Skip to main content
Erschienen in: Brain Tumor Pathology 4/2018

23.06.2018 | Original Article

Stromal cells of hemangioblastomas exhibit mesenchymal stem cell-derived vascular progenitor cell properties

verfasst von: Shigeki Takada, Masato Hojo, Noriyoshi Takebe, Kenji Tanigaki, Susumu Miyamoto

Erschienen in: Brain Tumor Pathology | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Hemangioblastoma is composed of neoplastic stromal cells and a prominent capillary network. To date, the identity of stromal cells remains unclear. Mesenchymal stem cells can give rise to committed vascular progenitor cells, and ephrin-B2/EphB4 and Notch signaling have crucial roles in these steps. The aim of our study was to elucidate that stromal cells of central nervous system hemangioblastomas have mesenchymal stem cell-derived vascular progenitor cell properties. Ten hemangioblastomas were investigated immunohistochemically. CD44, a mesenchymal stem cell marker, was detected in stromal cells of all cases, suggesting that stromal cells have mesenchymal stem cell-like properties. Neither CD31 nor α-SMA was expressed in stromal cells, suggesting that stromal cells have not acquired differentiated vascular cell properties. Both ephrin-B2 and EphB4, immature vascular cell markers, were detected in stromal cells of all cases. Jagged1, Notch1, and Hesr2/Hey2, which are known to be detected in both immature endothelial cells and mural cells, were expressed in stromal cells of all cases. Notch3, which is known to be detected in differentiating mural cells, was also expressed in all cases. These results suggest that stromal cells also have vascular progenitor cell properties. In conclusion, stromal cells of hemangioblastomas exhibit mesenchymal stem cell-derived vascular progenitor cell properties.
Literatur
1.
Zurück zum Zitat Rachinger J, Buslei R, Prell J et al (2009) Solid haemangioblastomas of the CNS: a review of 17 consecutive cases. Neurosurg Rev 32:37–47 (discussion 47–48) CrossRefPubMed Rachinger J, Buslei R, Prell J et al (2009) Solid haemangioblastomas of the CNS: a review of 17 consecutive cases. Neurosurg Rev 32:37–47 (discussion 47–48) CrossRefPubMed
2.
Zurück zum Zitat Merrill MJ, Edwards NA, Lonser RR (2011) Notch receptor and effector expression in von Hippel-Lindau disease-associated central nervous system hemangioblastomas. J Neurosurg 115:512–517CrossRefPubMedPubMedCentral Merrill MJ, Edwards NA, Lonser RR (2011) Notch receptor and effector expression in von Hippel-Lindau disease-associated central nervous system hemangioblastomas. J Neurosurg 115:512–517CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Bamps S, Calenbergh FV, Vleeschouwer SD et al (2013) What the neurosurgeon should know about hemangioblastoma, both sporadic and in Von Hippel-Lindau disease: a literature review. Surg Neurol Int 4:145CrossRefPubMedPubMedCentral Bamps S, Calenbergh FV, Vleeschouwer SD et al (2013) What the neurosurgeon should know about hemangioblastoma, both sporadic and in Von Hippel-Lindau disease: a literature review. Surg Neurol Int 4:145CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Hojo M, Arakawa Y, Funaki T et al (2014) Usefulness of tumor blood flow imaging by intraoperative indocyanine green videoangiography in hemangioblastoma surgery. World Neurosurg 82:e495–e501CrossRefPubMed Hojo M, Arakawa Y, Funaki T et al (2014) Usefulness of tumor blood flow imaging by intraoperative indocyanine green videoangiography in hemangioblastoma surgery. World Neurosurg 82:e495–e501CrossRefPubMed
6.
Zurück zum Zitat Spence AM, Rubinstein LJ (1975) Cerebellar capillary hemangioblastoma: its histogenesis studied by organ culture and electron microscopy. Cancer 35:326–341CrossRefPubMed Spence AM, Rubinstein LJ (1975) Cerebellar capillary hemangioblastoma: its histogenesis studied by organ culture and electron microscopy. Cancer 35:326–341CrossRefPubMed
7.
Zurück zum Zitat Ding XH, Zhou LF, Tan YZ et al (2007) Histologic and histogenetic investigations of intracranial hemangioblastomas. Surg Neurol 67:239–245 (discussion 245) CrossRefPubMed Ding XH, Zhou LF, Tan YZ et al (2007) Histologic and histogenetic investigations of intracranial hemangioblastomas. Surg Neurol 67:239–245 (discussion 245) CrossRefPubMed
8.
