Skip to main content
Erschienen in: Translational Stroke Research 1/2013

01.02.2013 | Review Article

Steps to Translate Preconditioning from Basic Research to the Clinic

verfasst von: Frances R. Bahjat, Raffaella Gesuete, Mary P. Stenzel-Poore

Erschienen in: Translational Stroke Research | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Abstract

Efforts to treat cardiovascular and cerebrovascular diseases often focus on the mitigation of ischemia–reperfusion (I/R) injury. Many treatments or “preconditioners” are known to provide substantial protection against I/R injury when administered prior to the event. Brief periods of ischemia itself have been validated as a means to achieve neuroprotection in many experimental disease settings, in multiple organ systems, and in multiple species suggesting a common pathway leading to tolerance. In addition, pharmacological agents that act as potent preconditioners have been described. Experimental induction of neuroprotection using these various preconditioning paradigms has provided a unique window into the brain's endogenous protective mechanisms. Moreover, preconditioning agents themselves hold significant promise as clinical-stage therapies for prevention of I/R injury. The aim of this article is to explore several key steps involved in the preclinical validation of preconditioning agents prior to the conduct of clinical studies in humans. Drug development is difficult, expensive, and relies on multifactorial analysis of data from diverse disciplines. Importantly, there is no single path for the preclinical development of a novel therapeutic and no proven strategy to ensure success in clinical translation. Rather, the conduct of a diverse array of robust preclinical studies reduces the risk of clinical failure by varying degrees depending upon the relevance of preclinical models and drug pharmacology to humans. A strong sense of urgency and high tolerance of failure are often required to achieve success in the development of novel treatment paradigms for complex human conditions.
Literatur
1.
Zurück zum Zitat Stroke Therapy Academic Industry Round Table (Fisher M. Chair). Enhancing the development and approval of acute stroke therapies: Stroke Therapy Academic Industry roundtable. Stroke. 2005;36(8):1808–13. Stroke Therapy Academic Industry Round Table (Fisher M. Chair). Enhancing the development and approval of acute stroke therapies: Stroke Therapy Academic Industry roundtable. Stroke. 2005;36(8):1808–13.
5.
Zurück zum Zitat Bahjat FR, Williams-Karnesky RL, Kohama SG, West GA, Doyle KP, Spector MD, et al. Proof of concept: pharmacological preconditioning with a Toll-like receptor agonist protects against cerebrovascular injury in a primate model of stroke. J Cereb Blood Flow Metab. 2011;31(5):1229–42. doi:10.1038/jcbfm.2011.6.CrossRefPubMed Bahjat FR, Williams-Karnesky RL, Kohama SG, West GA, Doyle KP, Spector MD, et al. Proof of concept: pharmacological preconditioning with a Toll-like receptor agonist protects against cerebrovascular injury in a primate model of stroke. J Cereb Blood Flow Metab. 2011;31(5):1229–42. doi:10.​1038/​jcbfm.​2011.​6.CrossRefPubMed
6.
Zurück zum Zitat Feuerstein GZ, Chavez J. Translational medicine for stroke drug discovery: the pharmaceutical industry perspective. Stroke. 2009;40(3 Suppl):S121–5. Epub 2008 Dec 8.CrossRefPubMed Feuerstein GZ, Chavez J. Translational medicine for stroke drug discovery: the pharmaceutical industry perspective. Stroke. 2009;40(3 Suppl):S121–5. Epub 2008 Dec 8.CrossRefPubMed
7.
Zurück zum Zitat Endres M, Engelhardt B, Koistinaho J, Lindvall O, Meairs S, Mohr JP, et al. Improving outcome after stroke: overcoming the translational roadblock. Cerebrovasc Dis. 2008;25(3):268–78. doi:10.1159/000118039.CrossRefPubMed Endres M, Engelhardt B, Koistinaho J, Lindvall O, Meairs S, Mohr JP, et al. Improving outcome after stroke: overcoming the translational roadblock. Cerebrovasc Dis. 2008;25(3):268–78. doi:10.​1159/​000118039.CrossRefPubMed
8.
Zurück zum Zitat Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 2003;4(5):399–415.CrossRefPubMed Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 2003;4(5):399–415.CrossRefPubMed
10.
Zurück zum Zitat Abbott NJ. Astrocyte–endothelial interactions and blood–brain barrier permeability. J Anat. 2002;200(6):629–38.CrossRefPubMed Abbott NJ. Astrocyte–endothelial interactions and blood–brain barrier permeability. J Anat. 2002;200(6):629–38.CrossRefPubMed
11.
Zurück zum Zitat Begley DJ, Brightman MW. Structural and functional aspects of the blood–brain barrier. Prog Drug Res. 2003;61:39–78. Begley DJ, Brightman MW. Structural and functional aspects of the blood–brain barrier. Prog Drug Res. 2003;61:39–78.
12.
Zurück zum Zitat Wolburg H, Lippoldt A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vasc Pharmacol. 2002;38(6):323–37.CrossRef Wolburg H, Lippoldt A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vasc Pharmacol. 2002;38(6):323–37.CrossRef
13.
Zurück zum Zitat Cserr HF, Bundgaard M. Blood–brain interfaces in vertebrates: a comparative approach. Am J Physiol. 1984;246(3 Pt 2):R277–88.PubMed Cserr HF, Bundgaard M. Blood–brain interfaces in vertebrates: a comparative approach. Am J Physiol. 1984;246(3 Pt 2):R277–88.PubMed
14.
Zurück zum Zitat Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, et al. A cell culture model of the blood–brain barrier. J Cell Biol. 1991;115(6):1725–35.CrossRefPubMed Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, et al. A cell culture model of the blood–brain barrier. J Cell Biol. 1991;115(6):1725–35.CrossRefPubMed
15.
