Skip to main content
Erschienen in:

05.07.2017 | Magnetic Resonance

Statistical clustering of parametric maps from dynamic contrast enhanced MRI and an associated decision tree model for non-invasive tumour grading of T1b solid clear cell renal cell carcinoma

verfasst von: Yin Xi, Qing Yuan, Yue Zhang, Ananth J. Madhuranthakam, Michael Fulkerson, Vitaly Margulis, James Brugarolas, Payal Kapur, Jeffrey A. Cadeddu, Ivan Pedrosa

Erschienen in: European Radiology | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To apply a statistical clustering algorithm to combine information from dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) into a single tumour map to distinguish high-grade from low-grade T1b clear cell renal cell carcinoma (ccRCC).

Methods

This prospective, Institutional Review Board -approved, Health Insurance Portability and Accountability Act -compliant study included 18 patients with solid T1b ccRCC who underwent pre-surgical DCE MRI. After statistical clustering of the parametric maps of the transfer constant between the intravascular and extravascular space (K trans ), rate constant (K ep ) and initial area under the concentration curve (iAUC) with a fuzzy c-means (FCM) algorithm, each tumour was segmented into three regions (low/medium/high active areas). Percentages of each region and tumour size were compared to tumour grade at histopathology. A decision-tree model was constructed to select the best parameter(s) to predict high-grade ccRCC.

Results

Seven high-grade and 11 low-grade T1b ccRCCs were included. High-grade histology was associated with higher percent high active areas (p = 0.0154) and this was the only feature selected by the decision tree model, which had a diagnostic performance of 78% accuracy, 86% sensitivity, 73% specificity, 67% positive predictive value and 89% negative predictive value.

Conclusions

The FCM integrates multiple DCE-derived parameter maps and identifies tumour regions with unique pharmacokinetic characteristics. Using this approach, a decision tree model using criteria beyond size to predict tumour grade in T1b ccRCCs is proposed.

