Skip to main content
Erschienen in: Cancer and Metastasis Reviews 4/2010

01.12.2010 | NON-THEMATIC REVIEW

Stem cell marker olfactomedin 4: critical appraisal of its characteristics and role in tumorigenesis

verfasst von: Phulwinder K. Grover, Jennifer E. Hardingham, Adrian G. Cummins

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 4/2010

Einloggen, um Zugang zu erhalten

Abstract

Olfactomedin 4 (OLFM4), a member of the olfactomedin domain-containing proteins, is a glycoprotein with molecular weight of approximately 64 kDa. The protein is a “robust marker” of Lgr5+ stem cells and has been localised to mitochondria, nuclei and cell membranes. The bulk of OLFM4 exists in a polymeric form which is held together by disulfide bonds and carbohydrate interactions. Earlier studies revealed that the protein binds to lectins and cadherins, and facilitates cell–cell adhesion. Recent data demonstrated that the protein possesses several hallmarks of carcinogenesis. OLFM4 has also been purported to be an inducible resistance factor to apoptotic stimuli such as radiation and anticancer drugs. Here, we review its synonyms and classification, gene structure, protein structure, intracellular and tissue distribution, adhesive and antiapoptotic; mitotic; migratory and cell cycle regulatory characteristics. We also critically evaluate recent advances in understanding of the transcriptional regulation of OLFM4 and its upstream signalling pathways with special emphasis on carcinogenesis and outline future perspectives in the field.
Literatur
1.
Zurück zum Zitat Tomarev, S. I., & Nakaya, N. (2009). Olfactomedin domain-containing proteins: possible mechanisms of action and functions in normal development and pathology. Molecular Neurobiology, 40(2), 122–138.PubMedCrossRef Tomarev, S. I., & Nakaya, N. (2009). Olfactomedin domain-containing proteins: possible mechanisms of action and functions in normal development and pathology. Molecular Neurobiology, 40(2), 122–138.PubMedCrossRef
2.
Zurück zum Zitat Bal, R. S., & Anholt, R. R. (1993). Formation of the extracellular mucous matrix of olfactory neuroepithelium: identification of partially glycosylated and nonglycosylated precursors of olfactomedin. Biochemistry, 32(4), 1047–1053.PubMedCrossRef Bal, R. S., & Anholt, R. R. (1993). Formation of the extracellular mucous matrix of olfactory neuroepithelium: identification of partially glycosylated and nonglycosylated precursors of olfactomedin. Biochemistry, 32(4), 1047–1053.PubMedCrossRef
3.
Zurück zum Zitat Snyder, D. A., Rivers, A. M., Yokoe, H., Menco, B. P., & Anholt, R. R. (1991). Olfactomedin: purification, characterization, and localization of a novel olfactory glycoprotein. Biochemistry, 30(38), 9143–9153.PubMedCrossRef Snyder, D. A., Rivers, A. M., Yokoe, H., Menco, B. P., & Anholt, R. R. (1991). Olfactomedin: purification, characterization, and localization of a novel olfactory glycoprotein. Biochemistry, 30(38), 9143–9153.PubMedCrossRef
4.
Zurück zum Zitat Yokoe, H., & Anholt, R. R. (1993). Molecular cloning of olfactomedin, an extracellular matrix protein specific to olfactory neuroepithelium. Proceedings of the National Academy of Sciences of the United States of America, 90(10), 4655–4659.PubMedCrossRef Yokoe, H., & Anholt, R. R. (1993). Molecular cloning of olfactomedin, an extracellular matrix protein specific to olfactory neuroepithelium. Proceedings of the National Academy of Sciences of the United States of America, 90(10), 4655–4659.PubMedCrossRef
5.
Zurück zum Zitat Clevers, H. (2006). Wnt/[beta]-catenin signaling in development and disease. Cell, 127(3), 469–480.PubMedCrossRef Clevers, H. (2006). Wnt/[beta]-catenin signaling in development and disease. Cell, 127(3), 469–480.PubMedCrossRef
6.
Zurück zum Zitat Croce, J. C., & McClay, D. R. (2008). Evolution of the Wnt pathways. Methods in Molecular Biology, 469, 3–18.PubMedCrossRef Croce, J. C., & McClay, D. R. (2008). Evolution of the Wnt pathways. Methods in Molecular Biology, 469, 3–18.PubMedCrossRef
7.
Zurück zum Zitat Gregorieff, A., Pinto, D., Begthel, H., Destree, O., Kielman, M., & Clevers, H. (2005). Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology, 129(2), 626–638.PubMed Gregorieff, A., Pinto, D., Begthel, H., Destree, O., Kielman, M., & Clevers, H. (2005). Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology, 129(2), 626–638.PubMed
8.
Zurück zum Zitat MacDonald, B. T., Tamai, K., & He, X. (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Developmental Cell, 17(1), 9–26.PubMedCrossRef MacDonald, B. T., Tamai, K., & He, X. (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Developmental Cell, 17(1), 9–26.PubMedCrossRef
9.
Zurück zum Zitat Johnson, D. H. (2000). Myocilin and glaucoma: a TIGR by the tail? Archives of Ophthalmology, 118(7), 974–978.PubMed Johnson, D. H. (2000). Myocilin and glaucoma: a TIGR by the tail? Archives of Ophthalmology, 118(7), 974–978.PubMed
10.
Zurück zum Zitat Resch, Z. T., & Fautsch, M. P. (2009). Glaucoma-associated myocilin: a better understanding but much more to learn. Experimental Eye Research, 88(4), 704–712.PubMedCrossRef Resch, Z. T., & Fautsch, M. P. (2009). Glaucoma-associated myocilin: a better understanding but much more to learn. Experimental Eye Research, 88(4), 704–712.PubMedCrossRef
11.
Zurück zum Zitat Tamm, E. R. (2002). Myocilin and glaucoma: facts and ideas. Progress in Retinal and Eye Research, 21(4), 395–428.PubMedCrossRef Tamm, E. R. (2002). Myocilin and glaucoma: facts and ideas. Progress in Retinal and Eye Research, 21(4), 395–428.PubMedCrossRef
12.
Zurück zum Zitat Adam, M. F., Belmouden, A., Binisti, P., Brezin, A. P., Valtot, F., Bechetoille, A., et al. (1997). Recurrent mutations in a single exon encoding the evolutionarily conserved olfactomedin-homology domain of tigr in familial open-angle glaucoma. Human Molecular Genetics, 6(12), 2091–2097.PubMedCrossRef Adam, M. F., Belmouden, A., Binisti, P., Brezin, A. P., Valtot, F., Bechetoille, A., et al. (1997). Recurrent mutations in a single exon encoding the evolutionarily conserved olfactomedin-homology domain of tigr in familial open-angle glaucoma. Human Molecular Genetics, 6(12), 2091–2097.PubMedCrossRef
13.
Zurück zum Zitat Fingert, J. H., Heon, E., Liebmann, J. M., Yamamoto, T., Craig, J. E., Rait, J., et al. (1999). Analysis of myocilin mutations in 1,703 glaucoma patients from five different populations. Human Molecular Genetics, 8(5), 899–905.PubMedCrossRef Fingert, J. H., Heon, E., Liebmann, J. M., Yamamoto, T., Craig, J. E., Rait, J., et al. (1999). Analysis of myocilin mutations in 1,703 glaucoma patients from five different populations. Human Molecular Genetics, 8(5), 899–905.PubMedCrossRef
14.
Zurück zum Zitat Fingert, J. H., Stone, E. M., Sheffield, V. C., & Alward, W. L. (2002). Myocilin glaucoma. Survey of Ophthalmology, 47(6), 547–561.PubMedCrossRef Fingert, J. H., Stone, E. M., Sheffield, V. C., & Alward, W. L. (2002). Myocilin glaucoma. Survey of Ophthalmology, 47(6), 547–561.PubMedCrossRef
15.
Zurück zum Zitat Kwon, H. S., Lee, H. S., Ji, Y., Rubin, J. S., & Tomarev, S. I. (2009). Myocilin is a modulator of Wnt signaling. Molecular and Cellular Biology, 29(8), 2139–2154.PubMedCrossRef Kwon, H. S., Lee, H. S., Ji, Y., Rubin, J. S., & Tomarev, S. I. (2009). Myocilin is a modulator of Wnt signaling. Molecular and Cellular Biology, 29(8), 2139–2154.PubMedCrossRef
16.
