Skip to main content
Erschienen in: Brain Structure and Function 5/2018

16.02.2018 | Short Communication

Structural disconnection is responsible for increased functional connectivity in multiple sclerosis

verfasst von: Kevin R. Patel, Sean Tobyne, Daria Porter, John Daniel Bireley, Victoria Smith, Eric Klawiter

Erschienen in: Brain Structure and Function | Ausgabe 5/2018

Einloggen, um Zugang zu erhalten

Abstract

Increased synchrony within neuroanatomical networks is often observed in neurophysiologic studies of human brain disease. Most often, this phenomenon is ascribed to a compensatory process in the face of injury, though evidence supporting such accounts is limited. Given the known dependence of resting-state functional connectivity (rsFC) on underlying structural connectivity (SC), we examine an alternative hypothesis: that topographical changes in SC, specifically particular patterns of disconnection, contribute to increased network rsFC. We obtain measures of rsFC using fMRI and SC using probabilistic tractography in 50 healthy and 28 multiple sclerosis subjects. Using a computational model of neuronal dynamics, we simulate BOLD using healthy subject SC to couple regions. We find that altering the model by introducing structural disconnection patterns observed in those multiple sclerosis subjects with high network rsFC generates simulations with high rsFC as well, suggesting that disconnection itself plays a role in producing high network functional connectivity. We then examine SC data in individuals. In multiple sclerosis subjects with high network rsFC, we find a preferential disconnection between the relevant network and wider system. We examine the significance of such network isolation by introducing random disconnection into the model. As observed empirically, simulated network rsFC increases with removal of connections bridging a community with the remainder of the brain. We thus show that structural disconnection known to occur in multiple sclerosis contributes to network rsFC changes in multiple sclerosis and further that community isolation is responsible for elevated network functional connectivity.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Breakspear M, Terry JR, Friston KJ (2003) Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics. Network 14:703–732CrossRefPubMed Breakspear M, Terry JR, Friston KJ (2003) Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics. Network 14:703–732CrossRefPubMed
Metadaten
Titel
Structural disconnection is responsible for increased functional connectivity in multiple sclerosis
verfasst von
Kevin R. Patel
Sean Tobyne
Daria Porter
John Daniel Bireley
Victoria Smith
Eric Klawiter
Publikationsdatum
16.02.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 5/2018
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-018-1619-z

Weitere Artikel der Ausgabe 5/2018

Brain Structure and Function 5/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.