Zurück zum Zitat Ramsauer M, Krause D, Dermietzel R. Angiogenesis of the blood–brain barrier in vitro and the function of cerebral pericytes. FASEB J. 2002;16(10):1274–6. doi:10.1096/fj.01-0814fje.PubMed Ramsauer M, Krause D, Dermietzel R. Angiogenesis of the blood–brain barrier in vitro and the function of cerebral pericytes. FASEB J. 2002;16(10):1274–6. doi:10.​1096/​fj.​01-0814fje.PubMed
16.
Zurück zum Zitat Zenker D, Begley D, Bratzke H, Rubsamen-Waigmann H, von Briesen H. Human blood-derived macrophages enhance barrier function of cultured primary bovine and human brain capillary endothelial cells. J Physiol. 2003;551(Pt 3):1023–32. doi:10.1113/jphysiol.2003.045880.CrossRefPubMed Zenker D, Begley D, Bratzke H, Rubsamen-Waigmann H, von Briesen H. Human blood-derived macrophages enhance barrier function of cultured primary bovine and human brain capillary endothelial cells. J Physiol. 2003;551(Pt 3):1023–32. doi:10.​1113/​jphysiol.​2003.​045880.CrossRefPubMed
17.
Zurück zum Zitat Schiera G, Bono E, Raffa MP, Gallo A, Pitarresi GL, Di Liegro I, et al. Synergistic effects of neurons and astrocytes on the differentiation of brain capillary endothelial cells in culture. J Cell Mol Med. 2003;7(2):165–70.CrossRefPubMed Schiera G, Bono E, Raffa MP, Gallo A, Pitarresi GL, Di Liegro I, et al. Synergistic effects of neurons and astrocytes on the differentiation of brain capillary endothelial cells in culture. J Cell Mol Med. 2003;7(2):165–70.CrossRefPubMed
18.
Zurück zum Zitat Berezowski V, Landry C, Dehouck MP, Cecchelli R, Fenart L. Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein and multidrug resistance-associated proteins in an in vitro model of the blood–brain barrier. Brain Res. 2004;1018(1):1–9. doi:10.1016/j.brainres.2004.05.092.CrossRefPubMed Berezowski V, Landry C, Dehouck MP, Cecchelli R, Fenart L. Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein and multidrug resistance-associated proteins in an in vitro model of the blood–brain barrier. Brain Res. 2004;1018(1):1–9. doi:10.​1016/​j.​brainres.​2004.​05.​092.CrossRefPubMed
19.
Zurück zum Zitat Mi H, Haeberle H, Barres BA. Induction of astrocyte differentiation by endothelial cells. J Neurosci. 2001;21(5):1538–47.PubMed Mi H, Haeberle H, Barres BA. Induction of astrocyte differentiation by endothelial cells. J Neurosci. 2001;21(5):1538–47.PubMed
21.
Zurück zum Zitat Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood–brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990;429:47–62.PubMed Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood–brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990;429:47–62.PubMed
22.
Zurück zum Zitat Begley DJ. Understanding and circumventing the blood–brain barrier. Acta Paediatr Suppl. 2003;92(443):83–91.PubMed Begley DJ. Understanding and circumventing the blood–brain barrier. Acta Paediatr Suppl. 2003;92(443):83–91.PubMed
23.
Zurück zum Zitat el-Bacha RS, Minn A. Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain. Cell Mol Biol (Noisy-le-Grand, France). 1999;45(1):15–23. el-Bacha RS, Minn A. Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain. Cell Mol Biol (Noisy-le-Grand, France). 1999;45(1):15–23.
25.
Zurück zum Zitat Yoon CH, Kim SJ, Shin BS, Lee KC, Yoo SD. Rapid screening of blood–brain barrier penetration of drugs using the immobilized artificial membrane phosphatidylcholine column chromatography. J Biomol Screen. 2006;11(1):13–20. doi:10.1177/1087057105281656.CrossRefPubMed Yoon CH, Kim SJ, Shin BS, Lee KC, Yoo SD. Rapid screening of blood–brain barrier penetration of drugs using the immobilized artificial membrane phosphatidylcholine column chromatography. J Biomol Screen. 2006;11(1):13–20. doi:10.​1177/​1087057105281656​.CrossRefPubMed
26.
Zurück zum Zitat Bowman PD, Ennis SR, Rarey KE, Betz AL, Goldstein GW. Brain microvessel endothelial cells in tissue culture: a model for study of blood–brain barrier permeability. Ann Neurol. 1983;14(4):396–402. doi:10.1002/ana.410140403.CrossRefPubMed Bowman PD, Ennis SR, Rarey KE, Betz AL, Goldstein GW. Brain microvessel endothelial cells in tissue culture: a model for study of blood–brain barrier permeability. Ann Neurol. 1983;14(4):396–402. doi:10.​1002/​ana.​410140403.CrossRefPubMed
27.
Zurück zum Zitat Abbott NJ, Hughes CC, Revest PA, Greenwood J. Development and characterisation of a rat brain capillary endothelial culture: towards an in vitro blood–brain barrier. J Cell Sci. 1992;103(Pt 1):23–37.PubMed Abbott NJ, Hughes CC, Revest PA, Greenwood J. Development and characterisation of a rat brain capillary endothelial culture: towards an in vitro blood–brain barrier. J Cell Sci. 1992;103(Pt 1):23–37.PubMed
28.
Zurück zum Zitat DeBault LE, Cancilla PA. Some properties of isolated endothelial cells in culture. Adv Exp Med Biol. 1980;131:69–78.CrossRefPubMed DeBault LE, Cancilla PA. Some properties of isolated endothelial cells in culture. Adv Exp Med Biol. 1980;131:69–78.CrossRefPubMed
30.