Zurück zum Zitat Kwon, Y. H., Fingert, J. H., Kuehn, M. H., & Alward, W. L. (2009). Primary open-angle glaucoma. The New England Journal of Medicine, 360(11), 1113–1124.PubMedCrossRef Kwon, Y. H., Fingert, J. H., Kuehn, M. H., & Alward, W. L. (2009). Primary open-angle glaucoma. The New England Journal of Medicine, 360(11), 1113–1124.PubMedCrossRef
17.
Zurück zum Zitat Stone, E. M., Fingert, J. H., Alward, W. L., Nguyen, T. D., Polansky, J. R., Sunden, S. L., et al. (1997). Identification of a gene that causes primary open angle glaucoma. Science, 275(5300), 668–670.PubMedCrossRef Stone, E. M., Fingert, J. H., Alward, W. L., Nguyen, T. D., Polansky, J. R., Sunden, S. L., et al. (1997). Identification of a gene that causes primary open angle glaucoma. Science, 275(5300), 668–670.PubMedCrossRef
18.
Zurück zum Zitat Hillier, B. J., & Vacquier, V. D. (2003). Amassin, an olfactomedin protein, mediates the massive intercellular adhesion of sea urchin coelomocytes. The Journal of Cell Biology, 160(4), 597–604.PubMedCrossRef Hillier, B. J., & Vacquier, V. D. (2003). Amassin, an olfactomedin protein, mediates the massive intercellular adhesion of sea urchin coelomocytes. The Journal of Cell Biology, 160(4), 597–604.PubMedCrossRef
19.
Zurück zum Zitat Karavanich, C. A., & Anholt, R. R. (1998). Molecular evolution of olfactomedin. Molecular Biology and Evolution, 15(6), 718–726.PubMed Karavanich, C. A., & Anholt, R. R. (1998). Molecular evolution of olfactomedin. Molecular Biology and Evolution, 15(6), 718–726.PubMed
20.
Zurück zum Zitat Kulkarni, N. H., Karavanich, C. A., Atchley, W. R., & Anholt, R. R. (2000). Characterization and differential expression of a human gene family of olfactomedin-related proteins. Genetical Research, 76(1), 41–50.PubMedCrossRef Kulkarni, N. H., Karavanich, C. A., Atchley, W. R., & Anholt, R. R. (2000). Characterization and differential expression of a human gene family of olfactomedin-related proteins. Genetical Research, 76(1), 41–50.PubMedCrossRef
21.
Zurück zum Zitat Loria, P. M., Hodgkin, J., & Hobert, O. (2004). A conserved postsynaptic transmembrane protein affecting neuromuscular signaling in Caenorhabditis elegans. The Journal of Neuroscience, 24(9), 2191–2201.PubMedCrossRef Loria, P. M., Hodgkin, J., & Hobert, O. (2004). A conserved postsynaptic transmembrane protein affecting neuromuscular signaling in Caenorhabditis elegans. The Journal of Neuroscience, 24(9), 2191–2201.PubMedCrossRef
22.
Zurück zum Zitat Meyer, E., Aglyamova, G. V., Wang, S., Buchanan-Carter, J., Abrego, D., Colbourne, J. K., et al. (2009). Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFLx. BMC Genomics, 10, 219.PubMedCrossRef Meyer, E., Aglyamova, G. V., Wang, S., Buchanan-Carter, J., Abrego, D., Colbourne, J. K., et al. (2009). Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFLx. BMC Genomics, 10, 219.PubMedCrossRef
23.
Zurück zum Zitat Zeng, L. C., Han, Z. G., & Ma, W. J. (2005). Elucidation of subfamily segregation and intramolecular coevolution of the olfactomedin-like proteins by comprehensive phylogenetic analysis and gene expression pattern assessment. FEBS Letters, 579(25), 5443–5453.PubMedCrossRef Zeng, L. C., Han, Z. G., & Ma, W. J. (2005). Elucidation of subfamily segregation and intramolecular coevolution of the olfactomedin-like proteins by comprehensive phylogenetic analysis and gene expression pattern assessment. FEBS Letters, 579(25), 5443–5453.PubMedCrossRef
24.
Zurück zum Zitat Hillier, B. J., Moy, G. W., & Vacquier, V. D. (2007). Diversity of olfactomedin proteins in the sea urchin. Genomics, 89(6), 721–730.PubMedCrossRef Hillier, B. J., Moy, G. W., & Vacquier, V. D. (2007). Diversity of olfactomedin proteins in the sea urchin. Genomics, 89(6), 721–730.PubMedCrossRef
25.
Zurück zum Zitat Mukhopadhyay, A., Talukdar, S., Bhattacharjee, A., & Ray, K. (2004). Bioinformatic approaches for identification and characterization of olfactomedin related genes with a potential role in pathogenesis of ocular disorders. Molecular Vision, 10, 304–314.PubMed Mukhopadhyay, A., Talukdar, S., Bhattacharjee, A., & Ray, K. (2004). Bioinformatic approaches for identification and characterization of olfactomedin related genes with a potential role in pathogenesis of ocular disorders. Molecular Vision, 10, 304–314.PubMed
26.
Zurück zum Zitat van der Flier, L. G., Haegebarth, A., Stange, D. E., van de Wetering, M., & Clevers, H. (2009). Olfm4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology, 137(1), 15–17.PubMedCrossRef van der Flier, L. G., Haegebarth, A., Stange, D. E., van de Wetering, M., & Clevers, H. (2009). Olfm4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology, 137(1), 15–17.PubMedCrossRef
27.
Zurück zum Zitat van der Flier, L. G., van Gijn, M. E., Hatzis, P., Kujala, P., Haegebarth, A., Stange, D. E., et al. (2009). Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell, 136(5), 903–912.PubMedCrossRef van der Flier, L. G., van Gijn, M. E., Hatzis, P., Kujala, P., Haegebarth, A., Stange, D. E., et al. (2009). Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell, 136(5), 903–912.PubMedCrossRef
28.
Zurück zum Zitat Barker, N., & Clevers, H. (2010). Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology, 138(5), 1681–1696.PubMedCrossRef Barker, N., & Clevers, H. (2010). Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology, 138(5), 1681–1696.PubMedCrossRef
29.
Zurück zum Zitat Barker, N., Ridgway, R. A., van Es, J. H., van de Wetering, M., Begthel, H., van den Born, M., et al. (2009). Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 457(7229), 608–611.PubMedCrossRef Barker, N., Ridgway, R. A., van Es, J. H., van de Wetering, M., Begthel, H., van den Born, M., et al. (2009). Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 457(7229), 608–611.PubMedCrossRef
30.
Zurück zum Zitat Boman, B. M., & Wicha, M. S. (2008). Cancer stem cells: a step toward the cure. Journal of Clinical Oncology, 26(17), 2795–2799.PubMedCrossRef Boman, B. M., & Wicha, M. S. (2008). Cancer stem cells: a step toward the cure. Journal of Clinical Oncology, 26(17), 2795–2799.PubMedCrossRef
31.
Zurück zum Zitat Dalerba, P., Cho, R. W., & Clarke, M. F. (2007). Cancer stem cells: models and concepts. Annual Review of Medicine, 58, 267–284.PubMedCrossRef Dalerba, P., Cho, R. W., & Clarke, M. F. (2007). Cancer stem cells: models and concepts. Annual Review of Medicine, 58, 267–284.PubMedCrossRef
32.
Zurück zum Zitat Jordan, C. T., Guzman, M. L., & Noble, M. (2006). Cancer stem cells. The New England Journal of Medicine, 355(12), 1253–1261.PubMedCrossRef Jordan, C. T., Guzman, M. L., & Noble, M. (2006). Cancer stem cells. The New England Journal of Medicine, 355(12), 1253–1261.PubMedCrossRef
33.
Zurück zum Zitat Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.PubMedCrossRef Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.PubMedCrossRef
34.
Zurück zum Zitat Rosenbauer, F., Wagner, K., Zhang, P., Knobeloch, K. P., Iwama, A., & Tenen, D. G. (2004). pDP4, a novel glycoprotein secreted by mature granulocytes, is regulated by transcription factor PU.1. Blood, 103(11), 4294–4301.PubMedCrossRef Rosenbauer, F., Wagner, K., Zhang, P., Knobeloch, K. P., Iwama, A., & Tenen, D. G. (2004). pDP4, a novel glycoprotein secreted by mature granulocytes, is regulated by transcription factor PU.1. Blood, 103(11), 4294–4301.PubMedCrossRef
35.
Zurück zum Zitat Shinozaki, S., Nakamura, T., Iimura, M., Kato, Y., Iizuka, B., Kobayashi, M., et al. (2001). Upregulation of Reg 1alpha and GW112 in the epithelium of inflamed colonic mucosa. Gut, 48(5), 623–629.PubMedCrossRef Shinozaki, S., Nakamura, T., Iimura, M., Kato, Y., Iizuka, B., Kobayashi, M., et al. (2001). Upregulation of Reg 1alpha and GW112 in the epithelium of inflamed colonic mucosa. Gut, 48(5), 623–629.PubMedCrossRef
36.