Key Points

Tumour size did not correlate with tumour grade in T1b ccRCC.
Tumour heterogeneity can be analysed using statistical clustering via DCE-MRI parameters.
High-grade ccRCC has a larger percentage of high active area than low-grade ccRCCs.
A decision-tree model offers a simple way to differentiate high/low-grade ccRCCs.
Literatur
1.
Zurück zum Zitat American Cancer Society (2016) Cancer facts and figures 2016. Available at: http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2016/ American Cancer Society (2016) Cancer facts and figures 2016. Available at: http://​www.​cancer.​org/​research/​cancerfactsstati​stics/​cancerfactsfigur​es2016/​
2.
Zurück zum Zitat Chow WH, Devesa SS, Warren JL, Fraumeni JF Jr (1999) Rising incidence of renal cell cancer in the United States. JAMA 281:1628–1631CrossRefPubMed Chow WH, Devesa SS, Warren JL, Fraumeni JF Jr (1999) Rising incidence of renal cell cancer in the United States. JAMA 281:1628–1631CrossRefPubMed
3.
Zurück zum Zitat Cooperberg MR et al (2008) Decreasing size at diagnosis of stage 1 renal cell carcinoma: analysis from the National Cancer Data Base, 1993 to 2004. J Urol 179:2131–2135CrossRefPubMed Cooperberg MR et al (2008) Decreasing size at diagnosis of stage 1 renal cell carcinoma: analysis from the National Cancer Data Base, 1993 to 2004. J Urol 179:2131–2135CrossRefPubMed
4.
Zurück zum Zitat Campbell SC et al (2009) Guideline for management of the clinical T1 renal mass. J Urol 182:1271–1279CrossRefPubMed Campbell SC et al (2009) Guideline for management of the clinical T1 renal mass. J Urol 182:1271–1279CrossRefPubMed
5.
Zurück zum Zitat Abel EJ et al (2010) Identifying the risk of disease progression after surgery for localized renal cell carcinoma. BJU Int 106:1277–1283CrossRefPubMed Abel EJ et al (2010) Identifying the risk of disease progression after surgery for localized renal cell carcinoma. BJU Int 106:1277–1283CrossRefPubMed
6.
7.
Zurück zum Zitat Igarashi T et al (2001) The impact of a 4 cm. cutoff point for stratification of T1N0M0 renal cell carcinoma after radical nephrectomy. J Urol 165:1103–1106CrossRefPubMed Igarashi T et al (2001) The impact of a 4 cm. cutoff point for stratification of T1N0M0 renal cell carcinoma after radical nephrectomy. J Urol 165:1103–1106CrossRefPubMed
8.
9.
Zurück zum Zitat Dechet CB et al (2003) Prospective analysis of computerized tomography and needle biopsy with permanent sectioning to determine the nature of solid renal masses in adults. J Urol 169:71–74CrossRefPubMed Dechet CB et al (2003) Prospective analysis of computerized tomography and needle biopsy with permanent sectioning to determine the nature of solid renal masses in adults. J Urol 169:71–74CrossRefPubMed
10.
Zurück zum Zitat Lebret T et al (2007) Percutaneous core biopsy for renal masses: indications, accuracy and results. J Urol 178:1184–1188, discussion 1188 CrossRefPubMed Lebret T et al (2007) Percutaneous core biopsy for renal masses: indications, accuracy and results. J Urol 178:1184–1188, discussion 1188 CrossRefPubMed
11.
Zurück zum Zitat Sun M et al (2012) Treatment management of small renal masses in the 21st century: a paradigm shift. Ann Surg Oncol 19:2380–2387CrossRefPubMed Sun M et al (2012) Treatment management of small renal masses in the 21st century: a paradigm shift. Ann Surg Oncol 19:2380–2387CrossRefPubMed
12.
Zurück zum Zitat Sun MR et al (2009) Renal cell carcinoma: dynamic contrast-enhanced MR imaging for differentiation of tumor subtypes—correlation with pathologic findings. Radiology 250:793–802CrossRefPubMed Sun MR et al (2009) Renal cell carcinoma: dynamic contrast-enhanced MR imaging for differentiation of tumor subtypes—correlation with pathologic findings. Radiology 250:793–802CrossRefPubMed
13.
Zurück zum Zitat Chandarana H et al (2012) Histogram analysis of whole-lesion enhancement in differentiating clear cell from papillary subtype of renal cell cancer. Radiology 265:790–798CrossRefPubMed Chandarana H et al (2012) Histogram analysis of whole-lesion enhancement in differentiating clear cell from papillary subtype of renal cell cancer. Radiology 265:790–798CrossRefPubMed
14.
Zurück zum Zitat Notohamiprodjo M et al (2013) Combined diffusion-weighted, blood oxygen level-dependent, and dynamic contrast-enhanced MRI for characterization and differentiation of renal cell carcinoma. Acad Radiol 20:685–693CrossRefPubMed Notohamiprodjo M et al (2013) Combined diffusion-weighted, blood oxygen level-dependent, and dynamic contrast-enhanced MRI for characterization and differentiation of renal cell carcinoma. Acad Radiol 20:685–693CrossRefPubMed
15.
Zurück zum Zitat Zhang Y et al (2016) Tumor vascularity in renal masses: correlation of arterial spin-labeled and dynamic contrast-enhanced magnetic resonance imaging assessments. Clin Genitourin Cancer 14:e25–e36CrossRefPubMed Zhang Y et al (2016) Tumor vascularity in renal masses: correlation of arterial spin-labeled and dynamic contrast-enhanced magnetic resonance imaging assessments. Clin Genitourin Cancer 14:e25–e36CrossRefPubMed
16.
Zurück zum Zitat Chandarana H et al (2013) High temporal resolution 3D gadolinium-enhanced dynamic MR imaging of renal tumors with pharmacokinetic modeling: preliminary observations. J Magn Reson Imaging 38:802–808CrossRefPubMed Chandarana H et al (2013) High temporal resolution 3D gadolinium-enhanced dynamic MR imaging of renal tumors with pharmacokinetic modeling: preliminary observations. J Magn Reson Imaging 38:802–808CrossRefPubMed
