Mekhail T, Paolini J, Tursi J, Usari T, Wilner KD, Selaru P, Mok TS (2016) Intracranial efficacy of crizotinib versus chemotherapy in patients with advanced ALK-positive non-small-cell lung cancer: results from pROFILE 1014. J Clin Oncol 34(24):2858–2865. https://​doi.​org/​10.​1200/​JCO.​2015.​63.​5888CrossRefPubMed
69.
Zurück zum Zitat Soria JC, Tan DSW, Chiari R, Wu YL, Paz-Ares L, Wolf J, Geater SL, Orlov S, Cortinovis D, Yu CJ, Hochmair M, Cortot AB, Tsai CM, Moro-Sibilot D, Campelo RG, McCulloch T, Sen P, Dugan M, Pantano S, Branle F, Massacesi C, de Castro G, Jr, (2017) First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet 389(10072):917–929. https://doi.org/10.1016/S0140-6736(17)30123-X. Erratum in: Lancet. 2017 Mar 4;389(10072):908CrossRefPubMed Soria JC, Tan DSW, Chiari R, Wu YL, Paz-Ares L, Wolf J, Geater SL, Orlov S, Cortinovis D, Yu CJ, Hochmair M, Cortot AB, Tsai CM, Moro-Sibilot D, Campelo RG, McCulloch T, Sen P, Dugan M, Pantano S, Branle F, Massacesi C, de Castro G, Jr, (2017) First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet 389(10072):917–929. https://​doi.​org/​10.​1016/​S0140-6736(17)30123-X. Erratum in: Lancet. 2017 Mar 4;389(10072):908CrossRefPubMed
70.
Zurück zum Zitat Spigel DR, Vicente D, Ciuleanu TE, Gettinger S, Peters S, Horn L, Audigier-Valette C, Pardo Aranda N, Juan-Vidal O, Cheng Y, Zhang H, Shi M, Luft A, Wolf J, Antonia S, Nakagawa K, Fairchild J, Baudelet C, Pandya D, Doshi P, Chang H, Reck M (2021) Second-line nivolumab in relapsed small-cell lung cancer: CheckMate 331☆. Ann Oncol 32(5):631–641. https://doi.org/10.1016/j.annonc.2021.01.071CrossRefPubMed Spigel DR, Vicente D, Ciuleanu TE, Gettinger S, Peters S, Horn L, Audigier-Valette C, Pardo Aranda N, Juan-Vidal O, Cheng Y, Zhang H, Shi M, Luft A, Wolf J, Antonia S, Nakagawa K, Fairchild J, Baudelet C, Pandya D, Doshi P, Chang H, Reck M (2021) Second-line nivolumab in relapsed small-cell lung cancer: CheckMate 331☆. Ann Oncol 32(5):631–641. https://​doi.​org/​10.​1016/​j.​annonc.​2021.​01.​071CrossRefPubMed
72.
Zurück zum Zitat Takano T, Tsurutani J, Takahashi M, Yamanaka T, Sakai K, Ito Y, Fukuoka J, Kimura H, Kawabata H, Tamura K, Matsumoto K, Aogi K, Sato K, Nishio K, Nakagawa K, Saeki T (2018) A randomized phase II trial of trastuzumab plus capecitabine versus lapatinib plus capecitabine in patients with HER2-positive metastatic breast cancer previously treated with trastuzumab and taxanes: WJOG6110B/ELTOP. Breast 40:67–75. https://doi.org/10.1016/j.breast.2018.04.010CrossRefPubMed Takano T, Tsurutani J, Takahashi M, Yamanaka T, Sakai K, Ito Y, Fukuoka J, Kimura H, Kawabata H, Tamura K, Matsumoto K, Aogi K, Sato K, Nishio K, Nakagawa K, Saeki T (2018) A randomized phase II trial of trastuzumab plus capecitabine versus lapatinib plus capecitabine in patients with HER2-positive metastatic breast cancer previously treated with trastuzumab and taxanes: WJOG6110B/ELTOP. Breast 40:67–75. https://​doi.​org/​10.​1016/​j.​breast.​2018.​04.​010CrossRefPubMed
73.
Zurück zum Zitat Tarhini AA, Frankel P, Ruel C, Ernstoff MS, Kuzel TM, Logan TF, Khushalani NI, Tawbi HA, Margolin KA, Awasthi S, Butterfield LH, McDermott D, Chen A, Lara PN, Kirkwood JM (2018) NCI 8628: A randomized phase 2 study of ziv-aflibercept and high-dose interleukin 2 or high-dose interleukin 2 alone for inoperable stage III or IV melanoma. Cancer 124(22):4332–4341. https://doi.org/10.1002/cncr.31734CrossRefPubMed Tarhini AA, Frankel P, Ruel C, Ernstoff MS, Kuzel TM, Logan TF, Khushalani NI, Tawbi HA, Margolin KA, Awasthi S, Butterfield LH, McDermott D, Chen A, Lara PN, Kirkwood JM (2018) NCI 8628: A randomized phase 2 study of ziv-aflibercept and high-dose interleukin 2 or high-dose interleukin 2 alone for inoperable stage III or IV melanoma. Cancer 124(22):4332–4341. https://​doi.​org/​10.​1002/​cncr.​31734CrossRefPubMed
74.