Zurück zum Zitat Zhang, J., Liu, W. L., Tang, D. C., Chen, L., Wang, M., Pack, S. D., et al. (2002). Identification and characterization of a novel member of olfactomedin-related protein family, hGC-1, expressed during myeloid lineage development. Gene, 283(1–2), 83–93.PubMedCrossRef Zhang, J., Liu, W. L., Tang, D. C., Chen, L., Wang, M., Pack, S. D., et al. (2002). Identification and characterization of a novel member of olfactomedin-related protein family, hGC-1, expressed during myeloid lineage development. Gene, 283(1–2), 83–93.PubMedCrossRef
37.
Zurück zum Zitat Zhang, X., Huang, Q., Yang, Z., Li, Y., & Li, C. Y. (2004). Gw112, a novel antiapoptotic protein that promotes tumor growth. Cancer Research, 64(7), 2474–2481.PubMedCrossRef Zhang, X., Huang, Q., Yang, Z., Li, Y., & Li, C. Y. (2004). Gw112, a novel antiapoptotic protein that promotes tumor growth. Cancer Research, 64(7), 2474–2481.PubMedCrossRef
38.
Zurück zum Zitat Liu, W., Chen, L., Zhu, J., & Rodgers, G. P. (2006). The glycoprotein hGC-1 binds to cadherin and lectins. Experimental Cell Research, 312(10), 1785–1797.PubMedCrossRef Liu, W., Chen, L., Zhu, J., & Rodgers, G. P. (2006). The glycoprotein hGC-1 binds to cadherin and lectins. Experimental Cell Research, 312(10), 1785–1797.PubMedCrossRef
39.
Zurück zum Zitat Fautsch, M. P., & Johnson, D. H. (2001). Characterization of myocilin–myocilin interactions. Invest Ophthalmol Vis Sci, 42(10), 2324–2331.PubMed Fautsch, M. P., & Johnson, D. H. (2001). Characterization of myocilin–myocilin interactions. Invest Ophthalmol Vis Sci, 42(10), 2324–2331.PubMed
40.
Zurück zum Zitat Chin, K. L., Aerbajinai, W., Zhu, J., Drew, L., Chen, L., Liu, W., et al. (2008). The regulation of OLFM4 expression in myeloid precursor cells relies on NF-kappaB transcription factor. British Journal Haematology, 143(3), 421–432.CrossRef Chin, K. L., Aerbajinai, W., Zhu, J., Drew, L., Chen, L., Liu, W., et al. (2008). The regulation of OLFM4 expression in myeloid precursor cells relies on NF-kappaB transcription factor. British Journal Haematology, 143(3), 421–432.CrossRef
41.
Zurück zum Zitat Kim, K. K., Park, K. S., Song, S. B., & Kim, K. E. (2010). Up regulation of GW112 gene by NF kappaB promotes an antiapoptotic property in gastric cancer cells. Molecular Carcinogenesis, 49(3), 259–270.PubMed Kim, K. K., Park, K. S., Song, S. B., & Kim, K. E. (2010). Up regulation of GW112 gene by NF kappaB promotes an antiapoptotic property in gastric cancer cells. Molecular Carcinogenesis, 49(3), 259–270.PubMed
42.
Zurück zum Zitat Ayoubi, T. A., & Van De Ven, W. J. (1996). Regulation of gene expression by alternative promoters. The FASEB Journal, 10(4), 453–460.PubMed Ayoubi, T. A., & Van De Ven, W. J. (1996). Regulation of gene expression by alternative promoters. The FASEB Journal, 10(4), 453–460.PubMed
43.
Zurück zum Zitat Baek, D., Davis, C., Ewing, B., Gordon, D., & Green, P. (2007). Characterization and predictive discovery of evolutionarily conserved mammalian alternative promoters. Genome Research, 17(2), 145–155.PubMedCrossRef Baek, D., Davis, C., Ewing, B., Gordon, D., & Green, P. (2007). Characterization and predictive discovery of evolutionarily conserved mammalian alternative promoters. Genome Research, 17(2), 145–155.PubMedCrossRef
44.
Zurück zum Zitat Davuluri, R. V., Suzuki, Y., Sugano, S., Plass, C., & Huang, T. H. (2008). The functional consequences of alternative promoter use in mammalian genomes. Trends in Genetics, 24(4), 167–177.PubMedCrossRef Davuluri, R. V., Suzuki, Y., Sugano, S., Plass, C., & Huang, T. H. (2008). The functional consequences of alternative promoter use in mammalian genomes. Trends in Genetics, 24(4), 167–177.PubMedCrossRef
45.
Zurück zum Zitat Burke, T. W., & Kadonaga, J. T. (1997). The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAFII60 of Drosophila. Genes & Development, 11(22), 3020–3031.CrossRef Burke, T. W., & Kadonaga, J. T. (1997). The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAFII60 of Drosophila. Genes & Development, 11(22), 3020–3031.CrossRef
46.
Zurück zum Zitat Deng, W., & Roberts, S. G. (2005). A core promoter element downstream of the TATA box that is recognized by TFIIB. Genes & Development, 19(20), 2418–2423.CrossRef Deng, W., & Roberts, S. G. (2005). A core promoter element downstream of the TATA box that is recognized by TFIIB. Genes & Development, 19(20), 2418–2423.CrossRef
47.
Zurück zum Zitat Lee, D. H., Gershenzon, N., Gupta, M., Ioshikhes, I. P., Reinberg, D., & Lewis, B. A. (2005). Functional characterization of core promoter elements: the downstream core element is recognized by TAF1. Molecular and Cellular Biology, 25(21), 9674–9686.PubMedCrossRef Lee, D. H., Gershenzon, N., Gupta, M., Ioshikhes, I. P., Reinberg, D., & Lewis, B. A. (2005). Functional characterization of core promoter elements: the downstream core element is recognized by TAF1. Molecular and Cellular Biology, 25(21), 9674–9686.PubMedCrossRef
48.
Zurück zum Zitat Smale, S. T., & Kadonaga, J. T. (2003). The RNA polymerase II core promoter. Annual Review of Biochemistry, 72, 449–479.PubMedCrossRef Smale, S. T., & Kadonaga, J. T. (2003). The RNA polymerase II core promoter. Annual Review of Biochemistry, 72, 449–479.PubMedCrossRef
49.
Zurück zum Zitat Liu, W., Yan, M., Liu, Y., Wang, R., Li, C., Deng, C., et al. (2010). Olfactomedin 4 down-regulates innate immunity against Helicobacter pylori infection. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 11056–11061.PubMedCrossRef Liu, W., Yan, M., Liu, Y., Wang, R., Li, C., Deng, C., et al. (2010). Olfactomedin 4 down-regulates innate immunity against Helicobacter pylori infection. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 11056–11061.PubMedCrossRef
50.
51.
Zurück zum Zitat Halliwell, B. (2003). Oxidative stress in cell culture: an under-appreciated problem? FEBS Letters, 540(1–3), 3–6.PubMedCrossRef Halliwell, B. (2003). Oxidative stress in cell culture: an under-appreciated problem? FEBS Letters, 540(1–3), 3–6.PubMedCrossRef
52.
Zurück zum Zitat Torres, M., & Forman, H. J. (2003). Redox signaling and the map kinase pathways. Biofactors, 17(1–4), 287–296.PubMedCrossRef Torres, M., & Forman, H. J. (2003). Redox signaling and the map kinase pathways. Biofactors, 17(1–4), 287–296.PubMedCrossRef
53.
Zurück zum Zitat Duarte, R. F., & Frank, D. A. (2000). SCF and G-CSF lead to the synergistic induction of proliferation and gene expression through complementary signaling pathways. Blood, 96(10), 3422–3430.PubMed Duarte, R. F., & Frank, D. A. (2000). SCF and G-CSF lead to the synergistic induction of proliferation and gene expression through complementary signaling pathways. Blood, 96(10), 3422–3430.PubMed
54.
Zurück zum Zitat Meplan, C., Richard, M. J., & Hainaut, P. (2000). Redox signalling and transition metals in the control of the p53 pathway. Biochemical Pharmacology, 59(1), 25–33.PubMedCrossRef Meplan, C., Richard, M. J., & Hainaut, P. (2000). Redox signalling and transition metals in the control of the p53 pathway. Biochemical Pharmacology, 59(1), 25–33.PubMedCrossRef
55.
