Skip to main content
Erschienen in:

27.02.2024 | Research Article

Subjective and objective image quality of low-dose CT images processed using a self-supervised denoising algorithm

verfasst von: Yuya Kimura, Takeru Q. Suyama, Yasuteru Shimamura, Jun Suzuki, Masato Watanabe, Hiroshi Igei, Yuya Otera, Takayuki Kaneko, Maho Suzukawa, Hirotoshi Matsui, Hiroyuki Kudo

Erschienen in: Radiological Physics and Technology | Ausgabe 2/2024

Einloggen, um Zugang zu erhalten

Abstract

This study aimed to assess the subjective and objective image quality of low-dose computed tomography (CT) images processed using a self-supervised denoising algorithm with deep learning. We trained the self-supervised denoising model using low-dose CT images of 40 patients and applied this model to CT images of another 30 patients. Image quality, in terms of noise and edge sharpness, was rated on a 5-point scale by two radiologists. The coefficient of variation, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) were calculated. The values for the self-supervised denoising model were compared with those for the original low-dose CT images and CT images processed using other conventional denoising algorithms (non-local means, block-matching and 3D filtering, and total variation minimization-based algorithms). The mean (standard deviation) scores of local and overall noise levels for the self-supervised denoising algorithm were 3.90 (0.40) and 3.93 (0.51), respectively, outperforming the original image and other algorithms. Similarly, the mean scores of local and overall edge sharpness for the self-supervised denoising algorithm were 3.90 (0.40) and 3.75 (0.47), respectively, surpassing the scores of the original image and other algorithms. The CNR and SNR for the self-supervised denoising algorithm were higher than those for the original images but slightly lower than those for the other algorithms. Our findings indicate the potential clinical applicability of the self-supervised denoising algorithm for low-dose CT images in clinical settings.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;176:289–96.CrossRefPubMed Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;176:289–96.CrossRefPubMed
2.
Zurück zum Zitat Berrington de González A, Darby S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet. 2004;363:345–51.CrossRefPubMed Berrington de González A, Darby S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet. 2004;363:345–51.CrossRefPubMed
3.
Zurück zum Zitat Brenner DJ, Hall EJ. Computed tomography–an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.CrossRefPubMed Brenner DJ, Hall EJ. Computed tomography–an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.CrossRefPubMed
4.
6.
Zurück zum Zitat Pearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380:499–505.CrossRefPubMedPubMedCentral Pearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380:499–505.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Mathews JD, Forsythe AV, Brady Z, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346: f2360.CrossRefPubMedPubMedCentral Mathews JD, Forsythe AV, Brady Z, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346: f2360.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86:2278–324.CrossRef Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86:2278–324.CrossRef
10.
Zurück zum Zitat Chen H, Zhang Y, Kalra MK, et al. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging. 2017;36:2524–35.CrossRefPubMedPubMedCentral Chen H, Zhang Y, Kalra MK, et al. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging. 2017;36:2524–35.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Shan H, Padole A, Homayounieh F, et al. Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. Nat Mach Intell. 2019;1:269–76.CrossRefPubMedPubMedCentral Shan H, Padole A, Homayounieh F, et al. Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. Nat Mach Intell. 2019;1:269–76.CrossRefPubMedPubMedCentral
12.
13.