Zurück zum Zitat Fischer S, Renz D, Wiesnet M, Schaper W, Karliczek GF. Hypothermia abolishes hypoxia-induced hyperpermeability in brain microvessel endothelial cells. Brain Res Mol Brain Res. 1999;74(1–2):135–44.CrossRefPubMed Fischer S, Renz D, Wiesnet M, Schaper W, Karliczek GF. Hypothermia abolishes hypoxia-induced hyperpermeability in brain microvessel endothelial cells. Brain Res Mol Brain Res. 1999;74(1–2):135–44.CrossRefPubMed
31.
Zurück zum Zitat Fischer S, Wobben M, Kleinstuck J, Renz D, Schaper W. Effect of astroglial cells on hypoxia-induced permeability in PBMEC cells. Am J Physiol Cell Physiol. 2000;279(4):C935–44.PubMed Fischer S, Wobben M, Kleinstuck J, Renz D, Schaper W. Effect of astroglial cells on hypoxia-induced permeability in PBMEC cells. Am J Physiol Cell Physiol. 2000;279(4):C935–44.PubMed
32.
Zurück zum Zitat Fischer D, Kissel T. Histochemical characterization of primary capillary endothelial cells from porcine brains using monoclonal antibodies and fluorescein isothiocyanate-labelled lectins: implications for drug delivery. Eur J Pharm Biopharm. 2001;52(1):1–11.CrossRefPubMed Fischer D, Kissel T. Histochemical characterization of primary capillary endothelial cells from porcine brains using monoclonal antibodies and fluorescein isothiocyanate-labelled lectins: implications for drug delivery. Eur J Pharm Biopharm. 2001;52(1):1–11.CrossRefPubMed
33.
34.
Zurück zum Zitat Giese H, Mertsch K, Blasig IE. Effect of MK-801 and U83836E on a porcine brain capillary endothelial cell barrier during hypoxia. Neurosci Lett. 1995;191(3):169–72.CrossRefPubMed Giese H, Mertsch K, Blasig IE. Effect of MK-801 and U83836E on a porcine brain capillary endothelial cell barrier during hypoxia. Neurosci Lett. 1995;191(3):169–72.CrossRefPubMed
35.
Zurück zum Zitat Marschner A, Rothenfusser S, Hornung V, Prell D, Krug A, Kerkmann M, et al. CpG ODN enhance antigen-specific NKT cell activation via plasmacytoid dendritic cells. Eur J Immunol. 2005;35(8):2347–57. doi:10.1002/eji.200425721.CrossRefPubMed Marschner A, Rothenfusser S, Hornung V, Prell D, Krug A, Kerkmann M, et al. CpG ODN enhance antigen-specific NKT cell activation via plasmacytoid dendritic cells. Eur J Immunol. 2005;35(8):2347–57. doi:10.​1002/​eji.​200425721.CrossRefPubMed
36.
Zurück zum Zitat Poeck H, Wagner M, Battiany J, Rothenfusser S, Wellisch D, Hornung V, et al. Plasmacytoid dendritic cells, antigen, and CpG-C license human B cells for plasma cell differentiation and immunoglobulin production in the absence of T-cell help. Blood. 2004;103(8):3058–64. doi:10.1182/blood-2003-08-2972.CrossRefPubMed Poeck H, Wagner M, Battiany J, Rothenfusser S, Wellisch D, Hornung V, et al. Plasmacytoid dendritic cells, antigen, and CpG-C license human B cells for plasma cell differentiation and immunoglobulin production in the absence of T-cell help. Blood. 2004;103(8):3058–64. doi:10.​1182/​blood-2003-08-2972.CrossRefPubMed
37.
Zurück zum Zitat Brillault J, Berezowski V, Cecchelli R, Dehouck MP. Intercommunications between brain capillary endothelial cells and glial cells increase the transcellular permeability of the blood–brain barrier during ischaemia. J Neurochem. 2002;83(4):807–17.CrossRefPubMed Brillault J, Berezowski V, Cecchelli R, Dehouck MP. Intercommunications between brain capillary endothelial cells and glial cells increase the transcellular permeability of the blood–brain barrier during ischaemia. J Neurochem. 2002;83(4):807–17.CrossRefPubMed
38.
Zurück zum Zitat Dehouck MP, Cecchelli R, Richard Green A, Renftel M, Lundquist S. In vitro blood–brain barrier permeability and cerebral endothelial cell uptake of the neuroprotective nitrone compound NXY-059 in normoxic, hypoxic and ischemic conditions. Brain Res. 2002;955(1–2):229–35.CrossRefPubMed Dehouck MP, Cecchelli R, Richard Green A, Renftel M, Lundquist S. In vitro blood–brain barrier permeability and cerebral endothelial cell uptake of the neuroprotective nitrone compound NXY-059 in normoxic, hypoxic and ischemic conditions. Brain Res. 2002;955(1–2):229–35.CrossRefPubMed
39.
Zurück zum Zitat Kondo T, Kinouchi H, Kawase M, Yoshimoto T. Astroglial cells inhibit the increasing permeability of brain endothelial cell monolayer following hypoxia/reoxygenation. Neurosci Lett. 1996;208(2):101–4.CrossRefPubMed Kondo T, Kinouchi H, Kawase M, Yoshimoto T. Astroglial cells inhibit the increasing permeability of brain endothelial cell monolayer following hypoxia/reoxygenation. Neurosci Lett. 1996;208(2):101–4.CrossRefPubMed
40.