Zurück zum Zitat Rahman, I., Marwick, J., & Kirkham, P. (2004). Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression. Biochemical Pharmacology, 68(6), 1255–1267.PubMedCrossRef Rahman, I., Marwick, J., & Kirkham, P. (2004). Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression. Biochemical Pharmacology, 68(6), 1255–1267.PubMedCrossRef
56.
Zurück zum Zitat Rao, G. N., Katki, K. A., Madamanchi, N. R., Wu, Y., & Birrer, M. J. (1999). JunB forms the majority of the AP-1 complex and is a target for redox regulation by receptor tyrosine kinase and G protein-coupled receptor agonists in smooth muscle cells. The Journal of Biological Chemistry, 274(9), 6003–6010.PubMedCrossRef Rao, G. N., Katki, K. A., Madamanchi, N. R., Wu, Y., & Birrer, M. J. (1999). JunB forms the majority of the AP-1 complex and is a target for redox regulation by receptor tyrosine kinase and G protein-coupled receptor agonists in smooth muscle cells. The Journal of Biological Chemistry, 274(9), 6003–6010.PubMedCrossRef
57.
Zurück zum Zitat Renner, F., & Schmitz, M. L. (2009). Autoregulatory feedback loops terminating the NF-kappaB response. Trends in Biochemical Sciences, 34(3), 128–135.PubMedCrossRef Renner, F., & Schmitz, M. L. (2009). Autoregulatory feedback loops terminating the NF-kappaB response. Trends in Biochemical Sciences, 34(3), 128–135.PubMedCrossRef
58.
Zurück zum Zitat Eichbaum, Q. G., Iyer, R., Raveh, D. P., Mathieu, C., & Ezekowitz, R. A. (1994). Restriction of interferon gamma responsiveness and basal expression of the myeloid human Fc gamma R1b gene is mediated by a functional PU.1 site and a transcription initiator consensus. The Journal of Experimental Medicine, 179(6), 1985–1996.PubMedCrossRef Eichbaum, Q. G., Iyer, R., Raveh, D. P., Mathieu, C., & Ezekowitz, R. A. (1994). Restriction of interferon gamma responsiveness and basal expression of the myeloid human Fc gamma R1b gene is mediated by a functional PU.1 site and a transcription initiator consensus. The Journal of Experimental Medicine, 179(6), 1985–1996.PubMedCrossRef
59.
Zurück zum Zitat Hagemeier, C., Bannister, A. J., Cook, A., & Kouzarides, T. (1993). The activation domain of transcription factor PU.1 binds the retinoblastoma (RB) protein and the transcription factor TFIID in vitro: Rb shows sequence similarity to TFIID and TFIIB. Proceedings of the National Academy of Sciences of the United States of America, 90(4), 1580–1584.PubMedCrossRef Hagemeier, C., Bannister, A. J., Cook, A., & Kouzarides, T. (1993). The activation domain of transcription factor PU.1 binds the retinoblastoma (RB) protein and the transcription factor TFIID in vitro: Rb shows sequence similarity to TFIID and TFIIB. Proceedings of the National Academy of Sciences of the United States of America, 90(4), 1580–1584.PubMedCrossRef
60.
Zurück zum Zitat Tenen, D. G., Hromas, R., Licht, J. D., & Zhang, D. E. (1997). Transcription factors, normal myeloid development, and leukemia. Blood, 90(2), 489–519.PubMed Tenen, D. G., Hromas, R., Licht, J. D., & Zhang, D. E. (1997). Transcription factors, normal myeloid development, and leukemia. Blood, 90(2), 489–519.PubMed
61.
Zurück zum Zitat Weintraub, S. J., Chow, K. N., Luo, R. X., Zhang, S. H., He, S., & Dean, D. C. (1995). Mechanism of active transcriptional repression by the retinoblastoma protein. Nature, 375(6534), 812–815.PubMedCrossRef Weintraub, S. J., Chow, K. N., Luo, R. X., Zhang, S. H., He, S., & Dean, D. C. (1995). Mechanism of active transcriptional repression by the retinoblastoma protein. Nature, 375(6534), 812–815.PubMedCrossRef
62.
Zurück zum Zitat Inoue, J., Gohda, J., Akiyama, T., & Semba, K. (2007). Nf-kappab activation in development and progression of cancer. Cancer Science, 98(3), 268–274.PubMedCrossRef Inoue, J., Gohda, J., Akiyama, T., & Semba, K. (2007). Nf-kappab activation in development and progression of cancer. Cancer Science, 98(3), 268–274.PubMedCrossRef
63.
Zurück zum Zitat Van Waes, C. (2007). Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clinical Cancer Research, 13(4), 1076–1082.PubMedCrossRef Van Waes, C. (2007). Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clinical Cancer Research, 13(4), 1076–1082.PubMedCrossRef
64.
Zurück zum Zitat Shaulian, E., & Karin, M. (2001). Ap-1 in cell proliferation and survival. Oncogene, 20(19), 2390–2400.PubMedCrossRef Shaulian, E., & Karin, M. (2001). Ap-1 in cell proliferation and survival. Oncogene, 20(19), 2390–2400.PubMedCrossRef
65.
Zurück zum Zitat Vesely, P. W., Staber, P. B., Hoefler, G., & Kenner, L. (2009). Translational regulation mechanisms of AP-1 proteins. Mutation Research, 682(1), 7–12.PubMedCrossRef Vesely, P. W., Staber, P. B., Hoefler, G., & Kenner, L. (2009). Translational regulation mechanisms of AP-1 proteins. Mutation Research, 682(1), 7–12.PubMedCrossRef
66.
Zurück zum Zitat Gupta, P., Gurudutta, G. U., Verma, Y. K., Kishore, V., Gulati, S., Sharma, R. K., et al. (2006). PU. 1: an ETS family transcription factor that regulates leukemogenesis besides normal hematopoiesis. Stem Cells and Development, 15(4), 609–617.PubMedCrossRef Gupta, P., Gurudutta, G. U., Verma, Y. K., Kishore, V., Gulati, S., Sharma, R. K., et al. (2006). PU. 1: an ETS family transcription factor that regulates leukemogenesis besides normal hematopoiesis. Stem Cells and Development, 15(4), 609–617.PubMedCrossRef
67.
Zurück zum Zitat Kastner, P., & Chan, S. (2008). PU. 1: a crucial and versatile player in hematopoiesis and leukemia. The International Journal of Biochemistry & Cell Biology, 40(1), 22–27.CrossRef Kastner, P., & Chan, S. (2008). PU. 1: a crucial and versatile player in hematopoiesis and leukemia. The International Journal of Biochemistry & Cell Biology, 40(1), 22–27.CrossRef
68.
Zurück zum Zitat Baud, V., & Karin, M. (2009). Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nature Reviews. Drug Discovery, 8(1), 33–40.PubMedCrossRef Baud, V., & Karin, M. (2009). Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nature Reviews. Drug Discovery, 8(1), 33–40.PubMedCrossRef
69.
Zurück zum Zitat Choe, K. S., Ujhelly, O., Wontakal, S. N., & Skoultchi, A. I. (2010). PU. 1 directly regulates cdk6 gene expression, linking the cell proliferation and differentiation programs in erythroid cells. The Journal of Biological Chemistry, 285(5), 3044–3052.PubMedCrossRef Choe, K. S., Ujhelly, O., Wontakal, S. N., & Skoultchi, A. I. (2010). PU. 1 directly regulates cdk6 gene expression, linking the cell proliferation and differentiation programs in erythroid cells. The Journal of Biological Chemistry, 285(5), 3044–3052.PubMedCrossRef
70.
Zurück zum Zitat Eferl, R., & Wagner, E. F. (2003). AP-1: a double-edged sword in tumorigenesis. Nature Reviews. Cancer, 3(11), 859–868.PubMedCrossRef Eferl, R., & Wagner, E. F. (2003). AP-1: a double-edged sword in tumorigenesis. Nature Reviews. Cancer, 3(11), 859–868.PubMedCrossRef
71.
Zurück zum Zitat Lee, C. H., Jeon, Y. T., Kim, S. H., & Song, Y. S. (2007). Nf-kappaB as a potential molecular target for cancer therapy. Biofactors, 29(1), 19–35.PubMedCrossRef Lee, C. H., Jeon, Y. T., Kim, S. H., & Song, Y. S. (2007). Nf-kappaB as a potential molecular target for cancer therapy. Biofactors, 29(1), 19–35.PubMedCrossRef
72.
