Skip to main content
Erschienen in:

05.10.2019 | Stoßwellentherapie | fortbildung

Einsatz bei Weichteildefekten

Regenerative Zellen in der ästhetischen und rekonstruktiven Medizin

verfasst von: Dr. Eleni Priglinger, Prof. Dr. Heinz Redl, Dr. Susanne Wolbank, Dr. Matthias Sandhofer

Erschienen in: ästhetische dermatologie & kosmetologie | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Zusammenfassung

Regenerative Zellen werden zur Gewebekonstruktion und -regeneration genutzt. Dabei hat sich Fettgewebe als Quelle aufgrund guter Verfügbarkeit und leichter Gewinnung in der kosmetischen und plastischen Chirurgie durchgesetzt. Jedoch gibt es bei der Aufbereitung des zu transplantierenden Zellgemischs einiges zu beachten.
Literatur
1.
Zurück zum Zitat Coleman WP 3rd et al. Guidelines of care for liposuction. J Am Acad Dermatol. 2001; 45: 438–47CrossRef Coleman WP 3rd et al. Guidelines of care for liposuction. J Am Acad Dermatol. 2001; 45: 438–47CrossRef
2.
Zurück zum Zitat Zuk PA et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001; 7: 211–28CrossRef Zuk PA et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001; 7: 211–28CrossRef
3.
Zurück zum Zitat Bora P, Majumdar AS. Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res Ther. 2017; 8: 145CrossRef Bora P, Majumdar AS. Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res Ther. 2017; 8: 145CrossRef
4.
Zurück zum Zitat Harwood HJ Jr. The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology. 2012; 63: 57–75CrossRef Harwood HJ Jr. The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology. 2012; 63: 57–75CrossRef
5.
Zurück zum Zitat Klingemann H et al. Mesenchymal stem cells — sources and clinical applications. Transfus Med Hemother. 2008; 35: 272–7CrossRef Klingemann H et al. Mesenchymal stem cells — sources and clinical applications. Transfus Med Hemother. 2008; 35: 272–7CrossRef
6.
Zurück zum Zitat Mafi R et al. Sources of adult mesenchymal stem cells applicable for musculoskeletal applications — a systematic review of the literature. Open Orthop J. 2011; 2: 242–8CrossRef Mafi R et al. Sources of adult mesenchymal stem cells applicable for musculoskeletal applications — a systematic review of the literature. Open Orthop J. 2011; 2: 242–8CrossRef
7.
Zurück zum Zitat Friedenstein AJ et al. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970; 3: 393–403PubMed Friedenstein AJ et al. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970; 3: 393–403PubMed
8.
Zurück zum Zitat Aust L et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004; 6: 7–14CrossRef Aust L et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004; 6: 7–14CrossRef
9.
Zurück zum Zitat Bateman ME et al. Concise Review: Using fat to fight disease: a systematic review of non-homologous adipose-derived stromal/stem cell therapies. Stem Cells. 2018; 36: 1311–28CrossRef Bateman ME et al. Concise Review: Using fat to fight disease: a systematic review of non-homologous adipose-derived stromal/stem cell therapies. Stem Cells. 2018; 36: 1311–28CrossRef
10.
Zurück zum Zitat Nguyen A et al. Stromal vascular fraction: a regenerative reality? Part 1: current concepts and review of the literature. J Plast Reconstr Aesthetic Surg. 2016; 69: 170–9CrossRef Nguyen A et al. Stromal vascular fraction: a regenerative reality? Part 1: current concepts and review of the literature. J Plast Reconstr Aesthetic Surg. 2016; 69: 170–9CrossRef
11.
Zurück zum Zitat Calabrese C et al. Breast reconstruction after nipple/areola-sparing mastectomy using cell-enhanced fat grafting. Ecancermedicalscience. 2009; 3: 116PubMedPubMedCentral Calabrese C et al. Breast reconstruction after nipple/areola-sparing mastectomy using cell-enhanced fat grafting. Ecancermedicalscience. 2009; 3: 116PubMedPubMedCentral
12.
Zurück zum Zitat Gentile P et al. A comparative translational study: the combined use of enhanced stromal vascular fraction and platelet-rich plasma improves fat grafting maintenance in breast reconstruction. Stem Cells Transl Med. 2012; 1: 341–51CrossRef Gentile P et al. A comparative translational study: the combined use of enhanced stromal vascular fraction and platelet-rich plasma improves fat grafting maintenance in breast reconstruction. Stem Cells Transl Med. 2012; 1: 341–51CrossRef
13.
Zurück zum Zitat Jiang A et al. Improvement of the survival of human autologous fat transplantation by adipose-derived stem-cells-assisted lipotransfer combined with bFGF. ScientificWorldJournal. 2015; 2015: 968057PubMedPubMedCentral Jiang A et al. Improvement of the survival of human autologous fat transplantation by adipose-derived stem-cells-assisted lipotransfer combined with bFGF. ScientificWorldJournal. 2015; 2015: 968057PubMedPubMedCentral