Zurück zum Zitat Koto T, Takubo K, Ishida S, Shinoda H, Inoue M, Tsubota K, et al. Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am J Pathol. 2007;170(4):1389–97. doi:10.2353/ajpath.2007.060693.CrossRefPubMed Koto T, Takubo K, Ishida S, Shinoda H, Inoue M, Tsubota K, et al. Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am J Pathol. 2007;170(4):1389–97. doi:10.​2353/​ajpath.​2007.​060693.CrossRefPubMed
42.
Zurück zum Zitat Rosenzweig HL, Minami M, Lessov NS, Coste SC, Stevens SL, Henshall DC, et al. Endotoxin preconditioning protects against the cytotoxic effects of TNFalpha after stroke: a novel role for TNFalpha in LPS-ischemic tolerance. J Cereb Blood Flow Metab. 2007;27(10):1663–74. doi:10.1038/sj.jcbfm.9600464.CrossRefPubMed Rosenzweig HL, Minami M, Lessov NS, Coste SC, Stevens SL, Henshall DC, et al. Endotoxin preconditioning protects against the cytotoxic effects of TNFalpha after stroke: a novel role for TNFalpha in LPS-ischemic tolerance. J Cereb Blood Flow Metab. 2007;27(10):1663–74. doi:10.​1038/​sj.​jcbfm.​9600464.CrossRefPubMed
43.
Zurück zum Zitat Packard AE, Hedges JC, Bahjat FR, Stevens SL, Conlin MJ, Salazar AM, et al. Poly-IC preconditioning protects against cerebral and renal ischemia–reperfusion injury. J Cereb Blood Flow Metab. 2012;32:242–7. doi:10.1038/jcbfm.2011.160.CrossRefPubMed Packard AE, Hedges JC, Bahjat FR, Stevens SL, Conlin MJ, Salazar AM, et al. Poly-IC preconditioning protects against cerebral and renal ischemia–reperfusion injury. J Cereb Blood Flow Metab. 2012;32:242–7. doi:10.​1038/​jcbfm.​2011.​160.CrossRefPubMed
44.
Zurück zum Zitat Gesuete R, Packard AE, Vartanian K, Conrad VK, Stevens SL, Bahjat FR et al. Poly-ICLC preconditioning protects the blood–brain barrier against ischemic injury in vitro through type I interferon signaling. J Neurochem. 2012;123(Suppl 2):75–85. doi:10.1111/j.1471-4159.2012.07946.x. Gesuete R, Packard AE, Vartanian K, Conrad VK, Stevens SL, Bahjat FR et al. Poly-ICLC preconditioning protects the blood–brain barrier against ischemic injury in vitro through type I interferon signaling. J Neurochem. 2012;123(Suppl 2):75–85. doi:10.​1111/​j.​1471-4159.​2012.​07946.​x.
45.
Zurück zum Zitat Packard AEB, Leung PY, Vartanian KB, Stevens SL, Bahjat FR, Stenzel-Poore MP. TLR9 bone marrow chimeric mice define a role for cerebral TNF in neuroprotection induced by CpG preconditioning. J Cereb Blood Flow Metab. 2012. doi:10.1038/jcbfm.2012.140. Packard AEB, Leung PY, Vartanian KB, Stevens SL, Bahjat FR, Stenzel-Poore MP. TLR9 bone marrow chimeric mice define a role for cerebral TNF in neuroprotection induced by CpG preconditioning. J Cereb Blood Flow Metab. 2012. doi:10.​1038/​jcbfm.​2012.​140.
46.
Zurück zum Zitat Fukuda S, del Zoppo GJ. Models of focal cerebral ischemia in the nonhuman primate. ILAR J / Natl Res Counc Inst Lab Anim Resour. 2003;44(2):96–104.CrossRef Fukuda S, del Zoppo GJ. Models of focal cerebral ischemia in the nonhuman primate. ILAR J / Natl Res Counc Inst Lab Anim Resour. 2003;44(2):96–104.CrossRef
50.
Zurück zum Zitat DeGraba T, Pettigrew L. Why do neuroprotective drugs work in animals but not humans? Neurol Clin. 2000;18:475–93.CrossRefPubMed DeGraba T, Pettigrew L. Why do neuroprotective drugs work in animals but not humans? Neurol Clin. 2000;18:475–93.CrossRefPubMed
51.
Zurück zum Zitat Kapoor K, Kak VK, Singh B. Morphology and comparative anatomy of circulus arteriosus cerebri in mammals. Anat Histol Embryol. 2003;32(6):347–55.CrossRefPubMed Kapoor K, Kak VK, Singh B. Morphology and comparative anatomy of circulus arteriosus cerebri in mammals. Anat Histol Embryol. 2003;32(6):347–55.CrossRefPubMed
52.
Zurück zum Zitat Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL. Age-related total gray matter and white matter changes in normal adult brain. Part II: quantitative magnetization transfer ratio histogram analysis. Am J Neuroradiol. 2002;23(8):1334–41.PubMed Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL. Age-related total gray matter and white matter changes in normal adult brain. Part II: quantitative magnetization transfer ratio histogram analysis. Am J Neuroradiol. 2002;23(8):1334–41.PubMed
53.
Zurück zum Zitat Arakawa S, Wright PM, Koga M, Phan TG, Reutens DC, Lim I, et al. Ischemic thresholds for gray and white matter: a diffusion and perfusion magnetic resonance study. Stroke. 2006;37(5):1211–6.CrossRefPubMed Arakawa S, Wright PM, Koga M, Phan TG, Reutens DC, Lim I, et al. Ischemic thresholds for gray and white matter: a diffusion and perfusion magnetic resonance study. Stroke. 2006;37(5):1211–6.CrossRefPubMed
54.