Zurück zum Zitat Verde, P., Casalino, L., Talotta, F., Yaniv, M., & Weitzman, J. B. (2007). Deciphering AP-1 function in tumorigenesis: fraternizing on target promoters. Cell Cycle, 6(21), 2633–2639.PubMedCrossRef Verde, P., Casalino, L., Talotta, F., Yaniv, M., & Weitzman, J. B. (2007). Deciphering AP-1 function in tumorigenesis: fraternizing on target promoters. Cell Cycle, 6(21), 2633–2639.PubMedCrossRef
73.
Zurück zum Zitat Bonadies, N., Neururer, C., Steege, A., Vallabhapurapu, S., Pabst, T., & Mueller, B. U. (2010). PU. 1 is regulated by NF-kappaB through a novel binding site in a 17 kb upstream enhancer element. Oncogene, 29(7), 1062–1072.PubMedCrossRef Bonadies, N., Neururer, C., Steege, A., Vallabhapurapu, S., Pabst, T., & Mueller, B. U. (2010). PU. 1 is regulated by NF-kappaB through a novel binding site in a 17 kb upstream enhancer element. Oncogene, 29(7), 1062–1072.PubMedCrossRef
74.
Zurück zum Zitat Basseres, D. S., & Baldwin, A. S. (2006). Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene, 25(51), 6817–6830.PubMedCrossRef Basseres, D. S., & Baldwin, A. S. (2006). Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene, 25(51), 6817–6830.PubMedCrossRef
75.
Zurück zum Zitat Fan, X. M., Wong, B. C., Wang, W. P., Zhou, X. M., Cho, C. H., Yuen, S. T., et al. (2001). Inhibition of proteasome function induced apoptosis in gastric cancer. International Journal of Cancer, 93(4), 481–488.CrossRef Fan, X. M., Wong, B. C., Wang, W. P., Zhou, X. M., Cho, C. H., Yuen, S. T., et al. (2001). Inhibition of proteasome function induced apoptosis in gastric cancer. International Journal of Cancer, 93(4), 481–488.CrossRef
76.
Zurück zum Zitat Nakanishi, C., & Toi, M. (2005). Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nature Reviews. Cancer, 5(4), 297–309.PubMedCrossRef Nakanishi, C., & Toi, M. (2005). Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nature Reviews. Cancer, 5(4), 297–309.PubMedCrossRef
77.
Zurück zum Zitat Nakshatri, H., Bhat-Nakshatri, P., Martin, D. A., Goulet, R. J., Jr., & Sledge, G. W., Jr. (1997). Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Molecular and Cellular Biology, 17(7), 3629–3639.PubMed Nakshatri, H., Bhat-Nakshatri, P., Martin, D. A., Goulet, R. J., Jr., & Sledge, G. W., Jr. (1997). Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Molecular and Cellular Biology, 17(7), 3629–3639.PubMed
78.
Zurück zum Zitat Pacifico, F., & Leonardi, A. (2006). NF-kappaB in solid tumors. Biochemical Pharmacology, 72(9), 1142–1152.PubMedCrossRef Pacifico, F., & Leonardi, A. (2006). NF-kappaB in solid tumors. Biochemical Pharmacology, 72(9), 1142–1152.PubMedCrossRef
79.
Zurück zum Zitat Bernard, D., Monte, D., Vandenbunder, B., & Abbadie, C. (2002). The c-Rel transcription factor can both induce and inhibit apoptosis in the same cells via the upregulation of MnSOD. Oncogene, 21(28), 4392–4402.PubMedCrossRef Bernard, D., Monte, D., Vandenbunder, B., & Abbadie, C. (2002). The c-Rel transcription factor can both induce and inhibit apoptosis in the same cells via the upregulation of MnSOD. Oncogene, 21(28), 4392–4402.PubMedCrossRef
80.
Zurück zum Zitat Kaltschmidt, B., Kaltschmidt, C., Hofmann, T. G., Hehner, S. P., Droge, W., & Schmitz, M. L. (2000). The pro- or anti-apoptotic function of NF-kappaB is determined by the nature of the apoptotic stimulus. European Journal of Biochemistry, 267(12), 3828–3835.PubMedCrossRef Kaltschmidt, B., Kaltschmidt, C., Hofmann, T. G., Hehner, S. P., Droge, W., & Schmitz, M. L. (2000). The pro- or anti-apoptotic function of NF-kappaB is determined by the nature of the apoptotic stimulus. European Journal of Biochemistry, 267(12), 3828–3835.PubMedCrossRef
81.
Zurück zum Zitat Sheehy, A. M., & Schlissel, M. S. (1999). Overexpression of RelA causes G1 arrest and apoptosis in a pro-B cell line. The Journal of Biological Chemistry, 274(13), 8708–8716.PubMedCrossRef Sheehy, A. M., & Schlissel, M. S. (1999). Overexpression of RelA causes G1 arrest and apoptosis in a pro-B cell line. The Journal of Biological Chemistry, 274(13), 8708–8716.PubMedCrossRef
82.
Zurück zum Zitat Tarabin, V., & Schwaninger, M. (2004). The role of NF-kappaB in 6-hydroxydopamine- and TNFalpha-induced apoptosis of PC12 cells. Naunyn-Schmiedebergs Archives of Pharmacology, 369(6), 563–569.CrossRef Tarabin, V., & Schwaninger, M. (2004). The role of NF-kappaB in 6-hydroxydopamine- and TNFalpha-induced apoptosis of PC12 cells. Naunyn-Schmiedebergs Archives of Pharmacology, 369(6), 563–569.CrossRef
83.
Zurück zum Zitat Chen, F., & Castranova, V. (2007). Nuclear factor-kappaB, an unappreciated tumor suppressor. Cancer Research, 67(23), 11093–11098.PubMedCrossRef Chen, F., & Castranova, V. (2007). Nuclear factor-kappaB, an unappreciated tumor suppressor. Cancer Research, 67(23), 11093–11098.PubMedCrossRef
84.
Zurück zum Zitat Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature, 441(7092), 431–436.PubMedCrossRef Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature, 441(7092), 431–436.PubMedCrossRef
85.
Zurück zum Zitat Liu, W., Liu, Y., Zhu, J., Wright, E., Ding, I., & Rodgers, G. P. (2008). Reduced hGC-1 protein expression is associated with malignant progression of colon carcinoma. Clinical Cancer Research, 14(4), 1041–1049.PubMedCrossRef Liu, W., Liu, Y., Zhu, J., Wright, E., Ding, I., & Rodgers, G. P. (2008). Reduced hGC-1 protein expression is associated with malignant progression of colon carcinoma. Clinical Cancer Research, 14(4), 1041–1049.PubMedCrossRef
86.
Zurück zum Zitat Conrotto, P., Roesli, C., Rybak, J., Kischel, P., Waltregny, D., Neri, D., et al. (2008). Identification of new accessible tumor antigens in human colon cancer by ex vivo protein biotinylation and comparative mass spectrometry analysis. International Journal of Cancer, 123(12), 2856–2864.CrossRef Conrotto, P., Roesli, C., Rybak, J., Kischel, P., Waltregny, D., Neri, D., et al. (2008). Identification of new accessible tumor antigens in human colon cancer by ex vivo protein biotinylation and comparative mass spectrometry analysis. International Journal of Cancer, 123(12), 2856–2864.CrossRef
87.
Zurück zum Zitat Oue, N., Sentani, K., Noguchi, T., Ohara, S., Sakamoto, N., Hayashi, T., et al. (2009). Serum olfactomedin 4 (GW112, hGC-1) in combination with Reg IV is a highly sensitive biomarker for gastric cancer patients. International Journal of Cancer, 125(10), 2383–2392.CrossRef Oue, N., Sentani, K., Noguchi, T., Ohara, S., Sakamoto, N., Hayashi, T., et al. (2009). Serum olfactomedin 4 (GW112, hGC-1) in combination with Reg IV is a highly sensitive biomarker for gastric cancer patients. International Journal of Cancer, 125(10), 2383–2392.CrossRef
88.
Zurück zum Zitat Liu, W., Zhu, J., Cao, L., & Rodgers, G. P. (2007). Expression of hGC-1 is correlated with differentiation of gastric carcinoma. Histopathology, 51(2), 157–165.PubMedCrossRef Liu, W., Zhu, J., Cao, L., & Rodgers, G. P. (2007). Expression of hGC-1 is correlated with differentiation of gastric carcinoma. Histopathology, 51(2), 157–165.PubMedCrossRef
89.
Zurück zum Zitat Duband, J. L., Dufour, S., Hatta, K., Takeichi, M., Edelman, G. M., & Thiery, J. P. (1987). Adhesion molecules during somitogenesis in the avian embryo. The Journal of Cell Biology, 104(5), 1361–1374.PubMedCrossRef Duband, J. L., Dufour, S., Hatta, K., Takeichi, M., Edelman, G. M., & Thiery, J. P. (1987). Adhesion molecules during somitogenesis in the avian embryo. The Journal of Cell Biology, 104(5), 1361–1374.PubMedCrossRef
90.
