Skip to main content
Erschienen in: Calcified Tissue International 3/2012

01.09.2012 | Original Research

Strontium Is Incorporated in Different Levels into Bones and Teeth of Rats Treated with Strontium Ranelate

verfasst von: Josianne P. Oliveira, William Querido, Rogério J. Caldas, Andrea P. C. Campos, Leida G. Abraçado, Marcos Farina

Erschienen in: Calcified Tissue International | Ausgabe 3/2012

Einloggen, um Zugang zu erhalten

Abstract

The aim of this study was to evaluate the strontium incorporation into specific bones and teeth of rats treated with strontium ranelate. The relative strontium levels [Sr/(Ca + Sr) ratio] were obtained by synchrotron radiation micro X-ray fluorescence. The incisor teeth were further examined by energy dispersive X-ray spectroscopy (EDS) in a scanning electron microscope. The isolated mineral phase was investigated by EDS in a transmission electron microscope and X-ray diffraction. The strontium content was markedly increased in animals treated with strontium ranelate, with different incorporation levels found among specific bones, regions within the same bone and teeth. The highest strontium levels were observed in the iliac crest, mandible and calvaria, while the lowest were observed in the femoral diaphysis, lumbar vertebrae, rib and alveolar bone. The strontium content was higher in the femoral neck than in the diaphysis. The strontium levels also varied within the alveolar bone. High levels of strontium were found in the incisor tooth, with values similar to those in the iliac crest. Strontium was observed in both enamel and dentin. The strontium content of the molar tooth was negligible. Strontium was incorporated into the mineral substance, with up to one strontium replacing one out of 10 calcium ions within the apatite crystal lattice. The mineral from treated animals presented increased lattice parameters, which might be associated to their bone strontium contents. In conclusion, the incorporation of strontium occurred in different levels into distinct bones, regions within the same bone and teeth of rats treated with strontium ranelate.
Literatur
1.
Zurück zum Zitat Ammann P (2005) Strontium ranelate: a novel mode of action leading to renewed bone quality. Osteoporos Int 16(Suppl 1):S11–S15PubMedCrossRef Ammann P (2005) Strontium ranelate: a novel mode of action leading to renewed bone quality. Osteoporos Int 16(Suppl 1):S11–S15PubMedCrossRef
2.
Zurück zum Zitat Marie PJ (2006) Strontium ranelate: a dual mode of action rebalancing bone turnover in favour of bone formation. Curr Opin Rheumatol 18(Suppl 1):S11–S15PubMedCrossRef Marie PJ (2006) Strontium ranelate: a dual mode of action rebalancing bone turnover in favour of bone formation. Curr Opin Rheumatol 18(Suppl 1):S11–S15PubMedCrossRef
3.
Zurück zum Zitat Ammann P, Shen V, Robin B, Mauras Y, Bonjour JP, Rizzoli R (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19:2012–2020PubMedCrossRef Ammann P, Shen V, Robin B, Mauras Y, Bonjour JP, Rizzoli R (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19:2012–2020PubMedCrossRef
4.
Zurück zum Zitat Reginster JY, Felsenberg D, Boonen S, Diez-Perez A, Rizzoli R, Brandi ML, Spector TD, Brixen K, Goemaere S, Cormier C, Balogh A, Delmas PD, Meunier PJ (2008) Effects of long-term strontium ranelate treatment on the risk of nonvertebral and vertebral fractures in postmenopausal osteoporosis: results of a five-year, randomized, placebo-controlled trial. Arthritis Rheum 58:1687–1695PubMedCrossRef Reginster JY, Felsenberg D, Boonen S, Diez-Perez A, Rizzoli R, Brandi ML, Spector TD, Brixen K, Goemaere S, Cormier C, Balogh A, Delmas PD, Meunier PJ (2008) Effects of long-term strontium ranelate treatment on the risk of nonvertebral and vertebral fractures in postmenopausal osteoporosis: results of a five-year, randomized, placebo-controlled trial. Arthritis Rheum 58:1687–1695PubMedCrossRef
5.
Zurück zum Zitat Meunier PJ, Roux C, Ortolani S, Diaz-Curiel M, Compston J, Marquis P, Cormier C, Isaia G, Badurski J, Wark JD, Collette J, Reginster JY (2009) Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis. Osteoporos Int 20:1663–1673PubMedCrossRef Meunier PJ, Roux C, Ortolani S, Diaz-Curiel M, Compston J, Marquis P, Cormier C, Isaia G, Badurski J, Wark JD, Collette J, Reginster JY (2009) Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis. Osteoporos Int 20:1663–1673PubMedCrossRef