17.
Zurück zum Zitat Wu WC, Su MY, Chang CC, Tseng WY, Liu KL (2011) Renal perfusion 3-T MR imaging: a comparative study of arterial spin labeling and dynamic contrast-enhanced techniques. Radiology 261:845–853CrossRefPubMed Wu WC, Su MY, Chang CC, Tseng WY, Liu KL (2011) Renal perfusion 3-T MR imaging: a comparative study of arterial spin labeling and dynamic contrast-enhanced techniques. Radiology 261:845–853CrossRefPubMed
18.
Zurück zum Zitat Notohamiprodjo M et al (2010) Measuring perfusion and permeability in renal cell carcinoma with dynamic contrast-enhanced MRI: a pilot study. J Magn Reson Imaging 31:490–501CrossRefPubMed Notohamiprodjo M et al (2010) Measuring perfusion and permeability in renal cell carcinoma with dynamic contrast-enhanced MRI: a pilot study. J Magn Reson Imaging 31:490–501CrossRefPubMed
19.
Zurück zum Zitat Abdel Razek AA, Mousa A, Farouk A, Nabil N (2016) Assessment of semiquantitative parameters of dynamic contrast-enhanced perfusion MR Imaging in differentiation of subtypes of renal cell carcinoma. Pol J Radiol 81:90–94CrossRefPubMedPubMedCentral Abdel Razek AA, Mousa A, Farouk A, Nabil N (2016) Assessment of semiquantitative parameters of dynamic contrast-enhanced perfusion MR Imaging in differentiation of subtypes of renal cell carcinoma. Pol J Radiol 81:90–94CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Cornelis F et al (2015) Multiparametric magnetic resonance imaging for the differentiation of low and high grade clear cell renal carcinoma. Eur Radiol 25:24–31CrossRefPubMed Cornelis F et al (2015) Multiparametric magnetic resonance imaging for the differentiation of low and high grade clear cell renal carcinoma. Eur Radiol 25:24–31CrossRefPubMed
21.
Zurück zum Zitat Yang X et al (2012) Nonrigid registration and classification of the kidneys in 3D dynamic contrast enhanced (DCE) MR images. Proc SPIE Int Soc Opt Eng 8314:83140BPubMedPubMedCentral Yang X et al (2012) Nonrigid registration and classification of the kidneys in 3D dynamic contrast enhanced (DCE) MR images. Proc SPIE Int Soc Opt Eng 8314:83140BPubMedPubMedCentral
22.
Zurück zum Zitat Chang YC et al (2012) Classification of breast mass lesions using model-based analysis of the characteristic kinetic curve derived from fuzzy c-means clustering. Magn Reson Imaging 30:312–322CrossRefPubMed Chang YC et al (2012) Classification of breast mass lesions using model-based analysis of the characteristic kinetic curve derived from fuzzy c-means clustering. Magn Reson Imaging 30:312–322CrossRefPubMed
23.
Zurück zum Zitat Shi J et al (2009) Treatment response assessment of breast masses on dynamic contrast-enhanced magnetic resonance scans using fuzzy c-means clustering and level set segmentation. Med Phys 36(2009):5052–5063CrossRefPubMedPubMedCentral Shi J et al (2009) Treatment response assessment of breast masses on dynamic contrast-enhanced magnetic resonance scans using fuzzy c-means clustering and level set segmentation. Med Phys 36(2009):5052–5063CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Farjam R, Tsien CI, Lawrence TS, Cao Y (2014) DCE-MRI defined subvolumes of a brain metastatic lesion by principle component analysis and fuzzy-c-means clustering for response assessment of radiation therapy. Med Phys 41, 011708. doi:10.1118/1.4842556 CrossRefPubMed Farjam R, Tsien CI, Lawrence TS, Cao Y (2014) DCE-MRI defined subvolumes of a brain metastatic lesion by principle component analysis and fuzzy-c-means clustering for response assessment of radiation therapy. Med Phys 41, 011708. doi:10.​1118/​1.​4842556 CrossRefPubMed
25.
Zurück zum Zitat Fram EK et al (1987) Rapid calculation of T1 using variable flip angle gradient refocused imaging. Magn Reson Imaging 5:201–208CrossRefPubMed Fram EK et al (1987) Rapid calculation of T1 using variable flip angle gradient refocused imaging. Magn Reson Imaging 5:201–208CrossRefPubMed
26.
Zurück zum Zitat Periaswamy S, Farid H (2003) Elastic registration in the presence of intensity variations. IEEE Trans Med Imaging 22:865–874CrossRefPubMed Periaswamy S, Farid H (2003) Elastic registration in the presence of intensity variations. IEEE Trans Med Imaging 22:865–874CrossRefPubMed
27.
Zurück zum Zitat Parker GJ et al (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 56:993–1000CrossRefPubMed Parker GJ et al (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 56:993–1000CrossRefPubMed
28.
Zurück zum Zitat Evelhoch JL (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 10:254–259CrossRefPubMed Evelhoch JL (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 10:254–259CrossRefPubMed
29.
Zurück zum Zitat O'Connor JPB, Jackson A, Parker GJM, Roberts C, Jayson GC (2012) Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat Rev Clin Oncol 9:167–177CrossRefPubMed O'Connor JPB, Jackson A, Parker GJM, Roberts C, Jayson GC (2012) Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat Rev Clin Oncol 9:167–177CrossRefPubMed
30.
Zurück zum Zitat Bezdek JC (2012) Pattern recognition with fuzzy objective function algorithms. Springer, New York Bezdek JC (2012) Pattern recognition with fuzzy objective function algorithms. Springer, New York
