Skip to main content
Erschienen in:

11.09.2024 | Review

Subcortical Aphasia: An Update

verfasst von: Victor Nascimento Almeida, Marcia Radanovic

Erschienen in: Current Neurology and Neuroscience Reports | Ausgabe 11/2024

Einloggen, um Zugang zu erhalten

Abstract

Purpose of review

This review aims to rediscuss the leading theories concerning the role of basal ganglia and the thalamus in the genesis of aphasic symptoms in the absence of gross anatomical lesions in cortical language areas as assessed by conventional neuroimaging studies.

Recent findings

New concepts in language processing and modern neuroimaging techniques have enabled some progress in resolving the impasse between the current dominant theories: (a) direct and specific linguistic processing and (b) subcortical structures as processing relays in domain-general functions. Of particular interest are studies of connectivity based on functional magnetic resonance imaging (MRI) and tractography that highlight the impact of white matter pathway lesions on aphasia development and recovery.

Summary

Connectivity studies have put into evidence the central role of the arcuate fasciculus (AF), inferior frontal occipital fasciculus (IFOF), and uncinate fasciculus (UF) in the genesis of aphasia. Regarding the thalamus, its involvement in lexical-semantic processing through modulation of the frontal cortex is becoming increasingly apparent.
Literatur
1.
Zurück zum Zitat Broca P. Siège De La faculté Du langage articulé. Perte de la parole. Ramollissement Chronique Et destruction Partielle Du lobe antèrieur Gauche Du Cervau. Bull Soc Anthropol. 1861;2:235. French. Broca P. Siège De La faculté Du langage articulé. Perte de la parole. Ramollissement Chronique Et destruction Partielle Du lobe antèrieur Gauche Du Cervau. Bull Soc Anthropol. 1861;2:235. French.
2.
Zurück zum Zitat Wernicke C. Der Aphasische Symptomencomplex. Breslau: Cohn & Weigert; 1874. German. Wernicke C. Der Aphasische Symptomencomplex. Breslau: Cohn & Weigert; 1874. German.
5.
Zurück zum Zitat Kussmaul A. Disturbances of speech. Cyclopedie Pract Med. 1877;14:581. Kussmaul A. Disturbances of speech. Cyclopedie Pract Med. 1877;14:581.
6.
Zurück zum Zitat Marie P. The third left frontal convolution plays no special role in the function of language. Semaine Médicale. 1906;26:241–47. French. Marie P. The third left frontal convolution plays no special role in the function of language. Semaine Médicale. 1906;26:241–47. French.
7.
Zurück zum Zitat Von Monakow C. Die Lokalisation in Grosshirn. Wiesbaden: Bergmann; 1914. Von Monakow C. Die Lokalisation in Grosshirn. Wiesbaden: Bergmann; 1914.
8.
Zurück zum Zitat Dejerine J. L’aphasie motrice: sa localisation et sa physiologie pathologique. Presse Médicale. 1906;57:453–57. French. Dejerine J. L’aphasie motrice: sa localisation et sa physiologie pathologique. Presse Médicale. 1906;57:453–57. French.
9.
Zurück zum Zitat Samra K, Riklan M, Levita E, Zimmerman J, Waltz JM, Bergmann L, Cooper IS. Language and speech correlates of anatomically verified lesions in thalamic surgery for parkinsonism. J Speech Hear Res. 1969;12:510–40.CrossRefPubMed Samra K, Riklan M, Levita E, Zimmerman J, Waltz JM, Bergmann L, Cooper IS. Language and speech correlates of anatomically verified lesions in thalamic surgery for parkinsonism. J Speech Hear Res. 1969;12:510–40.CrossRefPubMed
10.
Zurück zum Zitat Darley FL, Brown JR, Swenson WM. Language changes after neurosurgery for parkinsonism. Brain Lang. 1975;2:65–9.CrossRefPubMed Darley FL, Brown JR, Swenson WM. Language changes after neurosurgery for parkinsonism. Brain Lang. 1975;2:65–9.CrossRefPubMed
11.
Zurück zum Zitat Ojemann GA. Language and the thalamus: object naming and recall during and after thalamic stimulation. Brain Lang. 1975;2:101–20.CrossRefPubMed Ojemann GA. Language and the thalamus: object naming and recall during and after thalamic stimulation. Brain Lang. 1975;2:101–20.CrossRefPubMed
12.
Zurück zum Zitat Penfield W, Roberts L. Speech and brain mechanisms. Princeton: Princeton Univ. Press; 1959. Penfield W, Roberts L. Speech and brain mechanisms. Princeton: Princeton Univ. Press; 1959.
13.
Zurück zum Zitat Schuell H, Jenkins JJ, Jimenez-Pabon E. Aphasia in adults. New York: Harper & Row; 1965. Schuell H, Jenkins JJ, Jimenez-Pabon E. Aphasia in adults. New York: Harper & Row; 1965.
14.
15.
Zurück zum Zitat Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.CrossRefPubMed Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.CrossRefPubMed
16.
Zurück zum Zitat Copland DA, Brownsett S, Iyer K, Angwin AJ. Corticostriatal Regulation of Language Functions. Neuropsychol Rev. 2021;31:472–494.** In this review, the authors argue for a domain-general regulatory role of corticostriatal systems in language tasks involving uncertainty or conflict and which demand selection, sequencing, and cognitive control. Copland DA, Brownsett S, Iyer K, Angwin AJ. Corticostriatal Regulation of Language Functions. Neuropsychol Rev. 2021;31:472–494.** In this review, the authors argue for a domain-general regulatory role of corticostriatal systems in language tasks involving uncertainty or conflict and which demand selection, sequencing, and cognitive control.
17.