Zurück zum Zitat Lach B, Gregor A, Rippstein P et al (1999) Angiogenic histogenesis of stromal cells in hemangioblastoma: ultrastructural and immunohistochemical study. Ultrastruct Pathol 23:299–310CrossRefPubMed Lach B, Gregor A, Rippstein P et al (1999) Angiogenic histogenesis of stromal cells in hemangioblastoma: ultrastructural and immunohistochemical study. Ultrastruct Pathol 23:299–310CrossRefPubMed
9.
Zurück zum Zitat Ishizawa K, Komori T, Hirose T (2005) Stromal cells in hemangioblastoma: neuroectodermal differentiation and morphological similarities to ependymoma. Pathol Int 55:377–385CrossRefPubMed Ishizawa K, Komori T, Hirose T (2005) Stromal cells in hemangioblastoma: neuroectodermal differentiation and morphological similarities to ependymoma. Pathol Int 55:377–385CrossRefPubMed
10.
Zurück zum Zitat Ma D, Zhang M, Chen L et al (2011) Hemangioblastomas might derive from neoplastic transformation of neural stem cells/progenitors in the specific niche. Carcinogenesis 32:102–109CrossRefPubMed Ma D, Zhang M, Chen L et al (2011) Hemangioblastomas might derive from neoplastic transformation of neural stem cells/progenitors in the specific niche. Carcinogenesis 32:102–109CrossRefPubMed
11.
Zurück zum Zitat Ma D, Zhu W, Zhang M et al (2011) Identification of tumorigenic cells and implication of their aberrant differentiation in human hemangioblastomas. Cancer Biol Ther 12:727–736CrossRefPubMed Ma D, Zhu W, Zhang M et al (2011) Identification of tumorigenic cells and implication of their aberrant differentiation in human hemangioblastomas. Cancer Biol Ther 12:727–736CrossRefPubMed
12.
Zurück zum Zitat Park DM, Zhuang Z, Chen L et al (2007) von Hippel-Lindau disease-associated hemangioblastomas are derived from embryologic multipotent cells. PLoS Med 4:e60CrossRefPubMedPubMedCentral Park DM, Zhuang Z, Chen L et al (2007) von Hippel-Lindau disease-associated hemangioblastomas are derived from embryologic multipotent cells. PLoS Med 4:e60CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Epari S, Bhatkar R, Moyaidi A et al (2014) Histomorphological spectrum and immunohistochemical characterization of hemangioblastomas: an entity of unclear histogenesis. Indian J Pathol Microbiol 57:542–548CrossRefPubMed Epari S, Bhatkar R, Moyaidi A et al (2014) Histomorphological spectrum and immunohistochemical characterization of hemangioblastomas: an entity of unclear histogenesis. Indian J Pathol Microbiol 57:542–548CrossRefPubMed
14.
Zurück zum Zitat Shively SB, Beltaifa S, Gehrs B et al (2008) Protracted haemangioblastic proliferation and differentiation in von Hippel-Lindau disease. J Pathol 216:514–520CrossRefPubMedPubMedCentral Shively SB, Beltaifa S, Gehrs B et al (2008) Protracted haemangioblastic proliferation and differentiation in von Hippel-Lindau disease. J Pathol 216:514–520CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Stein AA, Schilp AO, Whitfield RD (1960) The histogenesis of hemangioblastoma of the brain. A review of twenty-one cases. J Neurosurg 17:751–761CrossRefPubMed Stein AA, Schilp AO, Whitfield RD (1960) The histogenesis of hemangioblastoma of the brain. A review of twenty-one cases. J Neurosurg 17:751–761CrossRefPubMed
16.
Zurück zum Zitat Welten CM, Keats EC, Ang LC et al (2012) Hemangioblastoma stromal cells show committed stem cell phenotype. Can J Neurol Sci 39:821–827CrossRefPubMed Welten CM, Keats EC, Ang LC et al (2012) Hemangioblastoma stromal cells show committed stem cell phenotype. Can J Neurol Sci 39:821–827CrossRefPubMed
17.
Zurück zum Zitat Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefPubMed Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefPubMed
18.
Zurück zum Zitat Reyes M, Dudek A, Jahagirdar B et al (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Investig 109:337–346CrossRefPubMed Reyes M, Dudek A, Jahagirdar B et al (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Investig 109:337–346CrossRefPubMed
19.