Zurück zum Zitat Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L, Castillo Gutiérrez E, Rutkowski P, Gogas HJ, Lao CD, De Menezes JJ, Dalle S, Arance A, Grob JJ, Srivastava S, Abaskharoun M, Hamilton M, Keidel S, Simonsen KL, Sobiesk AM, Li B, Hodi FS, Long GV, RELATIVITY-047 Investigators (2022) Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med 386(1):24–34. https://doi.org/10.1056/NEJMoa2109970CrossRefPubMed Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L, Castillo Gutiérrez E, Rutkowski P, Gogas HJ, Lao CD, De Menezes JJ, Dalle S, Arance A, Grob JJ, Srivastava S, Abaskharoun M, Hamilton M, Keidel S, Simonsen KL, Sobiesk AM, Li B, Hodi FS, Long GV, RELATIVITY-047 Investigators (2022) Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med 386(1):24–34. https://​doi.​org/​10.​1056/​NEJMoa2109970CrossRefPubMed
75.
Zurück zum Zitat Tawbi HA, Forsyth PA, Hodi FS, Algazi AP, Hamid O, Lao CD, Moschos SJ, Atkins MB, Lewis K, Postow MA, Thomas RP, Glaspy J, Jang S, Khushalani NI, Pavlick AC, Ernstoff MS, Reardon DA, Kudchadkar R, Tarhini A, Chung C, Ritchings C, Durani P, Askelson M, Puzanov I, Margolin KA (2021) Long-term outcomes of patients with active melanoma brain metastases treated with combination nivolumab plus ipilimumab (CheckMate 204): final results of an open-label, multicentre, phase 2 study. Lancet Oncol 22(12):1692–1704. https://doi.org/10.1016/S1470-2045(21)00545-3CrossRefPubMed Tawbi HA, Forsyth PA, Hodi FS, Algazi AP, Hamid O, Lao CD, Moschos SJ, Atkins MB, Lewis K, Postow MA, Thomas RP, Glaspy J, Jang S, Khushalani NI, Pavlick AC, Ernstoff MS, Reardon DA, Kudchadkar R, Tarhini A, Chung C, Ritchings C, Durani P, Askelson M, Puzanov I, Margolin KA (2021) Long-term outcomes of patients with active melanoma brain metastases treated with combination nivolumab plus ipilimumab (CheckMate 204): final results of an open-label, multicentre, phase 2 study. Lancet Oncol 22(12):1692–1704. https://​doi.​org/​10.​1016/​S1470-2045(21)00545-3CrossRefPubMed
76.
Zurück zum Zitat Tjulandin S, Demidov L, Moiseyenko V, Protsenko S, Semiglazova T, Odintsova S, Zukov R, Lazarev S, Makarova Y, Nechaeva M, Sakaeva D, Andreev A, Tarasova A, Fadeyeva N, Shustova M, Kuryshev I (2021) Novel PD-1 inhibitor prolgolimab: expanding non-resectable/metastatic melanoma therapy choice. Eur J Cancer 149:222–232. https://doi.org/10.1016/j.ejca.2021.02.030CrossRefPubMed Tjulandin S, Demidov L, Moiseyenko V, Protsenko S, Semiglazova T, Odintsova S, Zukov R, Lazarev S, Makarova Y, Nechaeva M, Sakaeva D, Andreev A, Tarasova A, Fadeyeva N, Shustova M, Kuryshev I (2021) Novel PD-1 inhibitor prolgolimab: expanding non-resectable/metastatic melanoma therapy choice. Eur J Cancer 149:222–232. https://​doi.​org/​10.​1016/​j.​ejca.​2021.​02.​030CrossRefPubMed
77.
Zurück zum Zitat Turner NC, Ro J, André F, Loi S, Verma S, Iwata H, Harbeck N, Loibl S, Huang Bartlett C, Zhang K, Giorgetti C, Randolph S, Koehler M, Cristofanilli M, PALOMA3 Study Group (2015) palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med 373(3):209–219. https://doi.org/10.1056/NEJMoa1505270CrossRefPubMed Turner NC, Ro J, André F, Loi S, Verma S, Iwata H, Harbeck N, Loibl S, Huang Bartlett C, Zhang K, Giorgetti C, Randolph S, Koehler M, Cristofanilli M, PALOMA3 Study Group (2015) palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med 373(3):209–219. https://​doi.​org/​10.​1056/​NEJMoa1505270CrossRefPubMed
79.