Zurück zum Zitat Frank MJ. Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw. 2006;19:1120–36.CrossRefPubMed Frank MJ. Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw. 2006;19:1120–36.CrossRefPubMed
18.
Zurück zum Zitat Houk JC, Bastianen C, Fansler D, Fishbach A, Fraser D, Reber PJ, Roy SA, Simo LS. Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philos Trans R Soc Lond B Biol Sci. 2007;362:1573–83.CrossRefPubMedPubMedCentral Houk JC, Bastianen C, Fansler D, Fishbach A, Fraser D, Reber PJ, Roy SA, Simo LS. Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philos Trans R Soc Lond B Biol Sci. 2007;362:1573–83.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Damasio AR, Damasio H, Rizzo M, Varney N, Gersh F. Aphasia with nonhemorrhagic lesions in the basal ganglia and internal capsule. Arch Neurol. 1982;39:15–24.CrossRefPubMed Damasio AR, Damasio H, Rizzo M, Varney N, Gersh F. Aphasia with nonhemorrhagic lesions in the basal ganglia and internal capsule. Arch Neurol. 1982;39:15–24.CrossRefPubMed
20.
Zurück zum Zitat Naeser MA, Alexander MP, Helm-Estabrooks N, Levine HL, Laughlin SA, Geschwind N. Aphasia with predominantly subcortical lesion sites: description of three capsular/putaminal aphasia syndromes. Arch Neurol. 1982;39:2–14.CrossRefPubMed Naeser MA, Alexander MP, Helm-Estabrooks N, Levine HL, Laughlin SA, Geschwind N. Aphasia with predominantly subcortical lesion sites: description of three capsular/putaminal aphasia syndromes. Arch Neurol. 1982;39:2–14.CrossRefPubMed
21.
Zurück zum Zitat Cappa SF, Cavallotti G, Guidotti M, Papagno C, Vignolo LA. Subcortical aphasia: two clinical-CT scan correlation studies. Cortex. 1983;19:227–41.CrossRefPubMed Cappa SF, Cavallotti G, Guidotti M, Papagno C, Vignolo LA. Subcortical aphasia: two clinical-CT scan correlation studies. Cortex. 1983;19:227–41.CrossRefPubMed
22.
Zurück zum Zitat Mega MS, Alexander MP. Subcortical aphasia: the core profile of capsulostriatal infarction. Neurology. 1994;44:1824–9.CrossRefPubMed Mega MS, Alexander MP. Subcortical aphasia: the core profile of capsulostriatal infarction. Neurology. 1994;44:1824–9.CrossRefPubMed
23.
Zurück zum Zitat Wallesch CW, Papagno C. Subcortical aphasia. In: Rose FC, Whurr R, Wyke MA, editors. Aphasia. London: Whurr; 1988. Wallesch CW, Papagno C. Subcortical aphasia. In: Rose FC, Whurr R, Wyke MA, editors. Aphasia. London: Whurr; 1988.
24.
Zurück zum Zitat Crosson B, Benefield H, Cato MA, Sadek JR, Moore AB, Wierenga CE, Gopinath K, Soltysik D, Bauer RM, Auerbach EJ, Gökçay D, Leonard CM, Briggs RW. Left and right basal ganglia and frontal activity during language generation: contributions to lexical, semantic, and phonological processes. J Int Neuropsychol Soc. 2003;9:1061–77.CrossRefPubMed Crosson B, Benefield H, Cato MA, Sadek JR, Moore AB, Wierenga CE, Gopinath K, Soltysik D, Bauer RM, Auerbach EJ, Gökçay D, Leonard CM, Briggs RW. Left and right basal ganglia and frontal activity during language generation: contributions to lexical, semantic, and phonological processes. J Int Neuropsychol Soc. 2003;9:1061–77.CrossRefPubMed
25.
Zurück zum Zitat Longworth CE, Keenan SE, Barker RA, Marslen-Wilson WD, Tyler LK. The basal ganglia and rule-governed language use: evidence from vascular and degenerative conditions. Brain. 2005;128:584–96.CrossRefPubMed Longworth CE, Keenan SE, Barker RA, Marslen-Wilson WD, Tyler LK. The basal ganglia and rule-governed language use: evidence from vascular and degenerative conditions. Brain. 2005;128:584–96.CrossRefPubMed
26.
Zurück zum Zitat Camerino I, Ferreira J, Vonk JM, Kessels RPC, de Leeuw FE, Roelofs A, Copland D, Piai V. Systematic Review and Meta-Analyses of Word Production Abilities in Dysfunction of the Basal Ganglia: Stroke, Small Vessel Disease, Parkinson’s Disease, and Huntington’s Disease. Neuropsychol Rev. 2024;34:1–26.*A meta-analysis of 114 studies addressing word production tasks in vascular and non-vascular pathologies of the basal ganglia. Camerino I, Ferreira J, Vonk JM, Kessels RPC, de Leeuw FE, Roelofs A, Copland D, Piai V. Systematic Review and Meta-Analyses of Word Production Abilities in Dysfunction of the Basal Ganglia: Stroke, Small Vessel Disease, Parkinson’s Disease, and Huntington’s Disease. Neuropsychol Rev. 2024;34:1–26.*A meta-analysis of 114 studies addressing word production tasks in vascular and non-vascular pathologies of the basal ganglia.
27.
Zurück zum Zitat Inase M, Tokuno H, Nambu A, Akazawa T, Takada M. Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Res. 1999;833:191–201.CrossRefPubMed Inase M, Tokuno H, Nambu A, Akazawa T, Takada M. Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Res. 1999;833:191–201.CrossRefPubMed
28.
Zurück zum Zitat Martnez-Sánchez F. Trastornos Del habla y la voz en la enfermedad de Parkinson [Speech and voice disorders in Parkinson’s disease]. Rev Neurol. 2010;51:542–50. Spanish.PubMed Martnez-Sánchez F. Trastornos Del habla y la voz en la enfermedad de Parkinson [Speech and voice disorders in Parkinson’s disease]. Rev Neurol. 2010;51:542–50. Spanish.PubMed
29.
Zurück zum Zitat Bhatia KP, Marsden CD. The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain. 1994;117:859–76.CrossRefPubMed Bhatia KP, Marsden CD. The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain. 1994;117:859–76.CrossRefPubMed