Zurück zum Zitat Nelson, W. J. (2008). Regulation of cell–cell adhesion by the cadherin–catenin complex. Biochemical Society Transactions, 36(Pt 2), 149–155.PubMedCrossRef Nelson, W. J. (2008). Regulation of cell–cell adhesion by the cadherin–catenin complex. Biochemical Society Transactions, 36(Pt 2), 149–155.PubMedCrossRef
91.
Zurück zum Zitat Takeichi, M. (1991). Cadherin cell adhesion receptors as a morphogenetic regulator. Science, 251(5000), 1451–1455.PubMedCrossRef Takeichi, M. (1991). Cadherin cell adhesion receptors as a morphogenetic regulator. Science, 251(5000), 1451–1455.PubMedCrossRef
92.
Zurück zum Zitat Takeichi, M. (1995). Morphogenetic roles of classic cadherins. Current Opinion in Cell Biology, 7(5), 619–627.PubMedCrossRef Takeichi, M. (1995). Morphogenetic roles of classic cadherins. Current Opinion in Cell Biology, 7(5), 619–627.PubMedCrossRef
93.
Zurück zum Zitat Makrilia, N., Kollias, A., Manolopoulos, L., & Syrigos, K. (2009). Cell adhesion molecules: role and clinical significance in cancer. Cancer Investigation, 27(10), 1023–1037.PubMedCrossRef Makrilia, N., Kollias, A., Manolopoulos, L., & Syrigos, K. (2009). Cell adhesion molecules: role and clinical significance in cancer. Cancer Investigation, 27(10), 1023–1037.PubMedCrossRef
94.
Zurück zum Zitat Paschos, K. A., Canovas, D., & Bird, N. C. (2009). The role of cell adhesion molecules in the progression of colorectal cancer and the development of liver metastasis. Cellular Signalling, 21(5), 665–674.PubMedCrossRef Paschos, K. A., Canovas, D., & Bird, N. C. (2009). The role of cell adhesion molecules in the progression of colorectal cancer and the development of liver metastasis. Cellular Signalling, 21(5), 665–674.PubMedCrossRef
95.
Zurück zum Zitat Cavallaro, U., & Christofori, G. (2004). Cell adhesion and signalling by cadherins and Ig-CAMS in cancer. Nature Reviews. Cancer, 4(2), 118–132.PubMed Cavallaro, U., & Christofori, G. (2004). Cell adhesion and signalling by cadherins and Ig-CAMS in cancer. Nature Reviews. Cancer, 4(2), 118–132.PubMed
96.
Zurück zum Zitat Angell, J. E., Lindner, D. J., Shapiro, P. S., Hofmann, E. R., & Kalvakolanu, D. V. (2000). Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach. The Journal of Biological Chemistry, 275(43), 33416–33426.PubMedCrossRef Angell, J. E., Lindner, D. J., Shapiro, P. S., Hofmann, E. R., & Kalvakolanu, D. V. (2000). Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach. The Journal of Biological Chemistry, 275(43), 33416–33426.PubMedCrossRef
97.
Zurück zum Zitat Chidambaram, N. V., Angell, J. E., Ling, W., Hofmann, E. R., & Kalvakolanu, D. V. (2000). Chromosomal localization of human GRIM-19, a novel IFN-beta and retinoic acid-activated regulator of cell death. Journal of Interferon & Cytokine Research, 20(7), 661–665.CrossRef Chidambaram, N. V., Angell, J. E., Ling, W., Hofmann, E. R., & Kalvakolanu, D. V. (2000). Chromosomal localization of human GRIM-19, a novel IFN-beta and retinoic acid-activated regulator of cell death. Journal of Interferon & Cytokine Research, 20(7), 661–665.CrossRef
98.
Zurück zum Zitat Fearnley, I. M., Carroll, J., Shannon, R. J., Runswick, M. J., Walker, J. E., & Hirst, J. (2001). GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH:ubiquinone oxidoreductase (complex I). The Journal of Biological Chemistry, 276(42), 38345–38348.PubMedCrossRef Fearnley, I. M., Carroll, J., Shannon, R. J., Runswick, M. J., Walker, J. E., & Hirst, J. (2001). GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH:ubiquinone oxidoreductase (complex I). The Journal of Biological Chemistry, 276(42), 38345–38348.PubMedCrossRef
99.
Zurück zum Zitat Lufei, C., Ma, J., Huang, G., Zhang, T., Novotny-Diermayr, V., Ong, C. T., et al. (2003). GRIM-19, a death-regulatory gene product, suppresses Stat3 activity via functional interaction. The EMBO Journal, 22(6), 1325–1335.PubMedCrossRef Lufei, C., Ma, J., Huang, G., Zhang, T., Novotny-Diermayr, V., Ong, C. T., et al. (2003). GRIM-19, a death-regulatory gene product, suppresses Stat3 activity via functional interaction. The EMBO Journal, 22(6), 1325–1335.PubMedCrossRef
100.
Zurück zum Zitat Seo, T., Lee, D., Shim, Y. S., Angell, J. E., Chidambaram, N. V., Kalvakolanu, D. V., et al. (2002). Viral interferon regulatory factor 1 of Kaposi’s sarcoma-associated herpesvirus interacts with a cell death regulator, GRIM19, and inhibits interferon/retinoic acid-induced cell death. Journal of Virology, 76(17), 8797–8807.PubMedCrossRef Seo, T., Lee, D., Shim, Y. S., Angell, J. E., Chidambaram, N. V., Kalvakolanu, D. V., et al. (2002). Viral interferon regulatory factor 1 of Kaposi’s sarcoma-associated herpesvirus interacts with a cell death regulator, GRIM19, and inhibits interferon/retinoic acid-induced cell death. Journal of Virology, 76(17), 8797–8807.PubMedCrossRef
101.
Zurück zum Zitat Liu, X., Kim, C. N., Yang, J., Jemmerson, R., & Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 86(1), 147–157.PubMedCrossRef Liu, X., Kim, C. N., Yang, J., Jemmerson, R., & Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 86(1), 147–157.PubMedCrossRef
102.
Zurück zum Zitat Luo, X., Budihardjo, I., Zou, H., Slaughter, C., & Wang, X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell, 94(4), 481–490.PubMedCrossRef Luo, X., Budihardjo, I., Zou, H., Slaughter, C., & Wang, X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell, 94(4), 481–490.PubMedCrossRef
103.
Zurück zum Zitat Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., et al. (1997). Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science, 275(5303), 1129–1132.PubMedCrossRef Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., et al. (1997). Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science, 275(5303), 1129–1132.PubMedCrossRef
104.
Zurück zum Zitat Yin, X. M., Wang, K., Gross, A., Zhao, Y., Zinkel, S., Klocke, B., et al. (1999). Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature, 400(6747), 886–891.PubMedCrossRef Yin, X. M., Wang, K., Gross, A., Zhao, Y., Zinkel, S., Klocke, B., et al. (1999). Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature, 400(6747), 886–891.PubMedCrossRef
105.
Zurück zum Zitat Maytin, E. V., Ubeda, M., Lin, J. C., & Habener, J. F. (2001). Stress-inducible transcription factor CHOP/GADD153 induces apoptosis in mammalian cells via p38 kinase-dependent and -independent mechanisms. Experimental Cell Research, 267(2), 193–204.PubMedCrossRef Maytin, E. V., Ubeda, M., Lin, J. C., & Habener, J. F. (2001). Stress-inducible transcription factor CHOP/GADD153 induces apoptosis in mammalian cells via p38 kinase-dependent and -independent mechanisms. Experimental Cell Research, 267(2), 193–204.PubMedCrossRef
106.
Zurück zum Zitat Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., & Vogelstein, B. (1997). A model for p53-induced apoptosis. Nature, 389(6648), 300–305.PubMedCrossRef Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., & Vogelstein, B. (1997). A model for p53-induced apoptosis. Nature, 389(6648), 300–305.PubMedCrossRef
107.
Zurück zum Zitat Sun, X., Majumder, P., Shioya, H., Wu, F., Kumar, S., Weichselbaum, R., et al. (2000). Activation of the cytoplasmic c-Abl tyrosine kinase by reactive oxygen species. The Journal of Biological Chemistry, 275(23), 17237–17240.PubMedCrossRef Sun, X., Majumder, P., Shioya, H., Wu, F., Kumar, S., Weichselbaum, R., et al. (2000). Activation of the cytoplasmic c-Abl tyrosine kinase by reactive oxygen species. The Journal of Biological Chemistry, 275(23), 17237–17240.PubMedCrossRef
108.
