Skip to main content

25.05.2019 | Original Paper | Ausgabe 5/2019

Brain Topography 5/2019

Statistical Significance Assessment of Phase Synchrony in the Presence of Background Couplings: An ECoG Study

Brain Topography > Ausgabe 5/2019
Parham Mostame, Ali Moharramipour, Gholam-Ali Hossein-Zadeh, Abbas Babajani-Feremi
Wichtige Hinweise
Handling Editor: Kevin Whittingstall.
Parham Mostame and Ali Moharramipour contributed equally to this work.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Statistical significance testing is a necessary step in connectivity analysis. Several statistical test methods have been employed to assess the significance of functional connectivity, but the performance of these methods has not been thoroughly evaluated. In addition, the effects of the intrinsic brain connectivity and background couplings on performance of statistical test methods in task-based studies have not been investigated yet. The background couplings may exist independent of cognitive state and can be observed on both pre- and post-stimulus time intervals. The background couplings may be falsely detected by a statistical test as task-related connections, which can mislead interpretations of the task-related functional networks. The aim of this study was to investigate the relative performance of four commonly used non-parametric statistical test methods—surrogate, demeaned surrogate, bootstrap resampling, and Monte Carlo permutation methods—in the presence of background couplings and noise, with different signal-to-noise ratios (SNRs). Using simulated electrocorticographic (ECoG) datasets and phase locking value (PLV) as a measure of functional connectivity, we evaluated the performances of the statistical test methods utilizing sensitivity, specificity, accuracy, and receiver operating curve (ROC) analysis. Furthermore, we calculated optimal p values for each statistical test method using the ROC analysis, and found that the optimal p values were increased by decreasing the SNR. We also found that the optimal p value of the bootstrap resampling was greater than that of other methods. Our results from the simulation datasets and a real ECoG dataset, as an illustrative case report, revealed that the bootstrap resampling is the most efficient non-parametric statistical test for identifying the significant PLV of ECoG data, especially in the presence of background couplings.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf

Jetzt e.Med zum Sonderpreis bestellen!

Sichern Sie sich jetzt Ihr e.Med-Abo und sparen Sie 50 %!

Weitere Produktempfehlungen anzeigen
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2019

Brain Topography 5/2019 Zur Ausgabe
  1. Sie können e.Med Neurologie & Psychiatrie 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.

  2. Sie können e.Med Neurologie 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.