14.
Zurück zum Zitat Luo S et al. Adipose tissue-derived stem cells treated with estradiol enhance survival of autologous fat transplants. Tohoku J Exp Med. 2013; 231: 101–10CrossRef Luo S et al. Adipose tissue-derived stem cells treated with estradiol enhance survival of autologous fat transplants. Tohoku J Exp Med. 2013; 231: 101–10CrossRef
15.
Zurück zum Zitat Garza RM et al. Studies in fat grafting: Part III. Fat grafting irradiated tissue—improved skin quality and decreased fat graft retention. Plast Reconstr Surg. 2014; 134: 249–57CrossRef Garza RM et al. Studies in fat grafting: Part III. Fat grafting irradiated tissue—improved skin quality and decreased fat graft retention. Plast Reconstr Surg. 2014; 134: 249–57CrossRef
16.
Zurück zum Zitat Yoshimura K et al. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg. 2008; 32: 48–55CrossRef Yoshimura K et al. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg. 2008; 32: 48–55CrossRef
17.
Zurück zum Zitat Salgarello M et al. Autologous fat graft in radiated tissue prior to alloplastic reconstruction of the breast: report of two cases. Aesthetic Plast Surg. 2010; 34: 5–10CrossRef Salgarello M et al. Autologous fat graft in radiated tissue prior to alloplastic reconstruction of the breast: report of two cases. Aesthetic Plast Surg. 2010; 34: 5–10CrossRef
21.
Zurück zum Zitat Sensebe L et al. Production of mesenchymal stromal/stem cells according to good manufacturing practices: a review. Stem Cell Res Ther. 2013; 4: 66CrossRef Sensebe L et al. Production of mesenchymal stromal/stem cells according to good manufacturing practices: a review. Stem Cell Res Ther. 2013; 4: 66CrossRef
22.
Zurück zum Zitat Jiang T et al. In vitro expansion impaired the stemness of early passage mesenchymal stem cells for treatment of cartilage defects. Cell Death Dis. 2017; 8: e2851CrossRef Jiang T et al. In vitro expansion impaired the stemness of early passage mesenchymal stem cells for treatment of cartilage defects. Cell Death Dis. 2017; 8: e2851CrossRef
23.
Zurück zum Zitat Mcintosh K et al. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells. 2006; 24: 1246–53CrossRef Mcintosh K et al. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells. 2006; 24: 1246–53CrossRef
24.
Zurück zum Zitat Pan Q et al. Detection of spontaneous tumorigenic transformation during culture expansion of human mesenchymal stromal cells. Exp Biol Med (Maywood). 2014; 239: 105–15CrossRef Pan Q et al. Detection of spontaneous tumorigenic transformation during culture expansion of human mesenchymal stromal cells. Exp Biol Med (Maywood). 2014; 239: 105–15CrossRef
26.
Zurück zum Zitat Hagman DK et al. Characterizing and quantifying leukocyte populations in human adipose tissue: impact of enzymatic tissue processing. J Immunol Methods. 2012; 386: 50–9CrossRef Hagman DK et al. Characterizing and quantifying leukocyte populations in human adipose tissue: impact of enzymatic tissue processing. J Immunol Methods. 2012; 386: 50–9CrossRef
27.
Zurück zum Zitat Oberbauer E et al. Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: current state of the art. Cell Regen (Lond). 2015; 4: 7 Oberbauer E et al. Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: current state of the art. Cell Regen (Lond). 2015; 4: 7
28.
Zurück zum Zitat Liao HT et al. Application of platelet-rich plasma and platelet-rich fibrin in fat grafting: basic science and literature review. Tissue Eng Part B Rev. 2014; 20: 267–76CrossRef Liao HT et al. Application of platelet-rich plasma and platelet-rich fibrin in fat grafting: basic science and literature review. Tissue Eng Part B Rev. 2014; 20: 267–76CrossRef
29.
Zurück zum Zitat Serra-Mestre JM et al. Platelet-rich plasma mixed-fat grafting: a reasonable prosurvival strategy for fat grafts? Aesthetic Plast Surg. 2014; 38: 1041–9CrossRef Serra-Mestre JM et al. Platelet-rich plasma mixed-fat grafting: a reasonable prosurvival strategy for fat grafts? Aesthetic Plast Surg. 2014; 38: 1041–9CrossRef
30.
Zurück zum Zitat Amirkhani MA et al. A rapid sonication based method for preparation of stromal vascular fraction and mesenchymal stem cells from fat tissue. Bioimpacts. 2016; 6: 99–104CrossRef Amirkhani MA et al. A rapid sonication based method for preparation of stromal vascular fraction and mesenchymal stem cells from fat tissue. Bioimpacts. 2016; 6: 99–104CrossRef
31.