Zurück zum Zitat West GA, Golshani KJ, Doyle K, Lessov NS, Hobbs TR, Kohama SG, et al. A new model of cortical stroke in the rhesus macaque. J Cereb Blood Flow Metab. 2009;29(6):1175–86.CrossRefPubMed West GA, Golshani KJ, Doyle K, Lessov NS, Hobbs TR, Kohama SG, et al. A new model of cortical stroke in the rhesus macaque. J Cereb Blood Flow Metab. 2009;29(6):1175–86.CrossRefPubMed
55.
Zurück zum Zitat Urbanski HF, Kohama SG, West GA, Glynn C, Williams-Karnesky RL, Earl E, Neuringer MN, Renner L, Weiss A, Stenzel-Poore MP, Bahjat FR. Changes in spontaneous activity assessed by accelerometry correlate with extent of cerebral ischemia–reperfusion injury in the nonhuman primate. Transl Stroke Res. 2012. Urbanski HF, Kohama SG, West GA, Glynn C, Williams-Karnesky RL, Earl E, Neuringer MN, Renner L, Weiss A, Stenzel-Poore MP, Bahjat FR. Changes in spontaneous activity assessed by accelerometry correlate with extent of cerebral ischemia–reperfusion injury in the nonhuman primate. Transl Stroke Res. 2012.
56.
Zurück zum Zitat Maeda M, Takamatsu H, Furuichi Y, Noda A, Awaga Y, Tatsumi M, et al. Characterization of a novel thrombotic middle cerebral artery occlusion model in monkeys that exhibits progressive hypoperfusion and robust cortical infarction. J Neurosci Methods. 2005;146(1):106–15.CrossRefPubMed Maeda M, Takamatsu H, Furuichi Y, Noda A, Awaga Y, Tatsumi M, et al. Characterization of a novel thrombotic middle cerebral artery occlusion model in monkeys that exhibits progressive hypoperfusion and robust cortical infarction. J Neurosci Methods. 2005;146(1):106–15.CrossRefPubMed
57.
Zurück zum Zitat Hirouchi Y, Suzuki E, Mitsuoka C, Jin H, Kitajima S, Kohjimoto Y, et al. Neuroimaging and histopathological evaluation of delayed neurological damage produced by artificial occlusion of the middle cerebral artery in cynomolgus monkeys: establishment of a monkey model for delayed cerebral ischemia. Exp Toxicol Pathol. 2007;59(1):9–16.CrossRefPubMed Hirouchi Y, Suzuki E, Mitsuoka C, Jin H, Kitajima S, Kohjimoto Y, et al. Neuroimaging and histopathological evaluation of delayed neurological damage produced by artificial occlusion of the middle cerebral artery in cynomolgus monkeys: establishment of a monkey model for delayed cerebral ischemia. Exp Toxicol Pathol. 2007;59(1):9–16.CrossRefPubMed
58.
Zurück zum Zitat Huang J, Mocco J, Choudhri TF, Poisik A, Popilskis SJ, Emerson R, et al. A modified transorbital baboon model of reperfused stroke. Stroke. 2000;31(12):3054–63.CrossRefPubMed Huang J, Mocco J, Choudhri TF, Poisik A, Popilskis SJ, Emerson R, et al. A modified transorbital baboon model of reperfused stroke. Stroke. 2000;31(12):3054–63.CrossRefPubMed
59.
Zurück zum Zitat Mack WJ, Komotar RJ, Mocco J, Coon AL, Hoh DJ, King RG, et al. Serial magnetic resonance imaging in experimental primate stroke: validation of MRI for pre-clinical cerebroprotective trials. Neurol Res. 2003;25(8):846–52.CrossRefPubMed Mack WJ, Komotar RJ, Mocco J, Coon AL, Hoh DJ, King RG, et al. Serial magnetic resonance imaging in experimental primate stroke: validation of MRI for pre-clinical cerebroprotective trials. Neurol Res. 2003;25(8):846–52.CrossRefPubMed
60.
Zurück zum Zitat Drugs. AAoPCo. Alternative routes of drug administration—advantages and disadvantages (subject review). Pediatrics. 1997. Drugs. AAoPCo. Alternative routes of drug administration—advantages and disadvantages (subject review). Pediatrics. 1997.
62.
Zurück zum Zitat Hulka B, Griffith J, Wilcosky T. Overview of biological markers. Biological markers in epidemiology. New York: Oxford University Press; 1990. Hulka B, Griffith J, Wilcosky T. Overview of biological markers. Biological markers in epidemiology. New York: Oxford University Press; 1990.
63.
Zurück zum Zitat Sun S, Zhang X, Tough DF, Sprent J. Type I interferon-mediated stimulation of T cells by CpG DNA. J Exp Med. 1998;188(12):2335–42.CrossRefPubMed Sun S, Zhang X, Tough DF, Sprent J. Type I interferon-mediated stimulation of T cells by CpG DNA. J Exp Med. 1998;188(12):2335–42.CrossRefPubMed
64.
Zurück zum Zitat Takeshita S, Takeshita F, Haddad DE, Janabi N, Klinman DM. Activation of microglia and astrocytes by CpG oligodeoxynucleotides. NeuroReport. 2001;12(14):3029–32.CrossRefPubMed Takeshita S, Takeshita F, Haddad DE, Janabi N, Klinman DM. Activation of microglia and astrocytes by CpG oligodeoxynucleotides. NeuroReport. 2001;12(14):3029–32.CrossRefPubMed
65.
Zurück zum Zitat Vicari AP, Schmalbach T, Lekstrom-Himes J, Morris ML, Al-Adhami MJ, Laframboise C, et al. Safety, pharmacokinetics and immune effects in normal volunteers of CPG 10101 (ACTILON), an investigational synthetic toll-like receptor 9 agonist. Antivir Ther. 2007;12(5):741–51.PubMed Vicari AP, Schmalbach T, Lekstrom-Himes J, Morris ML, Al-Adhami MJ, Laframboise C, et al. Safety, pharmacokinetics and immune effects in normal volunteers of CPG 10101 (ACTILON), an investigational synthetic toll-like receptor 9 agonist. Antivir Ther. 2007;12(5):741–51.PubMed
66.