Zurück zum Zitat Weber J, Mandala M, Del Vecchio M, Gogas HJ, Arance AM, Cowey CL, Dalle S, Schenker M, Chiarion-Sileni V, Marquez-Rodas I, Grob JJ, Butler MO, Middleton MR, Maio M, Atkinson V, Queirolo P, Gonzalez R, Kudchadkar RR, Smylie M, Meyer N, Mortier L, Atkins MB, Long GV, Bhatia S, Lebbé C, Rutkowski P, Yokota K, Yamazaki N, Kim TM, de Pril V, Sabater J, Qureshi A, Larkin J, Ascierto PA, CheckMate 238 Collaborators (2017) Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med 377(19):1824–1835. https://doi.org/10.1056/NEJMoa1709030CrossRefPubMed Weber J, Mandala M, Del Vecchio M, Gogas HJ, Arance AM, Cowey CL, Dalle S, Schenker M, Chiarion-Sileni V, Marquez-Rodas I, Grob JJ, Butler MO, Middleton MR, Maio M, Atkinson V, Queirolo P, Gonzalez R, Kudchadkar RR, Smylie M, Meyer N, Mortier L, Atkins MB, Long GV, Bhatia S, Lebbé C, Rutkowski P, Yokota K, Yamazaki N, Kim TM, de Pril V, Sabater J, Qureshi A, Larkin J, Ascierto PA, CheckMate 238 Collaborators (2017) Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med 377(19):1824–1835. https://​doi.​org/​10.​1056/​NEJMoa1709030CrossRefPubMed
80.
Zurück zum Zitat Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, Hoeller C, Khushalani NI, Miller WH Jr, Lao CD, Linette GP, Thomas L, Lorigan P, Grossmann KF, Hassel JC, Maio M, Sznol M, Ascierto PA, Mohr P, Chmielowski B, Bryce A, Svane IM, Grob JJ, Krackhardt AM, Horak C, Lambert A, Yang AS, Larkin J (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16(4):375–384. https://doi.org/10.1016/S1470-2045(15)70076-8CrossRefPubMed Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, Hoeller C, Khushalani NI, Miller WH Jr, Lao CD, Linette GP, Thomas L, Lorigan P, Grossmann KF, Hassel JC, Maio M, Sznol M, Ascierto PA, Mohr P, Chmielowski B, Bryce A, Svane IM, Grob JJ, Krackhardt AM, Horak C, Lambert A, Yang AS, Larkin J (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16(4):375–384. https://​doi.​org/​10.​1016/​S1470-2045(15)70076-8CrossRefPubMed
81.
Zurück zum Zitat Wen PY, Stein A, van den Bent M, De Greve J, Wick A, de Vos FYFL, von Bubnoff N, van Linde ME, Lai A, Prager GW, Campone M, Fasolo A, Lopez-Martin JA, Kim TM, Mason WP, Hofheinz RD, Blay JY, Cho DC, Gazzah A, Pouessel D, Yachnin J, Boran A, Burgess P, Ilankumaran P, Gasal E, Subbiah V (2022) Dabrafenib plus trametinib in patients with BRAFV600E-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol 23(1):53–64. https://doi.org/10.1016/S1470-2045(21)00578-7CrossRefPubMed Wen PY, Stein A, van den Bent M, De Greve J, Wick A, de Vos FYFL, von Bubnoff N, van Linde ME, Lai A, Prager GW, Campone M, Fasolo A, Lopez-Martin JA, Kim TM, Mason WP, Hofheinz RD, Blay JY, Cho DC, Gazzah A, Pouessel D, Yachnin J, Boran A, Burgess P, Ilankumaran P, Gasal E, Subbiah V (2022) Dabrafenib plus trametinib in patients with BRAFV600E-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol 23(1):53–64. https://​doi.​org/​10.​1016/​S1470-2045(21)00578-7CrossRefPubMed
82.
Zurück zum Zitat Wolchok JD, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, Cowey CL, Schadendorf D, Wagstaff J, Dummer R, Ferrucci PF, Smylie M, Butler MO, Hill A, Márquez-Rodas I, Haanen JBAG, Guidoboni M, Maio M, Schöffski P, Carlino MS, Lebbé C, McArthur G, Ascierto PA, Daniels GA, Long GV, Bas T, Ritchings C, Larkin J, Hodi FS (2022) Long-term outcomes with nivolumab plus ipilimumab or nivolumab alone versus ipilimumab in patients with advanced melanoma. J Clin Oncol 40(2):127–137. https://doi.org/10.1200/JCO.21.02229CrossRefPubMed Wolchok JD, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, Cowey CL, Schadendorf D, Wagstaff J, Dummer R, Ferrucci PF, Smylie M, Butler MO, Hill A, Márquez-Rodas I, Haanen JBAG, Guidoboni M, Maio M, Schöffski P, Carlino MS, Lebbé C, McArthur G, Ascierto PA, Daniels GA, Long GV, Bas T, Ritchings C, Larkin J, Hodi FS (2022) Long-term outcomes with nivolumab plus ipilimumab or nivolumab alone versus ipilimumab in patients with advanced melanoma. J Clin Oncol 40(2):127–137. https://​doi.​org/​10.​1200/​JCO.​21.​02229CrossRefPubMed
83.