6.
Zurück zum Zitat Dorozhkin SV (2009) Calcium orthophosphates in nature, biology and medicine. Materials 2:399–498CrossRef Dorozhkin SV (2009) Calcium orthophosphates in nature, biology and medicine. Materials 2:399–498CrossRef
7.
Zurück zum Zitat Pasteris JD, Wopenka B, Valsami-Jones E (2008) Bone and tooth mineralization: why apatite? Elements 4:97–104CrossRef Pasteris JD, Wopenka B, Valsami-Jones E (2008) Bone and tooth mineralization: why apatite? Elements 4:97–104CrossRef
8.
Zurück zum Zitat Gedalia I (1975) Strontium uptake by the developing femur bone and deciduous dentition. J Dent Res 54(spec no. B):B125–B130PubMed Gedalia I (1975) Strontium uptake by the developing femur bone and deciduous dentition. J Dent Res 54(spec no. B):B125–B130PubMed
9.
Zurück zum Zitat Li Z, Lu WW, Deng L, Chiu PK, Fang D, Lam RW, Leong JC, Luk KD (2010) The morphology and lattice structure of bone crystal after strontium treatment in goats. J Bone Miner Metab 28:25–34PubMedCrossRef Li Z, Lu WW, Deng L, Chiu PK, Fang D, Lam RW, Leong JC, Luk KD (2010) The morphology and lattice structure of bone crystal after strontium treatment in goats. J Bone Miner Metab 28:25–34PubMedCrossRef
10.
Zurück zum Zitat Boivin G, Deloffre P, Perrat B, Panczer G, Boudeulle M, Mauras Y, Allain P, Tsouderos Y, Meunier PJ (1996) Strontium distribution and interactions with bone mineral in monkey iliac bone after strontium salt (S 12911) administration. J Bone Miner Res 11:1302–1311PubMedCrossRef Boivin G, Deloffre P, Perrat B, Panczer G, Boudeulle M, Mauras Y, Allain P, Tsouderos Y, Meunier PJ (1996) Strontium distribution and interactions with bone mineral in monkey iliac bone after strontium salt (S 12911) administration. J Bone Miner Res 11:1302–1311PubMedCrossRef
11.
Zurück zum Zitat Farlay D, Boivin G, Panczer G, Lalande A, Meunier PJ (2005) Long-term strontium ranelate administration in monkeys preserves characteristics of bone mineral crystals and degree of mineralization of bone. J Bone Miner Res 20:1569–1578PubMedCrossRef Farlay D, Boivin G, Panczer G, Lalande A, Meunier PJ (2005) Long-term strontium ranelate administration in monkeys preserves characteristics of bone mineral crystals and degree of mineralization of bone. J Bone Miner Res 20:1569–1578PubMedCrossRef
12.
Zurück zum Zitat Boivin G, Farlay D, Khebbab MT, Jaurand X, Delmas PD, Meunier PJ (2010) In osteoporotic women treated with strontium ranelate, strontium is located in bone formed during treatment with a maintained degree of mineralization. Osteoporos Int 21:667–677PubMedCrossRef Boivin G, Farlay D, Khebbab MT, Jaurand X, Delmas PD, Meunier PJ (2010) In osteoporotic women treated with strontium ranelate, strontium is located in bone formed during treatment with a maintained degree of mineralization. Osteoporos Int 21:667–677PubMedCrossRef
13.
Zurück zum Zitat Li C, Paris O, Siegel S, Roschger P, Paschalis EP, Klaushofer K, Fratzl P (2010) Strontium is incorporated into mineral crystals only in newly formed bone during strontium ranelate treatment. J Bone Miner Res 25:968–975PubMed Li C, Paris O, Siegel S, Roschger P, Paschalis EP, Klaushofer K, Fratzl P (2010) Strontium is incorporated into mineral crystals only in newly formed bone during strontium ranelate treatment. J Bone Miner Res 25:968–975PubMed
14.
Zurück zum Zitat Roschger P, Manjubala I, Zoeger N, Meirer F, Simon R, Li C, Fratzl-Zelman N, Misof BM, Paschalis EP, Streli C, Fratzl P, Klaushofer K (2010) Bone material quality in transiliac bone biopsies of postmenopausal osteoporotic women after 3 years of strontium ranelate treatment. J Bone Miner Res 25:891–900PubMedCrossRef Roschger P, Manjubala I, Zoeger N, Meirer F, Simon R, Li C, Fratzl-Zelman N, Misof BM, Paschalis EP, Streli C, Fratzl P, Klaushofer K (2010) Bone material quality in transiliac bone biopsies of postmenopausal osteoporotic women after 3 years of strontium ranelate treatment. J Bone Miner Res 25:891–900PubMedCrossRef
15.