Zurück zum Zitat Zhang G, Zhou J, Fan Q et al (2008) Arterial-venous endothelial cell fate is related to vascular endothelial growth factor and Notch status during human bone mesenchymal stem cell differentiation. FEBS Lett 582:2957–2964CrossRefPubMed Zhang G, Zhou J, Fan Q et al (2008) Arterial-venous endothelial cell fate is related to vascular endothelial growth factor and Notch status during human bone mesenchymal stem cell differentiation. FEBS Lett 582:2957–2964CrossRefPubMed
20.
Zurück zum Zitat Liu Y, Deng B, Zhao Y et al (2013) Differentiated markers in undifferentiated cells: expression of smooth muscle contractile proteins in multipotent bone marrow mesenchymal stem cells. Dev Growth Differ 55:591–605CrossRefPubMed Liu Y, Deng B, Zhao Y et al (2013) Differentiated markers in undifferentiated cells: expression of smooth muscle contractile proteins in multipotent bone marrow mesenchymal stem cells. Dev Growth Differ 55:591–605CrossRefPubMed
21.
22.
Zurück zum Zitat Duffy GP, D’Arcy S, Ahsan T et al (2010) Mesenchymal stem cells overexpressing ephrin-b2 rapidly adopt an early endothelial phenotype with simultaneous reduction of osteogenic potential. Tissue Eng Part A 16:2755–2768CrossRefPubMed Duffy GP, D’Arcy S, Ahsan T et al (2010) Mesenchymal stem cells overexpressing ephrin-b2 rapidly adopt an early endothelial phenotype with simultaneous reduction of osteogenic potential. Tissue Eng Part A 16:2755–2768CrossRefPubMed
23.
Zurück zum Zitat Kurpinski K, Lam H, Chu J et al (2010) Transforming growth factor-beta and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells 28:734–742CrossRefPubMed Kurpinski K, Lam H, Chu J et al (2010) Transforming growth factor-beta and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells 28:734–742CrossRefPubMed
24.
Zurück zum Zitat Foo SS, Turner CJ, Adams S et al (2006) Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124:161–173CrossRefPubMed Foo SS, Turner CJ, Adams S et al (2006) Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124:161–173CrossRefPubMed
25.
Zurück zum Zitat Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753CrossRefPubMed Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753CrossRefPubMed
26.
Zurück zum Zitat Adams RH, Wilkinson GA, Weiss C et al (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13:295–306CrossRefPubMedPubMedCentral Adams RH, Wilkinson GA, Weiss C et al (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13:295–306CrossRefPubMedPubMedCentral
27.
28.
Zurück zum Zitat Fischer A, Schumacher N, Maier M et al (2004) The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 18:901–911CrossRefPubMedPubMedCentral Fischer A, Schumacher N, Maier M et al (2004) The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 18:901–911CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Fischer A, Gessler M (2003) Hey genes in cardiovascular development. Trends Cardiovasc Med 13:221–226CrossRefPubMed Fischer A, Gessler M (2003) Hey genes in cardiovascular development. Trends Cardiovasc Med 13:221–226CrossRefPubMed
30.
Zurück zum Zitat Kageyama R, Ohtsuka T, Shimojo H et al (2008) Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat Neurosci 11:1247–1251CrossRefPubMed Kageyama R, Ohtsuka T, Shimojo H et al (2008) Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat Neurosci 11:1247–1251CrossRefPubMed
31.
Zurück zum Zitat Lawson ND, Scheer N, Pham VN et al (2001) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128:3675–3683PubMed Lawson ND, Scheer N, Pham VN et al (2001) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128:3675–3683PubMed
32.
Zurück zum Zitat Hofmann JJ, Iruela-Arispe ML (2007) Notch signaling in blood vessels: who is talking to whom about what? Circ Res 100:1556–1568CrossRefPubMed Hofmann JJ, Iruela-Arispe ML (2007) Notch signaling in blood vessels: who is talking to whom about what? Circ Res 100:1556–1568CrossRefPubMed
33.
Zurück zum Zitat Villa N, Walker L, Lindsell CE et al (2001) Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech Dev 108:161–164CrossRefPubMed Villa N, Walker L, Lindsell CE et al (2001) Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech Dev 108:161–164CrossRefPubMed
34.
Zurück zum Zitat Roca C, Adams RH (2007) Regulation of vascular morphogenesis by Notch signaling. Genes Dev 21:2511–2524CrossRefPubMed Roca C, Adams RH (2007) Regulation of vascular morphogenesis by Notch signaling. Genes Dev 21:2511–2524CrossRefPubMed
35.