Zurück zum Zitat Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF, Smylie M, Dummer R, Hill A, Hogg D, Haanen J, Carlino MS, Bechter O, Maio M, Marquez-Rodas I, Guidoboni M, McArthur G, Lebbé C, Ascierto PA, Long GV, Cebon J, Sosman J, Postow MA, Callahan MK, Walker D, Rollin L, Bhore R, Hodi FS, Larkin J (2017) Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377(14):1345–1356. https://doi.org/10.1056/NEJMoa1709684. Erratum in: N Engl J Med. 2018 Nov 29;379(22):2185CrossRefPubMedPubMedCentral Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF, Smylie M, Dummer R, Hill A, Hogg D, Haanen J, Carlino MS, Bechter O, Maio M, Marquez-Rodas I, Guidoboni M, McArthur G, Lebbé C, Ascierto PA, Long GV, Cebon J, Sosman J, Postow MA, Callahan MK, Walker D, Rollin L, Bhore R, Hodi FS, Larkin J (2017) Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377(14):1345–1356. https://​doi.​org/​10.​1056/​NEJMoa1709684. Erratum in: N Engl J Med. 2018 Nov 29;379(22):2185CrossRefPubMedPubMedCentral
84.
Zurück zum Zitat Wu YL, Ahn MJ, Garassino MC, Han JY, Katakami N, Kim HR, Hodge R, Kaur P, Brown AP, Ghiorghiu D, Papadimitrakopoulou VA, Mok TSK (2018) CNS efficacy of osimertinib in patients with T790M-positive advanced non-small-cell lung cancer: data from a randomized phase III trial (AURA3). J Clin Oncol 36(26):2702–2709. https://doi.org/10.1200/JCO.2018.77.9363CrossRefPubMed Wu YL, Ahn MJ, Garassino MC, Han JY, Katakami N, Kim HR, Hodge R, Kaur P, Brown AP, Ghiorghiu D, Papadimitrakopoulou VA, Mok TSK (2018) CNS efficacy of osimertinib in patients with T790M-positive advanced non-small-cell lung cancer: data from a randomized phase III trial (AURA3). J Clin Oncol 36(26):2702–2709. https://​doi.​org/​10.​1200/​JCO.​2018.​77.​9363CrossRefPubMed
86.
Zurück zum Zitat Yang JJ, Zhou C, Huang Y, Feng J, Lu S, Song Y, Huang C, Wu G, Zhang L, Cheng Y, Hu C, Chen G, Zhang L, Liu X, Yan HH, Tan FL, Zhong W, Wu YL (2017) Icotinib versus whole-brain irradiation in patients with EGFR-mutant non-small-cell lung cancer and multiple brain metastases (BRAIN): a multicentre, phase 3, open-label, parallel, randomised controlled trial. Lancet Respir Med 5(9):707–716. https://doi.org/10.1016/S2213-2600(17)30262-XCrossRefPubMed Yang JJ, Zhou C, Huang Y, Feng J, Lu S, Song Y, Huang C, Wu G, Zhang L, Cheng Y, Hu C, Chen G, Zhang L, Liu X, Yan HH, Tan FL, Zhong W, Wu YL (2017) Icotinib versus whole-brain irradiation in patients with EGFR-mutant non-small-cell lung cancer and multiple brain metastases (BRAIN): a multicentre, phase 3, open-label, parallel, randomised controlled trial. Lancet Respir Med 5(9):707–716. https://​doi.​org/​10.​1016/​S2213-2600(17)30262-XCrossRefPubMed
Metadaten
Titel
State of affairs regarding targeted pharmacological therapy of cancers metastasized to the brain
verfasst von
Hans-Jakob Steiger
Kathrin Vollmer
Susanne Rogers
Lucia Schwyzer
Publikationsdatum
29.07.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Neurosurgical Review / Ausgabe 5/2022
Print ISSN: 0344-5607
Elektronische ISSN: 1437-2320
DOI
https://doi.org/10.1007/s10143-022-01839-8

Weitere Artikel der Ausgabe 5/2022

Neurosurgical Review 5/2022 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.