Zurück zum Zitat Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C (2001) Incorporation and distribution of strontium in bone. Bone 28:446–453PubMedCrossRef Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C (2001) Incorporation and distribution of strontium in bone. Bone 28:446–453PubMedCrossRef
16.
Zurück zum Zitat Boivin G, Meunier PJ (2003) The mineralization of bone tissue: a forgotten dimension in osteoporosis research. Osteoporos Int 14(Suppl 3):S19–S24PubMed Boivin G, Meunier PJ (2003) The mineralization of bone tissue: a forgotten dimension in osteoporosis research. Osteoporos Int 14(Suppl 3):S19–S24PubMed
17.
Zurück zum Zitat Cazalbou S, Eichert D, Ranz X, Drouet C, Combes C, Harmand MF, Rey C (2005) Ion exchanges in apatites for biomedical application. J Mater Sci Mater Med 16:405–409PubMedCrossRef Cazalbou S, Eichert D, Ranz X, Drouet C, Combes C, Harmand MF, Rey C (2005) Ion exchanges in apatites for biomedical application. J Mater Sci Mater Med 16:405–409PubMedCrossRef
18.
Zurück zum Zitat Cabrera WE, Schrooten I, De Broe ME, D’Haese PC (1999) Strontium and bone. J Bone Miner Res 14:661–668PubMedCrossRef Cabrera WE, Schrooten I, De Broe ME, D’Haese PC (1999) Strontium and bone. J Bone Miner Res 14:661–668PubMedCrossRef
19.
Zurück zum Zitat Marie PJ, Hott M, Modrowski D, De Pollak C, Guillemain J, Deloffre P, Tsouderos Y (1993) An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats. J Bone Miner Res 8:607–615PubMedCrossRef Marie PJ, Hott M, Modrowski D, De Pollak C, Guillemain J, Deloffre P, Tsouderos Y (1993) An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats. J Bone Miner Res 8:607–615PubMedCrossRef
20.
Zurück zum Zitat Pemmer B, Hofstaetter JG, Meirer F, Smolek S, Wobrauschek P, Simon R, Fuchs RK, Allen MR, Condon KW, Reinwald S, Phipps RJ, Burr DB, Paschalis EP, Klaushofer K, Streli C, Roschger P (2011) Increased strontium uptake in trabecular bone of ovariectomized calcium-deficient rats treated with strontium ranelate or strontium chloride. J Synchrotron Radiat 18(pt 6):835–841PubMedCrossRef Pemmer B, Hofstaetter JG, Meirer F, Smolek S, Wobrauschek P, Simon R, Fuchs RK, Allen MR, Condon KW, Reinwald S, Phipps RJ, Burr DB, Paschalis EP, Klaushofer K, Streli C, Roschger P (2011) Increased strontium uptake in trabecular bone of ovariectomized calcium-deficient rats treated with strontium ranelate or strontium chloride. J Synchrotron Radiat 18(pt 6):835–841PubMedCrossRef
21.
Zurück zum Zitat Pérez C, Radtke M, Sánchez HJ, Tolentino H, Neuenshwander R, Barg W, Rubio M, Bueno MIS, Raimundo IM, Rohwedder JJR (1999) Synchrotron radiation X-ray fluorescence at the LNLS beamline instrumentation and experiments. X-Ray Spectrom 28:320–326CrossRef Pérez C, Radtke M, Sánchez HJ, Tolentino H, Neuenshwander R, Barg W, Rubio M, Bueno MIS, Raimundo IM, Rohwedder JJR (1999) Synchrotron radiation X-ray fluorescence at the LNLS beamline instrumentation and experiments. X-Ray Spectrom 28:320–326CrossRef
22.
Zurück zum Zitat Lopes RT, Lima I, Pereira GR, Pérez CA (2011) Synchrotron radiation X-ray microfluorescence techniques and biological applications. Pramana J Phys 76:271–279CrossRef Lopes RT, Lima I, Pereira GR, Pérez CA (2011) Synchrotron radiation X-ray microfluorescence techniques and biological applications. Pramana J Phys 76:271–279CrossRef
23.
Zurück zum Zitat Pérez CA, Sánchez HJ, Barrea RA, Grenón M, Abraham J (2004) Microscopic X-ray fluorescence analysis of human dental calculus using synchrotron radiation. J Anal At Spectrom 19:392–397CrossRef Pérez CA, Sánchez HJ, Barrea RA, Grenón M, Abraham J (2004) Microscopic X-ray fluorescence analysis of human dental calculus using synchrotron radiation. J Anal At Spectrom 19:392–397CrossRef
24.
Zurück zum Zitat Solé VA, Papillon E, Cotte M, Walter Ph, Susini J (2007) A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta Part B 62:63–68CrossRef Solé VA, Papillon E, Cotte M, Walter Ph, Susini J (2007) A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta Part B 62:63–68CrossRef
25.
Zurück zum Zitat Weiner S, Price PA (1986) Disaggregation of bone into crystals. Calcif Tissue Int 39:365–375PubMedCrossRef Weiner S, Price PA (1986) Disaggregation of bone into crystals. Calcif Tissue Int 39:365–375PubMedCrossRef