Zurück zum Zitat Wagner I, Sethi S, Xiang W, Giese A, Ebner S, Kretzschmar H. Repeated peripheral administrations of CpG oligodeoxynucleotides lead to sustained CNS immune activation. Immunopharmacol Immunotoxicol. 2007;29(3):413–24.CrossRefPubMed Wagner I, Sethi S, Xiang W, Giese A, Ebner S, Kretzschmar H. Repeated peripheral administrations of CpG oligodeoxynucleotides lead to sustained CNS immune activation. Immunopharmacol Immunotoxicol. 2007;29(3):413–24.CrossRefPubMed
67.
Zurück zum Zitat Stewart VA, McGrath S, Krieg AM, Larson NS, Angov E, Smith CL, et al. Activation of innate immunity in healthy Macaca mulatta macaques by a single subcutaneous dose of GMP CpG 7909: safety data and interferon-inducible protein-10 kinetics for humans and macaques. Clin Vaccine Immunol: CVI. 2008;15(2):221–6.CrossRefPubMed Stewart VA, McGrath S, Krieg AM, Larson NS, Angov E, Smith CL, et al. Activation of innate immunity in healthy Macaca mulatta macaques by a single subcutaneous dose of GMP CpG 7909: safety data and interferon-inducible protein-10 kinetics for humans and macaques. Clin Vaccine Immunol: CVI. 2008;15(2):221–6.CrossRefPubMed
70.
Zurück zum Zitat Virca GD, Kim SY, Glaser KB, Ulevitch RJ. Lipopolysaccharide induced hyporesponsiveness to its own action in RAW 264.7 cells. J Biol Chem. 1989;264(36):21951–6.PubMed Virca GD, Kim SY, Glaser KB, Ulevitch RJ. Lipopolysaccharide induced hyporesponsiveness to its own action in RAW 264.7 cells. J Biol Chem. 1989;264(36):21951–6.PubMed
71.
Zurück zum Zitat Tasaki K, Ruetzler CA, Ohtsuki T, Martin D, Nawashiro H, Hallenbeck JM. Lipopolysaccharide pre-treatment induces resistance against subsequent focal cerebral ischemic damage in spontaneously hypertensive rats. Brain Res. 1997;748(1–2):267–70.CrossRefPubMed Tasaki K, Ruetzler CA, Ohtsuki T, Martin D, Nawashiro H, Hallenbeck JM. Lipopolysaccharide pre-treatment induces resistance against subsequent focal cerebral ischemic damage in spontaneously hypertensive rats. Brain Res. 1997;748(1–2):267–70.CrossRefPubMed
72.
Zurück zum Zitat Hua F, Ma J, Ha T, Kelley J, Williams DL, Kao RL, et al. Preconditioning with a TLR2 specific ligand increases resistance to cerebral ischemia/reperfusion injury. J Neuroimmunol. 2008;199(1–2):75–82.CrossRefPubMed Hua F, Ma J, Ha T, Kelley J, Williams DL, Kao RL, et al. Preconditioning with a TLR2 specific ligand increases resistance to cerebral ischemia/reperfusion injury. J Neuroimmunol. 2008;199(1–2):75–82.CrossRefPubMed
73.
Zurück zum Zitat Leung PY, Stevens SL, Packard AE, Lessov NS, Yang T, Conrad VK, et al. Toll-like receptor 7 preconditioning induces robust neuroprotection against stroke by a novel type I interferon-mediated mechanism. Stroke. 2012;43(5):1383–9. doi:10.1161/STROKEAHA.111.641522.CrossRefPubMed Leung PY, Stevens SL, Packard AE, Lessov NS, Yang T, Conrad VK, et al. Toll-like receptor 7 preconditioning induces robust neuroprotection against stroke by a novel type I interferon-mediated mechanism. Stroke. 2012;43(5):1383–9. doi:10.​1161/​STROKEAHA.​111.​641522.CrossRefPubMed
74.
Zurück zum Zitat Broad A, Kirby JA, Jones DE. Toll-like receptor interactions: tolerance of MyD88-dependent cytokines but enhancement of MyD88-independent interferon-beta production. Immunology. 2007;120(1):103–11.CrossRefPubMed Broad A, Kirby JA, Jones DE. Toll-like receptor interactions: tolerance of MyD88-dependent cytokines but enhancement of MyD88-independent interferon-beta production. Immunology. 2007;120(1):103–11.CrossRefPubMed
75.
Zurück zum Zitat Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov. 2006;5(6):471–84.CrossRefPubMed Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov. 2006;5(6):471–84.CrossRefPubMed
76.
Zurück zum Zitat Roberts TL, Sweet MJ, Hume DA, Stacey KJ. Cutting edge: species-specific TLR9-mediated recognition of CpG and non-CpG phosphorothioate-modified oligonucleotides. J Immunol. 2005;174(2):605–8.PubMed Roberts TL, Sweet MJ, Hume DA, Stacey KJ. Cutting edge: species-specific TLR9-mediated recognition of CpG and non-CpG phosphorothioate-modified oligonucleotides. J Immunol. 2005;174(2):605–8.PubMed
77.
Zurück zum Zitat Mashour GA, Shanks AM, Kheterpal S. Perioperative stroke and associated mortality after noncardiac, nonneurologic surgery. Anesthesiology. 2011;116(6):1289–96.CrossRef Mashour GA, Shanks AM, Kheterpal S. Perioperative stroke and associated mortality after noncardiac, nonneurologic surgery. Anesthesiology. 2011;116(6):1289–96.CrossRef
78.