Zurück zum Zitat Maioli M et al. Radioelectric asymmetric conveyed fields and human adipose-derived stem cells obtained with a nonenzymatic method and device: a novel approach to multipotency. Cell Transplant 2014; 23: 1489–500CrossRef Maioli M et al. Radioelectric asymmetric conveyed fields and human adipose-derived stem cells obtained with a nonenzymatic method and device: a novel approach to multipotency. Cell Transplant 2014; 23: 1489–500CrossRef
32.
Zurück zum Zitat Priglinger E et al. Photobiomodulation of freshly isolated human adipose tissue-derived stromal vascular fraction cells by pulsed light-emitting diodes for direct clinical application. J Tissue Eng Regen Med. 2018; 12: 1352–62CrossRef Priglinger E et al. Photobiomodulation of freshly isolated human adipose tissue-derived stromal vascular fraction cells by pulsed light-emitting diodes for direct clinical application. J Tissue Eng Regen Med. 2018; 12: 1352–62CrossRef
33.
Zurück zum Zitat Priglinger E et al. Improvement of adipose tissue-derived cells by low-energy extracorporeal shock wave therapy. Cytotherapy. 2017; 19: 1079–95CrossRef Priglinger E et al. Improvement of adipose tissue-derived cells by low-energy extracorporeal shock wave therapy. Cytotherapy. 2017; 19: 1079–95CrossRef
34.
Zurück zum Zitat Wang Y et al. Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels. Sci Rep. 2016; 6: 33719CrossRef Wang Y et al. Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels. Sci Rep. 2016; 6: 33719CrossRef
35.
Zurück zum Zitat Elster EA et al. Extracorporeal shock wave therapy for nonunion of the tibia. J Orthop Trauma. 2010; 24: 133–41CrossRef Elster EA et al. Extracorporeal shock wave therapy for nonunion of the tibia. J Orthop Trauma. 2010; 24: 133–41CrossRef
36.
Zurück zum Zitat Furia JP et al. Shock wave therapy compared with intramedullary screw fixation for nonunion of proximal fifth metatarsal metaphyseal-diaphyseal fractures. J Bone Joint Surg Am. 2010; 92: 846–54CrossRef Furia JP et al. Shock wave therapy compared with intramedullary screw fixation for nonunion of proximal fifth metatarsal metaphyseal-diaphyseal fractures. J Bone Joint Surg Am. 2010; 92: 846–54CrossRef
37.
Zurück zum Zitat Schaden W et al. Extracorporeal shockwave therapy (ESWT)—First choice treatment of fracture non-unions? Int J Surg. 2015; 24: 179–83CrossRef Schaden W et al. Extracorporeal shockwave therapy (ESWT)—First choice treatment of fracture non-unions? Int J Surg. 2015; 24: 179–83CrossRef
38.
Zurück zum Zitat Mittermayr R et al. Extracorporeal shock wave therapy (ESWT) for wound healing: technology, mechanisms, and clinical efficacy. Wound Repair Regen. 2012; 20: 456–65PubMed Mittermayr R et al. Extracorporeal shock wave therapy (ESWT) for wound healing: technology, mechanisms, and clinical efficacy. Wound Repair Regen. 2012; 20: 456–65PubMed
39.
Zurück zum Zitat Saggini R et al. Extracorporeal shock wave therapy for management of chronic ulcers in the lower extremities. Ultrasound Med Biol. 2008; 34: 1261–71CrossRef Saggini R et al. Extracorporeal shock wave therapy for management of chronic ulcers in the lower extremities. Ultrasound Med Biol. 2008; 34: 1261–71CrossRef
40.
Zurück zum Zitat Schaden W et al. Shock wave therapy for acute and chronic soft tissue wounds: a feasibility study. J Surg Res. 2007; 143: 1–12CrossRef Schaden W et al. Shock wave therapy for acute and chronic soft tissue wounds: a feasibility study. J Surg Res. 2007; 143: 1–12CrossRef
41.
Zurück zum Zitat Holfeld J et al. Toll-like receptor 3 signalling mediates angiogenic response upon shock wave treatment of ischaemic muscle. Cardiovasc Res. 2016; 109: 331–43CrossRef Holfeld J et al. Toll-like receptor 3 signalling mediates angiogenic response upon shock wave treatment of ischaemic muscle. Cardiovasc Res. 2016; 109: 331–43CrossRef
42.
Zurück zum Zitat Weihs AM et al. Shock wave treatment enhances cell proliferation and improves wound healing by ATP release-coupled extracellular signal-regulated kinase (ERK) activation. J Biol Chem. 2014; 289: 27090–104CrossRef Weihs AM et al. Shock wave treatment enhances cell proliferation and improves wound healing by ATP release-coupled extracellular signal-regulated kinase (ERK) activation. J Biol Chem. 2014; 289: 27090–104CrossRef
Metadaten
Titel
Einsatz bei Weichteildefekten
Regenerative Zellen in der ästhetischen und rekonstruktiven Medizin
verfasst von
Dr. Eleni Priglinger
Prof. Dr. Heinz Redl
Dr. Susanne Wolbank
Dr. Matthias Sandhofer
Publikationsdatum
05.10.2019
Verlag
Springer Medizin
Erschienen in
ästhetische dermatologie & kosmetologie / Ausgabe 5/2019
Print ISSN: 1867-481X
Elektronische ISSN: 2198-6517
DOI
https://doi.org/10.1007/s12634-019-0087-7