30.
Zurück zum Zitat Kotz SA, Schwartze M. Cortical speech processing unplugged: a timely subcortico-cortical framework. Trends Cogn Sci. 2010;14:392–9.CrossRefPubMed Kotz SA, Schwartze M. Cortical speech processing unplugged: a timely subcortico-cortical framework. Trends Cogn Sci. 2010;14:392–9.CrossRefPubMed
31.
Zurück zum Zitat Kemmerer D. Prosody. In: Kemmerer D, editor Cognitive neuroscience of language.2015; New York, NY: Psychology. Kemmerer D. Prosody. In: Kemmerer D, editor Cognitive neuroscience of language.2015; New York, NY: Psychology.
32.
Zurück zum Zitat Kotz SA, Frisch S, von Cramon DY, Friederici AD. Syntactic language processing: ERP lesion data on the role of the basal ganglia. J Int Neuropsychol Soc. 2003;9:1053–60.CrossRefPubMed Kotz SA, Frisch S, von Cramon DY, Friederici AD. Syntactic language processing: ERP lesion data on the role of the basal ganglia. J Int Neuropsychol Soc. 2003;9:1053–60.CrossRefPubMed
33.
Zurück zum Zitat Ullman MT, Pancheva R, Love T, Yee E, Swinney D, Hickok G. Neural correlates of lexicon and grammar: evidence from the production, reading, and judgment of inflection in aphasia. Brain Lang. 2005;93:185–238. discussion 239 – 42.CrossRefPubMed Ullman MT, Pancheva R, Love T, Yee E, Swinney D, Hickok G. Neural correlates of lexicon and grammar: evidence from the production, reading, and judgment of inflection in aphasia. Brain Lang. 2005;93:185–238. discussion 239 – 42.CrossRefPubMed
34.
Zurück zum Zitat Dominey PF, Inui T. Cortico-striatal function in sentence comprehension: insights from neurophysiology and modeling. Cortex. 2009;45:1012–8.CrossRefPubMed Dominey PF, Inui T. Cortico-striatal function in sentence comprehension: insights from neurophysiology and modeling. Cortex. 2009;45:1012–8.CrossRefPubMed
35.
Zurück zum Zitat Teichmann M, Rosso C, Martini JB, Bloch I, Brugières P, Duffau H, Lehéricy S, Bachoud-Lévi AC. A cortical-subcortical syntax pathway linking Broca’s area and the striatum. Hum Brain Mapp. 2015;36:2270–83.CrossRefPubMedPubMedCentral Teichmann M, Rosso C, Martini JB, Bloch I, Brugières P, Duffau H, Lehéricy S, Bachoud-Lévi AC. A cortical-subcortical syntax pathway linking Broca’s area and the striatum. Hum Brain Mapp. 2015;36:2270–83.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Lieberman RR, Ellenberg M, Restum WH. Aphasia associated with verified subcortical lesions: three case reports. Arch Phys Med Rehabil. 1986;67:410–4.PubMed Lieberman RR, Ellenberg M, Restum WH. Aphasia associated with verified subcortical lesions: three case reports. Arch Phys Med Rehabil. 1986;67:410–4.PubMed
37.
Zurück zum Zitat Alexander MP, Naeser MA, Palumbo CL. Correlations of subcortical CT lesion sites and aphasia profiles. Brain. 1987;110:961–91.CrossRefPubMed Alexander MP, Naeser MA, Palumbo CL. Correlations of subcortical CT lesion sites and aphasia profiles. Brain. 1987;110:961–91.CrossRefPubMed
38.
Zurück zum Zitat Naeser MA, Palumbo CL, Helm-Estabrooks N, Stiassny-Eder D, Albert ML. Severe nonfluency in aphasia. Role of the medial subcallosal fasciculus and other white matter pathways in recovery of spontaneous speech. Brain. 1989;112:1–38.CrossRefPubMed Naeser MA, Palumbo CL, Helm-Estabrooks N, Stiassny-Eder D, Albert ML. Severe nonfluency in aphasia. Role of the medial subcallosal fasciculus and other white matter pathways in recovery of spontaneous speech. Brain. 1989;112:1–38.CrossRefPubMed
39.
Zurück zum Zitat Nadeau SE. Subcortical language mechanisms. In Stemmer B, Whitaker HA, editors, Handbook of the neuroscience of language.2008.Pp. 329–40.London, UK: Academic. Nadeau SE. Subcortical language mechanisms. In Stemmer B, Whitaker HA, editors, Handbook of the neuroscience of language.2008.Pp. 329–40.London, UK: Academic.
40.
Zurück zum Zitat Hickok G, Poeppel D. The cortical organization of speech processing. Nat Rev Neurosci. 2007;8:393–402.CrossRefPubMed Hickok G, Poeppel D. The cortical organization of speech processing. Nat Rev Neurosci. 2007;8:393–402.CrossRefPubMed
41.
Zurück zum Zitat Catani M, Jones DK, ffytche DH. Perisylvian language networks of the human brain. Ann Neurol. 2005;57:8–16.CrossRefPubMed Catani M, Jones DK, ffytche DH. Perisylvian language networks of the human brain. Ann Neurol. 2005;57:8–16.CrossRefPubMed
42.
Zurück zum Zitat Baboyan V, Basilakos A, Yourganov G, Rorden C, Bonilha L, Fridriksson J, Hickok G. Isolating the white matter circuitry of the dorsal language stream: Connectome-Symptom Mapping in stroke induced aphasia. Hum Brain Mapp. 2021;42:5689–702. This connectivity study identifies a set of 10 short- and long-range parieto-temporal connections delineating the dorsal white matte circuitry of the dorsal language system.CrossRefPubMedPubMedCentral Baboyan V, Basilakos A, Yourganov G, Rorden C, Bonilha L, Fridriksson J, Hickok G. Isolating the white matter circuitry of the dorsal language stream: Connectome-Symptom Mapping in stroke induced aphasia. Hum Brain Mapp. 2021;42:5689–702. This connectivity study identifies a set of 10 short- and long-range parieto-temporal connections delineating the dorsal white matte circuitry of the dorsal language system.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Turken AU, Dronkers NF. The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Front Syst Neurosci. 2011;5:1.CrossRefPubMedPubMedCentral Turken AU, Dronkers NF. The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Front Syst Neurosci. 2011;5:1.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Friederici AD. White-Matter pathways for speech and language processing. Handb Clin Neurol. 2015;129:177–86.CrossRefPubMed Friederici AD. White-Matter pathways for speech and language processing. Handb Clin Neurol. 2015;129:177–86.CrossRefPubMed