Zurück zum Zitat Kotelis D, Bischoff MS, Jobst B, von Tengg-Kobligk H, Hinz U, Geisbüsch P, et al. Morphological risk factors of stroke during thoracic endovascular aortic repair. Langenbecks Arch Surg. 2012 Sep 8. [Epub ahead of print]. Kotelis D, Bischoff MS, Jobst B, von Tengg-Kobligk H, Hinz U, Geisbüsch P, et al. Morphological risk factors of stroke during thoracic endovascular aortic repair. Langenbecks Arch Surg. 2012 Sep 8. [Epub ahead of print].
79.
Zurück zum Zitat Palmerini T, Biondi-Zoccai G, Reggiani LB, Sangiorgi D, Alessi L, De Servi S, et al. Risk of stroke with coronary artery bypass graft surgery compared with percutaneous coronary intervention. J Am Coll Cardiol. 2012;60(9):798–805.CrossRefPubMed Palmerini T, Biondi-Zoccai G, Reggiani LB, Sangiorgi D, Alessi L, De Servi S, et al. Risk of stroke with coronary artery bypass graft surgery compared with percutaneous coronary intervention. J Am Coll Cardiol. 2012;60(9):798–805.CrossRefPubMed
80.
Zurück zum Zitat Baird AE, Benfield A, Schlaug G, Siewert B, Lovblad KO, Edelman RR, et al. Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann Neurol. 1997;41(5):581–9. doi:10.1002/ana.410410506.CrossRefPubMed Baird AE, Benfield A, Schlaug G, Siewert B, Lovblad KO, Edelman RR, et al. Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann Neurol. 1997;41(5):581–9. doi:10.​1002/​ana.​410410506.CrossRefPubMed
81.
Zurück zum Zitat Biondi A, Oppenheim C, Vivas E, Casasco A, Lalam T, Sourour N, et al. Cerebral aneurysms treated by Guglielmi detachable coils: evaluation with diffusion-weighted MR imaging. Am J Neuroradiol. 2000;21(5):957–63.PubMed Biondi A, Oppenheim C, Vivas E, Casasco A, Lalam T, Sourour N, et al. Cerebral aneurysms treated by Guglielmi detachable coils: evaluation with diffusion-weighted MR imaging. Am J Neuroradiol. 2000;21(5):957–63.PubMed
82.
Zurück zum Zitat Lim Fat, Mary Jane MJ. Heparin dosing is associated with diffusion weighted imaging lesion load following aneurysm coiling. J Neurointerv Surg. 2012 May 28. [Epub ahead of print]. Lim Fat, Mary Jane MJ. Heparin dosing is associated with diffusion weighted imaging lesion load following aneurysm coiling. J Neurointerv Surg. 2012 May 28. [Epub ahead of print].
83.
Zurück zum Zitat Soeda A, Sakai N, Sakai H, Iihara K, Yamada N, Imakita S, et al. Thromboembolic events associated with Guglielmi detachable coil embolization of asymptomatic cerebral aneurysms: evaluation of 66 consecutive cases with use of diffusion-weighted MR imaging. AJNR Am J Neuroradiol. 2003;24(1):127–32.PubMed Soeda A, Sakai N, Sakai H, Iihara K, Yamada N, Imakita S, et al. Thromboembolic events associated with Guglielmi detachable coil embolization of asymptomatic cerebral aneurysms: evaluation of 66 consecutive cases with use of diffusion-weighted MR imaging. AJNR Am J Neuroradiol. 2003;24(1):127–32.PubMed
84.
Zurück zum Zitat Bonati LH, Jongen LM, Haller S, Flach HZ, Dobson J, Nederkoorn PJ, et al. New ischaemic brain lesions on MRI after stenting or endarterectomy for symptomatic carotid stenosis: a substudy of the International Carotid Stenting Study (ICSS). Lancet Neurol. 2010;9(4):353–62. Epub 2010 Feb 25.CrossRefPubMed Bonati LH, Jongen LM, Haller S, Flach HZ, Dobson J, Nederkoorn PJ, et al. New ischaemic brain lesions on MRI after stenting or endarterectomy for symptomatic carotid stenosis: a substudy of the International Carotid Stenting Study (ICSS). Lancet Neurol. 2010;9(4):353–62. Epub 2010 Feb 25.CrossRefPubMed
85.
Zurück zum Zitat Cronqvist M, Wirestam R, Ramgren B, Brandt L, Romner B, Nilsson O, et al. Endovascular treatment of intracerebral arteriovenous malformations: procedural safety, complications, and results evaluated by MR imaging, including diffusion and perfusion imaging. Am J Neuroradiol. 2006;27(1):162–76.PubMed Cronqvist M, Wirestam R, Ramgren B, Brandt L, Romner B, Nilsson O, et al. Endovascular treatment of intracerebral arteriovenous malformations: procedural safety, complications, and results evaluated by MR imaging, including diffusion and perfusion imaging. Am J Neuroradiol. 2006;27(1):162–76.PubMed
86.
Zurück zum Zitat Kahlert P, Knipp SC, Schlamann M, Thielmann M, Al-Rashid F, Weber M, et al. Silent and apparent cerebral ischemia after percutaneous transfemoral aortic valve implantation: a diffusion-weighted magnetic resonance imaging study. Circulation. 2010;121(7):870–8. doi:10.1161/CIRCULATIONAHA.109.855866.CrossRefPubMed Kahlert P, Knipp SC, Schlamann M, Thielmann M, Al-Rashid F, Weber M, et al. Silent and apparent cerebral ischemia after percutaneous transfemoral aortic valve implantation: a diffusion-weighted magnetic resonance imaging study. Circulation. 2010;121(7):870–8. doi:10.​1161/​CIRCULATIONAHA.​109.​855866.CrossRefPubMed
87.