Zurück zum Zitat Swift MR, Weinstein BM (2009) Arterial-venous specification during development. Circ Res 104:576–588CrossRefPubMed Swift MR, Weinstein BM (2009) Arterial-venous specification during development. Circ Res 104:576–588CrossRefPubMed
36.
Zurück zum Zitat Lonser RR, Glenn GM, Walther M et al (2003) von Hippel-Lindau disease. The Lancet 361:2059–2067CrossRef Lonser RR, Glenn GM, Walther M et al (2003) von Hippel-Lindau disease. The Lancet 361:2059–2067CrossRef
37.
Zurück zum Zitat Takada S, Hojo M, Tanigaki K et al (2017) Contribution of endothelial-to-mesenchymal transition to the pathogenesis of human cerebral and orbital cavernous malformations. Neurosurgery 81:176–183CrossRefPubMed Takada S, Hojo M, Tanigaki K et al (2017) Contribution of endothelial-to-mesenchymal transition to the pathogenesis of human cerebral and orbital cavernous malformations. Neurosurgery 81:176–183CrossRefPubMed
39.
Zurück zum Zitat Aruffo A, Stamenkovic I, Melnick M et al (1990) CD44 is the principal cell surface receptor for hyaluronate. Cell 61:1303–1313CrossRefPubMed Aruffo A, Stamenkovic I, Melnick M et al (1990) CD44 is the principal cell surface receptor for hyaluronate. Cell 61:1303–1313CrossRefPubMed
40.
Zurück zum Zitat Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45CrossRefPubMed Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45CrossRefPubMed
41.
Zurück zum Zitat Oswald J, Boxberger S, Jrgensen B et al (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22:377–384CrossRefPubMed Oswald J, Boxberger S, Jrgensen B et al (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22:377–384CrossRefPubMed
43.
Zurück zum Zitat Böhling T, Mäenpää A, Timonen T et al (1996) Different expression of adhesion molecules on stromal cells and endothelial cells of capillary hemangioblastoma. Acta Neuropathol 92:461–466CrossRefPubMed Böhling T, Mäenpää A, Timonen T et al (1996) Different expression of adhesion molecules on stromal cells and endothelial cells of capillary hemangioblastoma. Acta Neuropathol 92:461–466CrossRefPubMed
44.
Zurück zum Zitat Bai J, Wang YJ, Liu L et al (2014) Ephrin B2 and EphB4 selectively mark arterial and venous vessels in cerebral arteriovenous malformation. J Int Med Res 42:405–415CrossRefPubMed Bai J, Wang YJ, Liu L et al (2014) Ephrin B2 and EphB4 selectively mark arterial and venous vessels in cerebral arteriovenous malformation. J Int Med Res 42:405–415CrossRefPubMed
45.
46.
48.
Zurück zum Zitat Li S, Wang R, Wang Y et al (2014) Receptors of the Notch signaling pathway are associated with hemorrhage of brain arteriovenous malformations. Mol Med Rep 9:2233–2238CrossRefPubMed Li S, Wang R, Wang Y et al (2014) Receptors of the Notch signaling pathway are associated with hemorrhage of brain arteriovenous malformations. Mol Med Rep 9:2233–2238CrossRefPubMed
49.
Zurück zum Zitat Yamashita J, Itoh H, Hirashima M et al (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408:92–96CrossRefPubMed Yamashita J, Itoh H, Hirashima M et al (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408:92–96CrossRefPubMed
50.
Zurück zum Zitat Boscolo E, Stewart CL, Greenberger S et al (2011) JAGGED1 signaling regulates hemangioma stem cell-to-pericyte/vascular smooth muscle cell differentiation. Arterioscler Thromb Vasc Biol 31:2181–2192CrossRefPubMedPubMedCentral Boscolo E, Stewart CL, Greenberger S et al (2011) JAGGED1 signaling regulates hemangioma stem cell-to-pericyte/vascular smooth muscle cell differentiation. Arterioscler Thromb Vasc Biol 31:2181–2192CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Alles JU, Bosslet K, Schachenmayr W (1986) Hemangioblastoma of the cerebellum—an immunocytochemical study. Clin Neuropathol 5:238–241PubMed Alles JU, Bosslet K, Schachenmayr W (1986) Hemangioblastoma of the cerebellum—an immunocytochemical study. Clin Neuropathol 5:238–241PubMed
52.
Zurück zum Zitat Jurco SR, Nadji M, Harvey DG et al (1982) Hemangioblastomas: histogenesis of the stromal cell studied by immunocytochemistry. Hum Pathol 13:13–18CrossRefPubMed Jurco SR, Nadji M, Harvey DG et al (1982) Hemangioblastomas: histogenesis of the stromal cell studied by immunocytochemistry. Hum Pathol 13:13–18CrossRefPubMed
53.