26.
Zurück zum Zitat Mahamid J, Sharir A, Addadi L, Weiner S (2008) Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc Natl Acad Sci USA 105:12748–12753PubMedCrossRef Mahamid J, Sharir A, Addadi L, Weiner S (2008) Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc Natl Acad Sci USA 105:12748–12753PubMedCrossRef
27.
Zurück zum Zitat Shih WJWM, Hon MH (2005) Morphology and crystallinity of the nanosized hydroxyapatite synthesized by hydrolysis using cetyltrimethylammonium bromide (CTAB) as a surfactant. J Cryst Growth 275:e2339–e2344CrossRef Shih WJWM, Hon MH (2005) Morphology and crystallinity of the nanosized hydroxyapatite synthesized by hydrolysis using cetyltrimethylammonium bromide (CTAB) as a surfactant. J Cryst Growth 275:e2339–e2344CrossRef
28.
Zurück zum Zitat Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporos Int 20:1013–1021PubMedCrossRef Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporos Int 20:1013–1021PubMedCrossRef
29.
Zurück zum Zitat Fraser R, Harrison M, Ibbertson K (1960) The rate of calcium turnover in bone. Measurement by a tracer test using stable strontium. Q J Med 29:85–111PubMed Fraser R, Harrison M, Ibbertson K (1960) The rate of calcium turnover in bone. Measurement by a tracer test using stable strontium. Q J Med 29:85–111PubMed
30.
Zurück zum Zitat Reeve J, Wootton R, Hesp B (1976) A new method for calculating the accretion rate of bone calcium and some observations on the suitability of strontium-85 as a tracer for bone calcium. Calcif Tissue Res (2):121–135 Reeve J, Wootton R, Hesp B (1976) A new method for calculating the accretion rate of bone calcium and some observations on the suitability of strontium-85 as a tracer for bone calcium. Calcif Tissue Res (2):121–135
31.
Zurück zum Zitat Reeve J, Arlot M, Wootton R, Edouard C, Tellez M, Hesp R, Green JR, Meunier PJ (1988) Skeletal blood flow, iliac histomorphometry, and strontium kinetics in osteoporosis: a relationship between blood flow and corrected apposition rate. J Clin Endocrinol Metab 66:1124–1131PubMedCrossRef Reeve J, Arlot M, Wootton R, Edouard C, Tellez M, Hesp R, Green JR, Meunier PJ (1988) Skeletal blood flow, iliac histomorphometry, and strontium kinetics in osteoporosis: a relationship between blood flow and corrected apposition rate. J Clin Endocrinol Metab 66:1124–1131PubMedCrossRef
32.
Zurück zum Zitat Kirkeby OJ, Berg-Larsen T (1991) Regional blood flow and strontium-85 incorporation rate in the rat hindlimb skeleton. J Orthop Res 9:862–868PubMedCrossRef Kirkeby OJ, Berg-Larsen T (1991) Regional blood flow and strontium-85 incorporation rate in the rat hindlimb skeleton. J Orthop Res 9:862–868PubMedCrossRef
33.
Zurück zum Zitat Schour I, Massler M (1942) The teeth. In: Griffith JQ, Farris EJ (eds) The rat in laboratory investigation. J. B. Lippincott, Philadelphia, pp 104–165 Schour I, Massler M (1942) The teeth. In: Griffith JQ, Farris EJ (eds) The rat in laboratory investigation. J. B. Lippincott, Philadelphia, pp 104–165
34.
Zurück zum Zitat Addison WHF, Appleton JL (1915) The structure and growth of the incisor teeth of the albino rat. J Morphol 26:43–96CrossRef Addison WHF, Appleton JL (1915) The structure and growth of the incisor teeth of the albino rat. J Morphol 26:43–96CrossRef
35.
Zurück zum Zitat Robinson C, Connell S, Kirkham J, Brookes SJ, Shore RC, Smith AM (2004) The effect of fluoride on the developing tooth. Caries Res 38:268–276PubMedCrossRef Robinson C, Connell S, Kirkham J, Brookes SJ, Shore RC, Smith AM (2004) The effect of fluoride on the developing tooth. Caries Res 38:268–276PubMedCrossRef
Metadaten
Titel
Strontium Is Incorporated in Different Levels into Bones and Teeth of Rats Treated with Strontium Ranelate
verfasst von
Josianne P. Oliveira
William Querido
Rogério J. Caldas
Andrea P. C. Campos
Leida G. Abraçado
Marcos Farina
Publikationsdatum
01.09.2012
Verlag
Springer-Verlag
Erschienen in
Calcified Tissue International / Ausgabe 3/2012
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-012-9625-2

Weitere Artikel der Ausgabe 3/2012

Calcified Tissue International 3/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.