Zurück zum Zitat Merino JG, Latour LL, Tso A, Lee KY, Kang DW, Davis LA, et al. Blood–brain barrier disruption after cardiac surgery. Am J Neuroradiol. 2012 Aug 23. [Epub ahead of print]. Merino JG, Latour LL, Tso A, Lee KY, Kang DW, Davis LA, et al. Blood–brain barrier disruption after cardiac surgery. Am J Neuroradiol. 2012 Aug 23. [Epub ahead of print].
88.
Zurück zum Zitat Shibazaki KK, Iguchi Y, Kimura K, Ueno Y, Inoue T. New asymptomatic ischemic lesions on diffusion-weighted imaging after cerebral angiography. J Neurol Sci. 2008;266(1–2):150–5. Epub 2007 Oct 24. Shibazaki KK, Iguchi Y, Kimura K, Ueno Y, Inoue T. New asymptomatic ischemic lesions on diffusion-weighted imaging after cerebral angiography. J Neurol Sci. 2008;266(1–2):150–5. Epub 2007 Oct 24.
89.
Zurück zum Zitat Astarci P, Glineur D, Kefer J, D’Hoore W, Renkin J, Vanoverschelde JL, et al. Magnetic resonance imaging evaluation of cerebral embolization during percutaneous aortic valve implantation: comparison of transfemoral and trans-apical approaches using Edwards Sapiens valve. Eur J Cardiothorac Surg. 2011;40:475–9. doi:10.1016/j.ejcts.2010.11.070.PubMed Astarci P, Glineur D, Kefer J, D’Hoore W, Renkin J, Vanoverschelde JL, et al. Magnetic resonance imaging evaluation of cerebral embolization during percutaneous aortic valve implantation: comparison of transfemoral and trans-apical approaches using Edwards Sapiens valve. Eur J Cardiothorac Surg. 2011;40:475–9. doi:10.​1016/​j.​ejcts.​2010.​11.​070.PubMed
90.
Zurück zum Zitat Eggebrecht H, Schmermund A, Voigtländer T, Kahlert P, Erbel R, Mehta RH. Risk of stroke after transcatheter aortic valve implantation (TAVI): a meta-analysis of 10,037 published patients. EuroIntervention. 2012;8(1):129–38. doi:10.4244/EIJV8I1A20.CrossRefPubMed Eggebrecht H, Schmermund A, Voigtländer T, Kahlert P, Erbel R, Mehta RH. Risk of stroke after transcatheter aortic valve implantation (TAVI): a meta-analysis of 10,037 published patients. EuroIntervention. 2012;8(1):129–38. doi:10.​4244/​EIJV8I1A20.CrossRefPubMed
91.
Zurück zum Zitat Noble R. The development of resistance by rats and guinea pigs to amounts of trauma usually fatal. Am J Physiol. 1943;38:346–51. Noble R. The development of resistance by rats and guinea pigs to amounts of trauma usually fatal. Am J Physiol. 1943;38:346–51.
92.
Zurück zum Zitat Perez-Pinzon MA, Alonso O, Kraydieh S, Dietrich WD. Induction of tolerance against traumatic brain injury by ischemic preconditioning. NeuroReport. 1999;10(14):2951–4.CrossRefPubMed Perez-Pinzon MA, Alonso O, Kraydieh S, Dietrich WD. Induction of tolerance against traumatic brain injury by ischemic preconditioning. NeuroReport. 1999;10(14):2951–4.CrossRefPubMed
94.
95.
Zurück zum Zitat Umschwief G, Shein NA, Alexandrovich AG, Trembovler V, Horowitz M, Shohami E. Heat acclimation provides sustained improvement in functional recovery and attenuates apoptosis after traumatic brain injury. J Cereb Blood Flow Metab. 2010;30(3):616–27. doi:10.1038/jcbfm.2009.234.CrossRefPubMed Umschwief G, Shein NA, Alexandrovich AG, Trembovler V, Horowitz M, Shohami E. Heat acclimation provides sustained improvement in functional recovery and attenuates apoptosis after traumatic brain injury. J Cereb Blood Flow Metab. 2010;30(3):616–27. doi:10.​1038/​jcbfm.​2009.​234.CrossRefPubMed
96.
97.
98.
Zurück zum Zitat Cronqvist M, Wirestam R, Ramgren B, Brandt L, Nilsson O, Saveland H, et al. Diffusion and perfusion MRI in patients with ruptured and unruptured intracranial aneurysms treated by endovascular coiling: complications, procedural results, MR findings and clinical outcome. Neuroradiology. 2005;47(11):855–73. doi:10.1007/s00234-005-1408-2.CrossRefPubMed Cronqvist M, Wirestam R, Ramgren B, Brandt L, Nilsson O, Saveland H, et al. Diffusion and perfusion MRI in patients with ruptured and unruptured intracranial aneurysms treated by endovascular coiling: complications, procedural results, MR findings and clinical outcome. Neuroradiology. 2005;47(11):855–73. doi:10.​1007/​s00234-005-1408-2.CrossRefPubMed
Metadaten
Titel
Steps to Translate Preconditioning from Basic Research to the Clinic
verfasst von
Frances R. Bahjat
Raffaella Gesuete
Mary P. Stenzel-Poore
Publikationsdatum
01.02.2013
Verlag
Springer US
Erschienen in
Translational Stroke Research / Ausgabe 1/2013
Print ISSN: 1868-4483
Elektronische ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-012-0223-4

Weitere Artikel der Ausgabe 1/2013

Translational Stroke Research 1/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.