Zurück zum Zitat Mizuno J, Iwata K, Takei Y (1993) Immunohistochemical study of hemangioblastoma with special reference to its cytogenesis. Neurol Med Chir (Tokyo) 33:420–424CrossRef Mizuno J, Iwata K, Takei Y (1993) Immunohistochemical study of hemangioblastoma with special reference to its cytogenesis. Neurol Med Chir (Tokyo) 33:420–424CrossRef
54.
Zurück zum Zitat Bleistein M, Geiger K, Franz K et al (2000) Transthyretin and transferrin in hemangioblastoma stromal cells. Pathol Res Pract 196:675–681CrossRefPubMed Bleistein M, Geiger K, Franz K et al (2000) Transthyretin and transferrin in hemangioblastoma stromal cells. Pathol Res Pract 196:675–681CrossRefPubMed
55.
Zurück zum Zitat Becker I, Paulus W, Roggendorf W (1989) Histogenesis of stromal cells in cerebellar hemangioblastomas. An immunohistochemical study. Am J Pathol 134:271–275PubMedPubMedCentral Becker I, Paulus W, Roggendorf W (1989) Histogenesis of stromal cells in cerebellar hemangioblastomas. An immunohistochemical study. Am J Pathol 134:271–275PubMedPubMedCentral
56.
Zurück zum Zitat Nemes Z (1992) Fibrohistiocytic differentiation in capillary hemangioblastoma. Hum Pathol 23:805–810CrossRefPubMed Nemes Z (1992) Fibrohistiocytic differentiation in capillary hemangioblastoma. Hum Pathol 23:805–810CrossRefPubMed
57.
Zurück zum Zitat Adams SA, Hilton DA (2002) Recurrent haemangioblastoma with glial differentiation. Neuropathol Appl Neurobiol 28:142–146CrossRefPubMed Adams SA, Hilton DA (2002) Recurrent haemangioblastoma with glial differentiation. Neuropathol Appl Neurobiol 28:142–146CrossRefPubMed
58.
Zurück zum Zitat Tanimura A, Nakamura Y, Hachisuka H et al (1984) Hemangioblastoma of the central nervous system: nature of the stromal cells as studied by the immunoperoxidase technique. Hum Pathol 15:866–869CrossRefPubMed Tanimura A, Nakamura Y, Hachisuka H et al (1984) Hemangioblastoma of the central nervous system: nature of the stromal cells as studied by the immunoperoxidase technique. Hum Pathol 15:866–869CrossRefPubMed
59.
Zurück zum Zitat Gläsker S, Li J, Xia JB et al (2006) Hemangioblastomas share protein expression with embryonal hemangioblast progenitor cell. Cancer Res 66:4167–4172CrossRefPubMed Gläsker S, Li J, Xia JB et al (2006) Hemangioblastomas share protein expression with embryonal hemangioblast progenitor cell. Cancer Res 66:4167–4172CrossRefPubMed
60.
Zurück zum Zitat Shively SB, Falke EA, Li J et al (2011) Developmentally arrested structures preceding cerebellar tumors in von Hippel-Lindau disease. Mod Pathol 24:1023–1030CrossRefPubMedPubMedCentral Shively SB, Falke EA, Li J et al (2011) Developmentally arrested structures preceding cerebellar tumors in von Hippel-Lindau disease. Mod Pathol 24:1023–1030CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Vortmeyer AO, Frank S, Jeong SY et al (2003) Developmental arrest of angioblastic lineage initiates tumorigenesis in von Hippel-Lindau disease. Cancer Res 63:7051–7055PubMed Vortmeyer AO, Frank S, Jeong SY et al (2003) Developmental arrest of angioblastic lineage initiates tumorigenesis in von Hippel-Lindau disease. Cancer Res 63:7051–7055PubMed
Metadaten
Titel
Stromal cells of hemangioblastomas exhibit mesenchymal stem cell-derived vascular progenitor cell properties
verfasst von
Shigeki Takada
Masato Hojo
Noriyoshi Takebe
Kenji Tanigaki
Susumu Miyamoto
Publikationsdatum
23.06.2018
Verlag
Springer Singapore
Erschienen in
Brain Tumor Pathology / Ausgabe 4/2018
Print ISSN: 1433-7398
Elektronische ISSN: 1861-387X
DOI
https://doi.org/10.1007/s10014-018-0323-2

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.