45.
Zurück zum Zitat Fridriksson J, den Ouden DB, Hillis AE, Hickok G, Rorden C, Basilakos A, Yourganov G, Bonilha L. Anatomy of aphasia revisited. Brain. 2018;141:848–62.CrossRefPubMedPubMedCentral Fridriksson J, den Ouden DB, Hillis AE, Hickok G, Rorden C, Basilakos A, Yourganov G, Bonilha L. Anatomy of aphasia revisited. Brain. 2018;141:848–62.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Zhang B, Chang J, Park J, Tan Z, Tang L, Lyu T, Han Y, Fan R, Gao Y, Kong J. Uncinate fasciculus and its cortical terminals in aphasia after subcortical stroke: a multi-modal MRI study. Neuroimage Clin. 2021;30:102597.CrossRefPubMedPubMedCentral Zhang B, Chang J, Park J, Tan Z, Tang L, Lyu T, Han Y, Fan R, Gao Y, Kong J. Uncinate fasciculus and its cortical terminals in aphasia after subcortical stroke: a multi-modal MRI study. Neuroimage Clin. 2021;30:102597.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Kim G, Jeong B, Choi M, Kim WS, Han CE, Paik NJ. Neural substrates of subcortical aphasia in subacute stroke: Voxel-based lesion symptom mapping study. J Neurol Sci. 2021;420:117266.CrossRefPubMed Kim G, Jeong B, Choi M, Kim WS, Han CE, Paik NJ. Neural substrates of subcortical aphasia in subacute stroke: Voxel-based lesion symptom mapping study. J Neurol Sci. 2021;420:117266.CrossRefPubMed
48.
Zurück zum Zitat Radanovic M, Mansur LL. Aphasia in vascular lesions of the basal ganglia: a comprehensive review. Brain Lang. 2017;173:20–32.CrossRefPubMed Radanovic M, Mansur LL. Aphasia in vascular lesions of the basal ganglia: a comprehensive review. Brain Lang. 2017;173:20–32.CrossRefPubMed
49.
Zurück zum Zitat Weiller C, Willmes K, Reiche W, Thron A, Isensee C, Buell U, Ringelstein EB. The case of aphasia or neglect after striatocapsular infarction. Brain. 1993;116:1509–25.CrossRefPubMed Weiller C, Willmes K, Reiche W, Thron A, Isensee C, Buell U, Ringelstein EB. The case of aphasia or neglect after striatocapsular infarction. Brain. 1993;116:1509–25.CrossRefPubMed
50.
Zurück zum Zitat Nadeau SE, Crosson B. Subcortical aphasia. Brain Lang. 1997;58:355–402. discussion 418 – 23.CrossRefPubMed Nadeau SE, Crosson B. Subcortical aphasia. Brain Lang. 1997;58:355–402. discussion 418 – 23.CrossRefPubMed
51.
Zurück zum Zitat Hillis AE, Wityk RJ, Barker PB, Beauchamp NJ, Gailloud P, Murphy K, Cooper O, Metter EJ. Subcortical aphasia and neglect in acute stroke: the role of cortical hypoperfusion. Brain. 2002;125:1094–104.CrossRefPubMed Hillis AE, Wityk RJ, Barker PB, Beauchamp NJ, Gailloud P, Murphy K, Cooper O, Metter EJ. Subcortical aphasia and neglect in acute stroke: the role of cortical hypoperfusion. Brain. 2002;125:1094–104.CrossRefPubMed
52.
Zurück zum Zitat Hillis AE, Barker PB, Wityk RJ, Aldrich EM, Restrepo L, Breese EL, Work M. Variability in subcortical aphasia is due to variable sites of cortical hypoperfusion. Brain Lang. 2004;89:524–30.CrossRefPubMed Hillis AE, Barker PB, Wityk RJ, Aldrich EM, Restrepo L, Breese EL, Work M. Variability in subcortical aphasia is due to variable sites of cortical hypoperfusion. Brain Lang. 2004;89:524–30.CrossRefPubMed
53.
Zurück zum Zitat Han MK, Kang DW, Jeong SW, Roh JK. Aphasia following striatocapsular infarction may be explained by concomitant small cortical infarct on diffusion-weighted imaging. Cerebrovasc Dis. 2005;19:220–4.CrossRefPubMed Han MK, Kang DW, Jeong SW, Roh JK. Aphasia following striatocapsular infarction may be explained by concomitant small cortical infarct on diffusion-weighted imaging. Cerebrovasc Dis. 2005;19:220–4.CrossRefPubMed
54.
Zurück zum Zitat Choi JY, Lee KH, Na DL, Byun HS, Lee SJ, Kim H, Kwon M, Lee KH, Kim BT. Subcortical aphasia after striatocapsular infarction: quantitative analysis of brain perfusion SPECT using statistical parametric mapping and a statistical probabilistic anatomic map. J Nucl Med. 2007;48:194–200.PubMed Choi JY, Lee KH, Na DL, Byun HS, Lee SJ, Kim H, Kwon M, Lee KH, Kim BT. Subcortical aphasia after striatocapsular infarction: quantitative analysis of brain perfusion SPECT using statistical parametric mapping and a statistical probabilistic anatomic map. J Nucl Med. 2007;48:194–200.PubMed
55.
Zurück zum Zitat Celebi U, Oztekin MF, Kucuk NO. Which is responsible for aphasia by subcortical lesions? Subcortical lesions or the cortical hypoperfusion? Neurol Res. 2022;44:1066–73.CrossRefPubMed Celebi U, Oztekin MF, Kucuk NO. Which is responsible for aphasia by subcortical lesions? Subcortical lesions or the cortical hypoperfusion? Neurol Res. 2022;44:1066–73.CrossRefPubMed
56.