Zurück zum Zitat Kobayashi, D., Koshida, S., Moriai, R., Tsuji, N., & Watanabe, N. (2007). Olfactomedin 4 promotes s-phase transition in proliferation of pancreatic cancer cells. Cancer Science, 98(3), 334–340.PubMedCrossRef Kobayashi, D., Koshida, S., Moriai, R., Tsuji, N., & Watanabe, N. (2007). Olfactomedin 4 promotes s-phase transition in proliferation of pancreatic cancer cells. Cancer Science, 98(3), 334–340.PubMedCrossRef
109.
Zurück zum Zitat Koshida, S., Kobayashi, D., Moriai, R., Tsuji, N., & Watanabe, N. (2007). Specific overexpression of OLFM4(GW112/hGC-1) mrna in colon, breast and lung cancer tissues detected using quantitative analysis. Cancer Science, 98(3), 315–320.PubMedCrossRef Koshida, S., Kobayashi, D., Moriai, R., Tsuji, N., & Watanabe, N. (2007). Specific overexpression of OLFM4(GW112/hGC-1) mrna in colon, breast and lung cancer tissues detected using quantitative analysis. Cancer Science, 98(3), 315–320.PubMedCrossRef
110.
Zurück zum Zitat Semenza, G. L. (2000). Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Critical Reviews in Biochemistry and Molecular Biology, 35(2), 71–103.PubMedCrossRef Semenza, G. L. (2000). Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Critical Reviews in Biochemistry and Molecular Biology, 35(2), 71–103.PubMedCrossRef
111.
Zurück zum Zitat Tannock, I. F., & Rotin, D. (1989). Acid pH in tumors and its potential for therapeutic exploitation. Cancer Research, 49(16), 4373–4384.PubMed Tannock, I. F., & Rotin, D. (1989). Acid pH in tumors and its potential for therapeutic exploitation. Cancer Research, 49(16), 4373–4384.PubMed
112.
Zurück zum Zitat Stratford, I. J., Adams, G. E., Bremner, J. C., Cole, S., Edwards, H. S., Robertson, N., et al. (1994). Manipulation and exploitation of the tumour environment for therapeutic benefit. International Journal of Radiation Biology, 65(1), 85–94.PubMedCrossRef Stratford, I. J., Adams, G. E., Bremner, J. C., Cole, S., Edwards, H. S., Robertson, N., et al. (1994). Manipulation and exploitation of the tumour environment for therapeutic benefit. International Journal of Radiation Biology, 65(1), 85–94.PubMedCrossRef
113.
Zurück zum Zitat Xiao, Z., Xue, J., Sowin, T. J., Rosenberg, S. H., & Zhang, H. (2005). A novel mechanism of checkpoint abrogation conferred by Chk1 downregulation. Oncogene, 24(8), 1403–1411.PubMedCrossRef Xiao, Z., Xue, J., Sowin, T. J., Rosenberg, S. H., & Zhang, H. (2005). A novel mechanism of checkpoint abrogation conferred by Chk1 downregulation. Oncogene, 24(8), 1403–1411.PubMedCrossRef
114.
Zurück zum Zitat Liang, J., & Slingerland, J. M. (2003). Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle, 2(4), 339–345.PubMed Liang, J., & Slingerland, J. M. (2003). Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle, 2(4), 339–345.PubMed
115.
Zurück zum Zitat Asanuma, H., Torigoe, T., Kamiguchi, K., Hirohashi, Y., Ohmura, T., Hirata, K., et al. (2005). Survivin expression is regulated by coexpression of human epidermal growth factor receptor 2 and epidermal growth factor receptor via phosphatidylinositol 3-kinase/AKT signaling pathway in breast cancer cells. Cancer Research, 65(23), 11018–11025.PubMedCrossRef Asanuma, H., Torigoe, T., Kamiguchi, K., Hirohashi, Y., Ohmura, T., Hirata, K., et al. (2005). Survivin expression is regulated by coexpression of human epidermal growth factor receptor 2 and epidermal growth factor receptor via phosphatidylinositol 3-kinase/AKT signaling pathway in breast cancer cells. Cancer Research, 65(23), 11018–11025.PubMedCrossRef
116.
Zurück zum Zitat Beltrami, E., Plescia, J., Wilkinson, J. C., Duckett, C. S., & Altieri, D. C. (2004). Acute ablation of survivin uncovers p53-dependent mitotic checkpoint functions and control of mitochondrial apoptosis. The Journal of Biological Chemistry, 279(3), 2077–2084.PubMedCrossRef Beltrami, E., Plescia, J., Wilkinson, J. C., Duckett, C. S., & Altieri, D. C. (2004). Acute ablation of survivin uncovers p53-dependent mitotic checkpoint functions and control of mitochondrial apoptosis. The Journal of Biological Chemistry, 279(3), 2077–2084.PubMedCrossRef
117.
Zurück zum Zitat Hu, P., Han, Z., Couvillon, A. D., & Exton, J. H. (2004). Critical role of endogenous Akt/IAPS and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. The Journal of Biological Chemistry, 279(47), 49420–49429.PubMedCrossRef Hu, P., Han, Z., Couvillon, A. D., & Exton, J. H. (2004). Critical role of endogenous Akt/IAPS and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. The Journal of Biological Chemistry, 279(47), 49420–49429.PubMedCrossRef
118.
Zurück zum Zitat Johnson, N. C., Dan, H. C., Cheng, J. Q., & Kruk, P. A. (2004). BRCA1 185delAG mutation inhibits AKT-dependent, IAP-mediated caspase 3 inactivation in human ovarian surface epithelial cells. Experimental Cell Research, 298(1), 9–16.PubMedCrossRef Johnson, N. C., Dan, H. C., Cheng, J. Q., & Kruk, P. A. (2004). BRCA1 185delAG mutation inhibits AKT-dependent, IAP-mediated caspase 3 inactivation in human ovarian surface epithelial cells. Experimental Cell Research, 298(1), 9–16.PubMedCrossRef
119.
Zurück zum Zitat Li, F., Ambrosini, G., Chu, E. Y., Plescia, J., Tognin, S., Marchisio, P. C., et al. (1998). Control of apoptosis and mitotic spindle checkpoint by survivin. Nature, 396(6711), 580–584.PubMedCrossRef Li, F., Ambrosini, G., Chu, E. Y., Plescia, J., Tognin, S., Marchisio, P. C., et al. (1998). Control of apoptosis and mitotic spindle checkpoint by survivin. Nature, 396(6711), 580–584.PubMedCrossRef
120.
Zurück zum Zitat Samuel, T., Okada, K., Hyer, M., Welsh, K., Zapata, J. M., & Reed, J. C. (2005). CIAP1 localizes to the nuclear compartment and modulates the cell cycle. Cancer Research, 65(1), 210–218.PubMed Samuel, T., Okada, K., Hyer, M., Welsh, K., Zapata, J. M., & Reed, J. C. (2005). CIAP1 localizes to the nuclear compartment and modulates the cell cycle. Cancer Research, 65(1), 210–218.PubMed
121.
Zurück zum Zitat Sommer, K. W., Schamberger, C. J., Schmidt, G. E., Sasgary, S., & Cerni, C. (2003). Inhibitor of apoptosis protein (IAP) survivin is upregulated by oncogenic c-H-Ras. Oncogene, 22(27), 4266–4280.PubMedCrossRef Sommer, K. W., Schamberger, C. J., Schmidt, G. E., Sasgary, S., & Cerni, C. (2003). Inhibitor of apoptosis protein (IAP) survivin is upregulated by oncogenic c-H-Ras. Oncogene, 22(27), 4266–4280.PubMedCrossRef
122.
Zurück zum Zitat Nakaya, N., Lee, H. S., Takada, Y., Tzchori, I., & Tomarev, S. I. (2008). Zebrafish olfactomedin 1 regulates retinal axon elongation in vivo and is a modulator of Wnt signaling pathway. The Journal of Neuroscience, 28(31), 7900–7910.PubMedCrossRef Nakaya, N., Lee, H. S., Takada, Y., Tzchori, I., & Tomarev, S. I. (2008). Zebrafish olfactomedin 1 regulates retinal axon elongation in vivo and is a modulator of Wnt signaling pathway. The Journal of Neuroscience, 28(31), 7900–7910.PubMedCrossRef
123.
Zurück zum Zitat Logan, C. Y., & Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology, 20, 781–810.PubMedCrossRef Logan, C. Y., & Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology, 20, 781–810.PubMedCrossRef
124.