31.
Zurück zum Zitat Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth, Belmont Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth, Belmont
32.
Zurück zum Zitat Efron B (1986) Jackknife, bootstrap and other resampling methods in regression analysis. Ann Stat 14:1301–1304CrossRef Efron B (1986) Jackknife, bootstrap and other resampling methods in regression analysis. Ann Stat 14:1301–1304CrossRef
33.
Zurück zum Zitat Stephenson AJ, Hakimi AA, Snyder ME, Russo P (2004) Complications of radical and partial nephrectomy in a large contemporary cohort. J Urol 171:130–134CrossRefPubMed Stephenson AJ, Hakimi AA, Snyder ME, Russo P (2004) Complications of radical and partial nephrectomy in a large contemporary cohort. J Urol 171:130–134CrossRefPubMed
34.
Zurück zum Zitat Uzzo RG, Novick AC (2001) Nephron sparing surgery for renal tumors: indications, techniques and outcomes. J Urol 166:6–18CrossRefPubMed Uzzo RG, Novick AC (2001) Nephron sparing surgery for renal tumors: indications, techniques and outcomes. J Urol 166:6–18CrossRefPubMed
35.
36.
Zurück zum Zitat Mally AD, Gayed B, Averch T, Davies B (2012) The current role of percutaneous biopsy of renal masses. Can J Urol 19:6243–6249PubMed Mally AD, Gayed B, Averch T, Davies B (2012) The current role of percutaneous biopsy of renal masses. Can J Urol 19:6243–6249PubMed
37.
Zurück zum Zitat Phe V, Yates DR, Renard-Penna R, Cussenot O, Roupret M (2012) Is there a contemporary role for percutaneous needle biopsy in the era of small renal masses? BJU Int 109:867–872CrossRefPubMed Phe V, Yates DR, Renard-Penna R, Cussenot O, Roupret M (2012) Is there a contemporary role for percutaneous needle biopsy in the era of small renal masses? BJU Int 109:867–872CrossRefPubMed
38.
39.
Zurück zum Zitat Pedrosa I et al (2008) MR classification of renal masses with pathologic correlation. Eur Radiol 18:365–375CrossRefPubMed Pedrosa I et al (2008) MR classification of renal masses with pathologic correlation. Eur Radiol 18:365–375CrossRefPubMed
40.
Zurück zum Zitat Yang X, Knopp MV (2011) Quantifying tumor vascular heterogeneity with dynamic contrast-enhanced magnetic resonance imaging: a review. J Biomed Biotechnol 2011:732848PubMedPubMedCentral Yang X, Knopp MV (2011) Quantifying tumor vascular heterogeneity with dynamic contrast-enhanced magnetic resonance imaging: a review. J Biomed Biotechnol 2011:732848PubMedPubMedCentral
41.
Zurück zum Zitat Sinha S et al (1997) Multifeature analysis of Gd-enhanced MR images of breast lesions. J Magn Reson Imaging 7:1016–1026CrossRefPubMed Sinha S et al (1997) Multifeature analysis of Gd-enhanced MR images of breast lesions. J Magn Reson Imaging 7:1016–1026CrossRefPubMed
42.
Zurück zum Zitat Chen W, Giger ML, Li H, Bick U, Newstead GM (2007) Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn Reson Med 58:562–571CrossRefPubMed Chen W, Giger ML, Li H, Bick U, Newstead GM (2007) Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn Reson Med 58:562–571CrossRefPubMed
43.
Zurück zum Zitat O'Sullivan F, Roy S, Eary J (2003) A statistical measure of tissue heterogeneity with application to 3D PET sarcoma data. Biostatistics 4:433–448CrossRefPubMed O'Sullivan F, Roy S, Eary J (2003) A statistical measure of tissue heterogeneity with application to 3D PET sarcoma data. Biostatistics 4:433–448CrossRefPubMed
44.
Zurück zum Zitat O'Sullivan F, Roy S, O'Sullivan J, Vernon C, Eary J (2005) Incorporation of tumor shape into an assessment of spatial heterogeneity for human sarcomas imaged with FDG-PET. Biostatistics 6:293–301CrossRefPubMed O'Sullivan F, Roy S, O'Sullivan J, Vernon C, Eary J (2005) Incorporation of tumor shape into an assessment of spatial heterogeneity for human sarcomas imaged with FDG-PET. Biostatistics 6:293–301CrossRefPubMed
45.
Zurück zum Zitat Shin TY et al (2014) Assessing the anatomical characteristics of renal masses has a limited effect on the prediction of pathological outcomes in solid, enhancing, small renal masses: results using the PADUA classification system. BJU Int 113:754–761CrossRefPubMed Shin TY et al (2014) Assessing the anatomical characteristics of renal masses has a limited effect on the prediction of pathological outcomes in solid, enhancing, small renal masses: results using the PADUA classification system. BJU Int 113:754–761CrossRefPubMed
46.
Zurück zum Zitat Yuan Q et al (2016) Intratumor heterogeneity of perfusion and diffusion in clear-cell renal cell carcinoma: correlation with tumor cellularity. Clin Genitourin Cancer 14:e585–e594-T1bCrossRefPubMedPubMedCentral Yuan Q et al (2016) Intratumor heterogeneity of perfusion and diffusion in clear-cell renal cell carcinoma: correlation with tumor cellularity. Clin Genitourin Cancer 14:e585–e594-T1bCrossRefPubMedPubMedCentral
Metadaten
Titel
Statistical clustering of parametric maps from dynamic contrast enhanced MRI and an associated decision tree model for non-invasive tumour grading of T1b solid clear cell renal cell carcinoma
verfasst von
Yin Xi
Qing Yuan
Yue Zhang
Ananth J. Madhuranthakam
Michael Fulkerson
Vitaly Margulis
James Brugarolas
Payal Kapur
Jeffrey A. Cadeddu
Ivan Pedrosa
Publikationsdatum
05.07.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 1/2018
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-017-4925-6