Zurück zum Zitat Vallar G, Perani D, Cappa SF, Messa C, Lenzi GL, Fazio F. Recovery from aphasia and neglect after subcortical stroke: neuropsychological and cerebral perfusion study. J Neurol Neurosurg Psychiatry. 1988;51:1269–76.CrossRefPubMedPubMedCentral Vallar G, Perani D, Cappa SF, Messa C, Lenzi GL, Fazio F. Recovery from aphasia and neglect after subcortical stroke: neuropsychological and cerebral perfusion study. J Neurol Neurosurg Psychiatry. 1988;51:1269–76.CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Radanovic M, Mansur LL, Azambuja MJ, Porto CS, Scaff M. Contribution to the evaluation of language disturbances in subcortical lesions: a pilot study. Arq Neuropsiquiatr. 2004;62:51–7.CrossRefPubMed Radanovic M, Mansur LL, Azambuja MJ, Porto CS, Scaff M. Contribution to the evaluation of language disturbances in subcortical lesions: a pilot study. Arq Neuropsiquiatr. 2004;62:51–7.CrossRefPubMed
58.
Zurück zum Zitat de Boissezon X, Démonet JF, Puel M, Marie N, Raboyeau G, Albucher JF, Chollet F, Cardebat D. Subcortical aphasia: a longitudinal PET study. Stroke. 2005;36:1467–73.CrossRefPubMed de Boissezon X, Démonet JF, Puel M, Marie N, Raboyeau G, Albucher JF, Chollet F, Cardebat D. Subcortical aphasia: a longitudinal PET study. Stroke. 2005;36:1467–73.CrossRefPubMed
59.
Zurück zum Zitat Nakagawa T, Murata Y, Kojima T, Shinkai Y, Yamaya Y, Kato M, Shibuya H. Prognostic value of brain perfusion single-photon emission computed tomography (SPECT) for language recovery in patients with aphasia. Nucl Med Commun. 2005;26:919–23.CrossRefPubMed Nakagawa T, Murata Y, Kojima T, Shinkai Y, Yamaya Y, Kato M, Shibuya H. Prognostic value of brain perfusion single-photon emission computed tomography (SPECT) for language recovery in patients with aphasia. Nucl Med Commun. 2005;26:919–23.CrossRefPubMed
61.
62.
Zurück zum Zitat Perani D, Vallar G, Cappa S, Messa C, Fazio F. Aphasia and neglect after subcortical stroke. A clinical/cerebral perfusion correlation study. Brain. 1987;110:1211–29.CrossRefPubMed Perani D, Vallar G, Cappa S, Messa C, Fazio F. Aphasia and neglect after subcortical stroke. A clinical/cerebral perfusion correlation study. Brain. 1987;110:1211–29.CrossRefPubMed
63.
Zurück zum Zitat Demeurisse G, Capon A, Verhas M, Attig E. Pathogenesis of aphasia in deep-seated lesions: likely role of cortical diaschisis. Eur Neurol. 1990;30:67–74.CrossRefPubMed Demeurisse G, Capon A, Verhas M, Attig E. Pathogenesis of aphasia in deep-seated lesions: likely role of cortical diaschisis. Eur Neurol. 1990;30:67–74.CrossRefPubMed
64.
Zurück zum Zitat Giroud M, Lemesle M, Madinier G, Billiar T, Dumas R. Unilateral lenticular infarcts: radiological and clinical syndromes, aetiology, and prognosis. J Neurol Neurosurg Psychiatry. 1997;63:611–5.CrossRefPubMedPubMedCentral Giroud M, Lemesle M, Madinier G, Billiar T, Dumas R. Unilateral lenticular infarcts: radiological and clinical syndromes, aetiology, and prognosis. J Neurol Neurosurg Psychiatry. 1997;63:611–5.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Radanovic M, Scaff M. Speech and language disturbances due to subcortical lesions. Brain Lang. 2003;84:337–52.CrossRefPubMed Radanovic M, Scaff M. Speech and language disturbances due to subcortical lesions. Brain Lang. 2003;84:337–52.CrossRefPubMed
66.
Zurück zum Zitat El-Wahsh S, Greenup D, White G, Thompson EO, Aggarwal A, Fulham MJ, Halmagyi GM. Diaschisis: a mechanism for subcortical aphasia? J Neurol. 2022;269:2219–21. This is an interesting case study providing neuroimaging in a left putaminal hemorrhage.CrossRefPubMed El-Wahsh S, Greenup D, White G, Thompson EO, Aggarwal A, Fulham MJ, Halmagyi GM. Diaschisis: a mechanism for subcortical aphasia? J Neurol. 2022;269:2219–21. This is an interesting case study providing neuroimaging in a left putaminal hemorrhage.CrossRefPubMed
67.
Zurück zum Zitat Duering M, Righart R, Csanadi E, Jouvent E, Hervé D, Chabriat H, Dichgans M. Incident subcortical infarcts induce focal thinning in connected cortical regions. Neurology. 2012;79:2025–8.CrossRefPubMed Duering M, Righart R, Csanadi E, Jouvent E, Hervé D, Chabriat H, Dichgans M. Incident subcortical infarcts induce focal thinning in connected cortical regions. Neurology. 2012;79:2025–8.CrossRefPubMed
68.
Zurück zum Zitat Duering M, Righart R, Wollenweber FA, Zietemann V, Gesierich B, Dichgans M. Acute infarcts cause focal thinning in remote cortex via degeneration of connecting fiber tracts. Neurology. 2015;84:1685–92.CrossRefPubMedPubMedCentral Duering M, Righart R, Wollenweber FA, Zietemann V, Gesierich B, Dichgans M. Acute infarcts cause focal thinning in remote cortex via degeneration of connecting fiber tracts. Neurology. 2015;84:1685–92.CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Tang H, Fan S, Niu X, Li Z, Xiao P, Zeng J, Xing S. Remote cortical atrophy and language outcomes after chronic left subcortical stroke with aphasia. Front Neurosci. 2022;16:853169.CrossRefPubMedPubMedCentral Tang H, Fan S, Niu X, Li Z, Xiao P, Zeng J, Xing S. Remote cortical atrophy and language outcomes after chronic left subcortical stroke with aphasia. Front Neurosci. 2022;16:853169.CrossRefPubMedPubMedCentral
70.
Zurück zum Zitat Shine JM, Lewis LD, Garrett DD, Hwang K. The impact of the human thalamus on brain-wide information processing. Nat Rev Neurosci. 2023;24:416–30.CrossRefPubMedPubMedCentral Shine JM, Lewis LD, Garrett DD, Hwang K. The impact of the human thalamus on brain-wide information processing. Nat Rev Neurosci. 2023;24:416–30.CrossRefPubMedPubMedCentral