Zurück zum Zitat van Amerongen, R., & Nusse, R. (2009). Towards an integrated view of Wnt signaling in development. Development, 136(19), 3205–3214.PubMedCrossRef van Amerongen, R., & Nusse, R. (2009). Towards an integrated view of Wnt signaling in development. Development, 136(19), 3205–3214.PubMedCrossRef
125.
Zurück zum Zitat Mannick, E. E., Schurr, J. R., Zapata, A., Lentz, J. J., Gastanaduy, M., Cote, R. L., et al. (2004). Gene expression in gastric biopsies from patients infected with Helicobacter pylori. Scandinavian Journal of Gastroenterology, 39(12), 1192–1200.PubMedCrossRef Mannick, E. E., Schurr, J. R., Zapata, A., Lentz, J. J., Gastanaduy, M., Cote, R. L., et al. (2004). Gene expression in gastric biopsies from patients infected with Helicobacter pylori. Scandinavian Journal of Gastroenterology, 39(12), 1192–1200.PubMedCrossRef
126.
Zurück zum Zitat Aung, P. P., Oue, N., Mitani, Y., Nakayama, H., Yoshida, K., Noguchi, T., et al. (2006). Systematic search for gastric cancer-specific genes based on sage data: melanoma inhibitory activity and matrix metalloproteinase-10 are novel prognostic factors in patients with gastric cancer. Oncogene, 25(17), 2546–2557.PubMedCrossRef Aung, P. P., Oue, N., Mitani, Y., Nakayama, H., Yoshida, K., Noguchi, T., et al. (2006). Systematic search for gastric cancer-specific genes based on sage data: melanoma inhibitory activity and matrix metalloproteinase-10 are novel prognostic factors in patients with gastric cancer. Oncogene, 25(17), 2546–2557.PubMedCrossRef
127.
Zurück zum Zitat Oue, N., Aung, P. P., Mitani, Y., Kuniyasu, H., Nakayama, H., & Yasui, W. (2005). Genes involved in invasion and metastasis of gastric cancer identified by array-based hybridization and serial analysis of gene expression. Oncology, 69(Suppl 1), 17–22.PubMedCrossRef Oue, N., Aung, P. P., Mitani, Y., Kuniyasu, H., Nakayama, H., & Yasui, W. (2005). Genes involved in invasion and metastasis of gastric cancer identified by array-based hybridization and serial analysis of gene expression. Oncology, 69(Suppl 1), 17–22.PubMedCrossRef
128.
Zurück zum Zitat Yasui, W., Oue, N., Aung, P. P., Matsumura, S., Shutoh, M., & Nakayama, H. (2005). Molecular-pathological prognostic factors of gastric cancer: a review. Gastric Cancer, 8(2), 86–94.PubMedCrossRef Yasui, W., Oue, N., Aung, P. P., Matsumura, S., Shutoh, M., & Nakayama, H. (2005). Molecular-pathological prognostic factors of gastric cancer: a review. Gastric Cancer, 8(2), 86–94.PubMedCrossRef
129.
Zurück zum Zitat Grutzmann, R., Pilarsky, C., Staub, E., Schmitt, A. O., Foerder, M., Specht, T., et al. (2003). Systematic isolation of genes differentially expressed in normal and cancerous tissue of the pancreas. Pancreatology, 3(2), 169–178.PubMedCrossRef Grutzmann, R., Pilarsky, C., Staub, E., Schmitt, A. O., Foerder, M., Specht, T., et al. (2003). Systematic isolation of genes differentially expressed in normal and cancerous tissue of the pancreas. Pancreatology, 3(2), 169–178.PubMedCrossRef
130.
Zurück zum Zitat Wentzensen, N., Wilz, B., Findeisen, P., Wagner, R., Dippold, W., von Knebel Doeberitz, M., et al. (2004). Identification of differentially expressed genes in colorectal adenoma compared to normal tissue by suppression subtractive hybridization. International Journal of Oncology, 24(4), 987–994.PubMed Wentzensen, N., Wilz, B., Findeisen, P., Wagner, R., Dippold, W., von Knebel Doeberitz, M., et al. (2004). Identification of differentially expressed genes in colorectal adenoma compared to normal tissue by suppression subtractive hybridization. International Journal of Oncology, 24(4), 987–994.PubMed
131.
Zurück zum Zitat Li, S. R., Dorudi, S., & Bustin, S. A. (2003). Identification of differentially expressed genes associated with colorectal cancer liver metastasis. European Surgical Research, 35(4), 327–336.PubMedCrossRef Li, S. R., Dorudi, S., & Bustin, S. A. (2003). Identification of differentially expressed genes associated with colorectal cancer liver metastasis. European Surgical Research, 35(4), 327–336.PubMedCrossRef
132.
Zurück zum Zitat Barker, N., & Clevers, H. (2007). Tracking down the stem cells of the intestine: strategies to identify adult stem cells. Gastroenterology, 133(6), 1755–1760.PubMedCrossRef Barker, N., & Clevers, H. (2007). Tracking down the stem cells of the intestine: strategies to identify adult stem cells. Gastroenterology, 133(6), 1755–1760.PubMedCrossRef
133.
Zurück zum Zitat Barker, N., van Es, J. H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165), 1003–1007.PubMedCrossRef Barker, N., van Es, J. H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165), 1003–1007.PubMedCrossRef
134.
Zurück zum Zitat Barker, N., van de Wetering, M., & Clevers, H. (2008). The intestinal stem cell. Genes & Development, 22(14), 1856–1864.CrossRef Barker, N., van de Wetering, M., & Clevers, H. (2008). The intestinal stem cell. Genes & Development, 22(14), 1856–1864.CrossRef
135.
Zurück zum Zitat Potten, C. S. (1977). Extreme sensitivity of some intestinal crypt cells to X and gamma irradiation. Nature, 269(5628), 518–521.PubMedCrossRef Potten, C. S. (1977). Extreme sensitivity of some intestinal crypt cells to X and gamma irradiation. Nature, 269(5628), 518–521.PubMedCrossRef
136.
Zurück zum Zitat Potten, C. S., Kovacs, L., & Hamilton, E. (1974). Continuous labelling studies on mouse skin and intestine. Cell and Tissue Kinetics, 7(3), 271–283.PubMed Potten, C. S., Kovacs, L., & Hamilton, E. (1974). Continuous labelling studies on mouse skin and intestine. Cell and Tissue Kinetics, 7(3), 271–283.PubMed
137.
Zurück zum Zitat Sangiorgi, E., & Capecchi, M. R. (2008). Bmi1 is expressed in vivo in intestinal stem cells. Nature Genetics, 40(7), 915–920.PubMedCrossRef Sangiorgi, E., & Capecchi, M. R. (2008). Bmi1 is expressed in vivo in intestinal stem cells. Nature Genetics, 40(7), 915–920.PubMedCrossRef
138.
Zurück zum Zitat Kosinski, C., Li, V. S., Chan, A. S., Zhang, J., Ho, C., Tsui, W. Y., et al. (2007). Gene expression patterns of human colon tops and basal crypts and bmp antagonists as intestinal stem cell niche factors. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15418–15423.PubMedCrossRef Kosinski, C., Li, V. S., Chan, A. S., Zhang, J., Ho, C., Tsui, W. Y., et al. (2007). Gene expression patterns of human colon tops and basal crypts and bmp antagonists as intestinal stem cell niche factors. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15418–15423.PubMedCrossRef
139.
Zurück zum Zitat Dalerba, P., Dylla, S. J., Park, I. K., Liu, R., Wang, X., Cho, R. W., et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10158–10163.PubMedCrossRef Dalerba, P., Dylla, S. J., Park, I. K., Liu, R., Wang, X., Cho, R. W., et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10158–10163.PubMedCrossRef
140.
Zurück zum Zitat O’Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106–110.PubMedCrossRef O’Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106–110.PubMedCrossRef
141.
Zurück zum Zitat Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.PubMedCrossRef Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.PubMedCrossRef
142.
Zurück zum Zitat Vermeulen, L., Todaro, M., de Sousa Mello, F., Sprick, M. R., Kemper, K., Perez Alea, M., et al. (2008). Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13427–13432.PubMedCrossRef Vermeulen, L., Todaro, M., de Sousa Mello, F., Sprick, M. R., Kemper, K., Perez Alea, M., et al. (2008). Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13427–13432.PubMedCrossRef
Metadaten
Titel
Stem cell marker olfactomedin 4: critical appraisal of its characteristics and role in tumorigenesis
verfasst von
Phulwinder K. Grover
Jennifer E. Hardingham
Adrian G. Cummins
Publikationsdatum
01.12.2010
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 4/2010
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9262-z

Weitere Artikel der Ausgabe 4/2010

Cancer and Metastasis Reviews 4/2010 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.