Passend zum Thema

Allergen unter der Haut: Wenn Tattoos plötzlich Ärger machen

Tätowierungen können nicht nur künstlerisch, sondern auch gesundheitlich komplex sein. Manche Pigmente bergen Gefahren, die sich oft erst Jahre später zeigen. Was steckt hinter den verzögerten Reaktionen, und wie kann man sie behandeln?

ANZEIGE

Erhöhte Aufnahme von Tattoofarbe mit Dexpanthenol

PD Dr. Matthias Bartneck, forschender Biologe an der RWTH Aachen, stellte eine aktuelle in-vitro Studie vor, bei welcher unter anderem der Einfluss von Dexpanthenol auf die Aufnahme von Tattoo-Farbe sowie die Beständigkeit der Farben unter der Haut untersucht wurden. Andy Engel, Tätowierer, berichtete von seinen Erfahrungen aus dem Tattoo-Studio.

ANZEIGE

Bepanthen® unterstützt bei vielen Indikationen die Regeneration der Haut

  • Content Hub

Bepanthen® Wund- und Heilsalbe wird heute wie bei der Einführung vor 70 Jahren erfolgreich bei kleinen Alltagsverletzungen eingesetzt. Moderne Forschung – Untersuchungen an Hautmodellen, Genexpressionsanalysen und klinische Studien – schafft darüber hinaus Evidenz für neue Anwendungsgebiete. So kann die Dexpanthenol-haltige Salbe heute z.B. zur Nachbehandlung einer Lasertherapie bei aktinischer Keratose oder Tattoo-Entfernung eingesetzt werden. Erfahren Sie hier mehr über moderne Forschung zu Bepanthen.

Bayer Vital GmbH