Neu im Fachgebiet Radiologie

Ab sofort gelten die neuen Verordnungsausnahmen für Lipidsenker

Freie Fahrt für Lipidsenker? Das nicht, doch mit niedrigerem Schwellenwert fürs Infarktrisiko und neuen Indikationen hat der G-BA die Verordnungs-Handbremse ein gutes Stück weit gelockert.

Abdominale CT bei Kindern: 40% mit Zufallsbefunden

Wird bei Kindern mit stumpfem Trauma eine CT des Bauchraums veranlasst, sind in rund 40% der Fälle Auffälligkeiten zu sehen, die nichts mit dem Trauma zu tun haben. Die allerwenigsten davon sind klinisch relevant.

Genügt die biparametrische MRT für die Prostatadiagnostik?

Die multiparametrische Magnetresonanztomografie hat einen festen Platz im Screening auf klinisch signifikante Prostatakarzinome. Ob auch ein biparametrisches Vorgehen ausreicht, ist in einer Metaanalyse untersucht worden.

Höhere Trefferquoten bei Brustkrebsscreening dank KI?

Künstliche Intelligenz unterstützt bei der Auswertung von Mammografie-Screenings und senkt somit den Arbeitsaufwand für Radiologen. Wie wirken sich diese Technologien auf die Trefferquote und die Falsch-positiv-Rate aus? Das hat jetzt eine Studie aus Schweden untersucht.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.