72.
73.
Zurück zum Zitat Rangus I, Rios AS, Horn A, Fritsch M, Khalil A, Villringer K, Udke B, Ihrke M, Grittner U, Galinovic I, Al-Fatly B, Endres M, Kufner A, Nolte CH. Fronto-thalamic networks and the left ventral thalamic nuclei play a key role in aphasia after thalamic stroke. Commun Biol. 20247;7:700. Rangus I, Rios AS, Horn A, Fritsch M, Khalil A, Villringer K, Udke B, Ihrke M, Grittner U, Galinovic I, Al-Fatly B, Endres M, Kufner A, Nolte CH. Fronto-thalamic networks and the left ventral thalamic nuclei play a key role in aphasia after thalamic stroke. Commun Biol. 20247;7:700.
74.
Zurück zum Zitat Sweeney-Reed CM, Buentjen L, Voges J, Schmitt FC, Zaehle T, Kam JWY, Kaufmann J, Heinze HJ, Hinrichs H, Knight RT, Rugg MD. The role of the anterior nuclei of the thalamus in human memory processing. Neurosci Biobehav Rev. 2021;126:146–58.CrossRefPubMed Sweeney-Reed CM, Buentjen L, Voges J, Schmitt FC, Zaehle T, Kam JWY, Kaufmann J, Heinze HJ, Hinrichs H, Knight RT, Rugg MD. The role of the anterior nuclei of the thalamus in human memory processing. Neurosci Biobehav Rev. 2021;126:146–58.CrossRefPubMed
75.
Zurück zum Zitat Geier KT, Buchsbaum BR, Parimoo S, Olsen RK. The role of anterior and medial dorsal thalamus in associative memory encoding and retrieval. Neuropsychologia. 2020;148:107623.CrossRefPubMed Geier KT, Buchsbaum BR, Parimoo S, Olsen RK. The role of anterior and medial dorsal thalamus in associative memory encoding and retrieval. Neuropsychologia. 2020;148:107623.CrossRefPubMed
76.
Zurück zum Zitat Chomsung RD, Wei H, Day-Brown JD, Petry HM, Bickford ME. Synaptic organization of connections between the temporal cortex and pulvinar nucleus of the tree shrew. Cereb Cortex. 2010;20:997–1011.CrossRefPubMed Chomsung RD, Wei H, Day-Brown JD, Petry HM, Bickford ME. Synaptic organization of connections between the temporal cortex and pulvinar nucleus of the tree shrew. Cereb Cortex. 2010;20:997–1011.CrossRefPubMed
77.
Zurück zum Zitat Benarroch EE. Pulvinar: associative role in cortical function and clinical correlations. Neurology. 2015;84:738–47.CrossRefPubMed Benarroch EE. Pulvinar: associative role in cortical function and clinical correlations. Neurology. 2015;84:738–47.CrossRefPubMed
78.
Zurück zum Zitat Liu J, Cui Z, Li L. Local and whole-network topologies reveal that pulvinar and semantic hub interactions correlate with picture vocabulary. NeuroReport. 2020;31:590–6.CrossRefPubMed Liu J, Cui Z, Li L. Local and whole-network topologies reveal that pulvinar and semantic hub interactions correlate with picture vocabulary. NeuroReport. 2020;31:590–6.CrossRefPubMed
79.
Zurück zum Zitat Winiarski HR. The relationship between thalamic morphology and behavioral features in amnestic and aphasic variants of Alzheimer’s Disease (Doctoral dissertation, Brigham Young University).2022. Winiarski HR. The relationship between thalamic morphology and behavioral features in amnestic and aphasic variants of Alzheimer’s Disease (Doctoral dissertation, Brigham Young University).2022.
80.
Zurück zum Zitat Rotshtein P, Soto D, Grecucci A, Geng JJ, Humphreys GW. The role of the pulvinar in resolving competition between memory and visual selection: a functional connectivity study. Neuropsychologia. 2011;49:1544–52.CrossRefPubMed Rotshtein P, Soto D, Grecucci A, Geng JJ, Humphreys GW. The role of the pulvinar in resolving competition between memory and visual selection: a functional connectivity study. Neuropsychologia. 2011;49:1544–52.CrossRefPubMed
81.
Zurück zum Zitat Almeida VN. The neural hierarchy of consciousness: a theoretical model and review on neurophysiology and NCCs. Neuropsychologia. 2022;169:108202.CrossRefPubMed Almeida VN. The neural hierarchy of consciousness: a theoretical model and review on neurophysiology and NCCs. Neuropsychologia. 2022;169:108202.CrossRefPubMed
82.
Zurück zum Zitat Hwang K, Bruss J, Tranel D, Boes AD. Network Localization of Executive Function Deficits in patients with focal thalamic lesions. J Cogn Neurosci. 2020;32:2303–19.CrossRefPubMedPubMedCentral Hwang K, Bruss J, Tranel D, Boes AD. Network Localization of Executive Function Deficits in patients with focal thalamic lesions. J Cogn Neurosci. 2020;32:2303–19.CrossRefPubMedPubMedCentral
83.
Zurück zum Zitat Hills TT, Jones MN, Todd PM. Optimal foraging in semantic memory. Psychol Rev. 2012;119:431–40.CrossRefPubMed Hills TT, Jones MN, Todd PM. Optimal foraging in semantic memory. Psychol Rev. 2012;119:431–40.CrossRefPubMed
84.
Zurück zum Zitat Hirshorn EA, Thompson-Schill SL. Role of the left inferior frontal gyrus in covert word retrieval: neural correlates of switching during verbal fluency. Neuropsychologia. 2006;44:2547–57.CrossRefPubMed Hirshorn EA, Thompson-Schill SL. Role of the left inferior frontal gyrus in covert word retrieval: neural correlates of switching during verbal fluency. Neuropsychologia. 2006;44:2547–57.CrossRefPubMed
85.
Zurück zum Zitat Wright NF, Vann SD, Aggleton JP, Nelson AJ. A critical role for the anterior thalamus in directing attention to task-relevant stimuli. J Neurosci. 2015;35:5480–8.CrossRefPubMedPubMedCentral Wright NF, Vann SD, Aggleton JP, Nelson AJ. A critical role for the anterior thalamus in directing attention to task-relevant stimuli. J Neurosci. 2015;35:5480–8.CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Almeida VN. Neurophysiological basis of the N400 deflection, from Mismatch Negativity to Semantic Prediction potentials and late positive components. Int J Psychophysiol. 2021;166:134–50.CrossRefPubMed Almeida VN. Neurophysiological basis of the N400 deflection, from Mismatch Negativity to Semantic Prediction potentials and late positive components. Int J Psychophysiol. 2021;166:134–50.CrossRefPubMed
87.
Zurück zum Zitat León-Cabrera P, Hjortdal A, Berthelsen SG, Rodríguez-Fornells A, Roll M. Neurophysiological signatures of prediction in language: a critical review of anticipatory negativities. Neurosci Biobehav Rev. 2024;160:105624.CrossRefPubMed León-Cabrera P, Hjortdal A, Berthelsen SG, Rodríguez-Fornells A, Roll M. Neurophysiological signatures of prediction in language: a critical review of anticipatory negativities. Neurosci Biobehav Rev. 2024;160:105624.CrossRefPubMed
88.
Zurück zum Zitat Roll M, Söderström P, Horne M, Hjortdal A. Pre-activation negativity (PrAN): a neural index of predictive strength of phonological cues. Lab Phonol. 2023;14:1.CrossRef Roll M, Söderström P, Horne M, Hjortdal A. Pre-activation negativity (PrAN): a neural index of predictive strength of phonological cues. Lab Phonol. 2023;14:1.CrossRef
89.
Zurück zum Zitat Javitt DC, Lee M, Kantrowitz JT, Martinez A. Mismatch negativity as a biomarker of theta band oscillatory dysfunction in schizophrenia. Schizophr Res. 2018;191:51–60.CrossRefPubMed Javitt DC, Lee M, Kantrowitz JT, Martinez A. Mismatch negativity as a biomarker of theta band oscillatory dysfunction in schizophrenia. Schizophr Res. 2018;191:51–60.CrossRefPubMed
90.
Zurück zum Zitat Lakatos P, O’Connell MN, Barczak A, McGinnis T, Neymotin S, Schroeder CE, Smiley JF, Javitt DC. The Thalamocortical Circuit of Auditory Mismatch Negativity. Biol Psychiatry. 2020;87(8):770–80.CrossRefPubMed Lakatos P, O’Connell MN, Barczak A, McGinnis T, Neymotin S, Schroeder CE, Smiley JF, Javitt DC. The Thalamocortical Circuit of Auditory Mismatch Negativity. Biol Psychiatry. 2020;87(8):770–80.CrossRefPubMed
91.
Zurück zum Zitat Jankowski MM, Ronnqvist KC, Tsanov M, Vann SD, Wright NF, Erichsen JT, Aggleton JP, O’Mara SM. The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation. Front Syst Neurosci. 2013;7:45.CrossRefPubMedPubMedCentral Jankowski MM, Ronnqvist KC, Tsanov M, Vann SD, Wright NF, Erichsen JT, Aggleton JP, O’Mara SM. The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation. Front Syst Neurosci. 2013;7:45.CrossRefPubMedPubMedCentral
93.
Zurück zum Zitat Basha D, Dostrovsky JO, Lopez Rios AL, Hodaie M, Lozano AM, Hutchison WD. Beta oscillatory neurons in the motor thalamus of movement disorder and pain patients. Exp Neurol. 2014;261:782–90.CrossRefPubMed Basha D, Dostrovsky JO, Lopez Rios AL, Hodaie M, Lozano AM, Hutchison WD. Beta oscillatory neurons in the motor thalamus of movement disorder and pain patients. Exp Neurol. 2014;261:782–90.CrossRefPubMed
94.
Zurück zum Zitat Basha D, Kalia SK, Hodaie M, Lopez Rios AL, Lozano AM, Hutchison WD. Beta band oscillations in the motor thalamus are modulated by visuomotor coordination in essential tremor patients. Front Hum Neurosci. 2023;17:1082196.CrossRefPubMedPubMedCentral Basha D, Kalia SK, Hodaie M, Lopez Rios AL, Lozano AM, Hutchison WD. Beta band oscillations in the motor thalamus are modulated by visuomotor coordination in essential tremor patients. Front Hum Neurosci. 2023;17:1082196.CrossRefPubMedPubMedCentral
95.
Zurück zum Zitat Nadeau SE. Basal ganglia and thalamic contributions to Language function: insights from a parallel distributed Processing Perspective. Neuropsychol Rev. 2021;31:495–515. The author presents an interesting view of the role of these subcortical structures in language under the scope of the parallel distribution processing model, defending that the basal ganglia have a primarily computational function (reduction of a large amount of sensorimotor input to be automatically translated into optimal behavior); the thalamus, would subserve an role in integration of cortical input to permit a full concept representation.CrossRefPubMed Nadeau SE. Basal ganglia and thalamic contributions to Language function: insights from a parallel distributed Processing Perspective. Neuropsychol Rev. 2021;31:495–515. The author presents an interesting view of the role of these subcortical structures in language under the scope of the parallel distribution processing model, defending that the basal ganglia have a primarily computational function (reduction of a large amount of sensorimotor input to be automatically translated into optimal behavior); the thalamus, would subserve an role in integration of cortical input to permit a full concept representation.CrossRefPubMed
Metadaten
Titel
Subcortical Aphasia: An Update
verfasst von
Victor Nascimento Almeida
Marcia Radanovic
Publikationsdatum
11.09.2024
Verlag
Springer US
Erschienen in
Current Neurology and Neuroscience Reports / Ausgabe 11/2024
Print ISSN: 1528-4042
Elektronische ISSN: 1534-6293
DOI
https://doi.org/10.1007/s11910-024-01373-8

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

CGRP-Antikörper auch bei älteren Migränekranken sicher

Beginnen ältere Migränekranke eine Prophylaxe mit CGRP-Antikörpern, kommt es anschließend nicht häufiger zu kardiovaskulären Problemen als unter einer Prophylaxe mit Botulinumtoxin. Darauf deutet eine US-Analyse von Medicare-Versicherten.

Frühwarnzeichen für multiple Sklerose bei Kindern und Jugendlichen

Ein Forschungsteam aus Deutschland und Kanada hat eine Reihe metabolischer, okulärer, muskuloskelettaler, gastrointestinaler und kardiovaskulärer Symptome identifiziert, die bei Kindern und Jugendlichen der Diagnose einer multiplen Sklerose (MS) vorausgehen können.

Migräne verstehen und psychotherapeutisch behandeln

Das Wissen über die Mechanismen, die im Gehirn bei einer Migräneattacke ablaufen, und mögliche Auslöser wird immer breiter. Der psychologische Psychotherapeut Dr. Dipl.-Psych. Timo Klan fasst den aktuellen Erkenntnisstand zusammen. Und er gibt Tipps für eine differenzierte, individuelle Diagnostik auch von Begleiterkrankungen und beschreibt erfolgreiche psychotherapeutische Interventionen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.