Zurück zum Zitat Yang Q, Yan P, Zhang Y, et al. Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Trans Med Imaging. 2018;37:1348–57.CrossRefPubMedPubMedCentral Yang Q, Yan P, Zhang Y, et al. Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Trans Med Imaging. 2018;37:1348–57.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Tang C, Li J, Wang L, et al. Unpaired low-dose CT denoising network based on cycle-consistent generative adversarial network with prior image information. Comput Math Methods Med. 2019;2019:8639825.CrossRefPubMedPubMedCentral Tang C, Li J, Wang L, et al. Unpaired low-dose CT denoising network based on cycle-consistent generative adversarial network with prior image information. Comput Math Methods Med. 2019;2019:8639825.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Hendriksen AA, Pelt DM, Batenburg KJ. Noise2Inverse: self-supervised deep convolutional denoising for tomography. IEEE Trans Comput Imaging. 2020;6:1320–35.CrossRef Hendriksen AA, Pelt DM, Batenburg KJ. Noise2Inverse: self-supervised deep convolutional denoising for tomography. IEEE Trans Comput Imaging. 2020;6:1320–35.CrossRef
16.
Zurück zum Zitat Wu D, Kim K, Li Q. Low-dose CT reconstruction with Noise2Noise network and testing-time fine-tuning. Med Phys. 2021;48:7657–72.CrossRefPubMed Wu D, Kim K, Li Q. Low-dose CT reconstruction with Noise2Noise network and testing-time fine-tuning. Med Phys. 2021;48:7657–72.CrossRefPubMed
17.
Zurück zum Zitat Krull A, Buchholz TO, Jug F. Noise2Void—Learning denoising from single noisy images. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019;2019:2124–32. Krull A, Buchholz TO, Jug F. Noise2Void—Learning denoising from single noisy images. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019;2019:2124–32.
18.
Zurück zum Zitat Laine S, Karras T, Lehtinen J, Aila T. High-quality self-supervised deep image denoising. Comput Vis Pattern Recognit. Laine S, Karras T, Lehtinen J, Aila T. High-quality self-supervised deep image denoising. Comput Vis Pattern Recognit.
19.
Zurück zum Zitat Sidky EY, Pan X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol. 2008;53:4777–807.CrossRefPubMedPubMedCentral Sidky EY, Pan X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol. 2008;53:4777–807.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Buades A, Coll B, Morel J-M. A non-local algorithm for image denoising. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2005;2:60–5. Buades A, Coll B, Morel J-M. A non-local algorithm for image denoising. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2005;2:60–5.
21.
Zurück zum Zitat Dabov K, Foi A, Katkovnik V, Egiazarian K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process. 2007;16:2080–95.CrossRefPubMed Dabov K, Foi A, Katkovnik V, Egiazarian K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process. 2007;16:2080–95.CrossRefPubMed
22.
Zurück zum Zitat Svanholm H, Starklint H, Gundersen HJ, Fabricius J, Barlebo H, Olsen S. Reproducibility of histomorphologic diagnoses with special reference to the kappa statistic. APMIS. 1989;97:689–98.CrossRefPubMed Svanholm H, Starklint H, Gundersen HJ, Fabricius J, Barlebo H, Olsen S. Reproducibility of histomorphologic diagnoses with special reference to the kappa statistic. APMIS. 1989;97:689–98.CrossRefPubMed
23.
Zurück zum Zitat Heyer CM, Mohr PS, Lemburg SP, Peters SA, Nicolas V. Image quality and radiation exposure at pulmonary CT angiography with 100- or 120-kVp protocol: prospective randomized study. Radiology. 2007;245:577–83.CrossRefPubMed Heyer CM, Mohr PS, Lemburg SP, Peters SA, Nicolas V. Image quality and radiation exposure at pulmonary CT angiography with 100- or 120-kVp protocol: prospective randomized study. Radiology. 2007;245:577–83.CrossRefPubMed
24.
Zurück zum Zitat Dunn OJ. Multiple comparisons among means. J Am Stat Assoc. 1961;56:52–64.CrossRef Dunn OJ. Multiple comparisons among means. J Am Stat Assoc. 1961;56:52–64.CrossRef
31.
Zurück zum Zitat Shaham TR, Dekel T, Michaeli T. SinGAN: Learning a generative model from a single natural image. 2019 IEEE/CVF Int Conf Comput Vis (ICCV). Shaham TR, Dekel T, Michaeli T. SinGAN: Learning a generative model from a single natural image. 2019 IEEE/CVF Int Conf Comput Vis (ICCV).
32.
33.
Zurück zum Zitat Agostini A, Floridi C, Borgheresi A, et al. Proposal of a low-dose, long-pitch, dual-source chest CT protocol on third-generation dual-source CT using a tin filter for spectral shaping at 100 kVp for CoronaVirus Disease 2019 (COVID-19) patients: a feasibility study. Radiol Med. 2020;125:365–73.CrossRefPubMedPubMedCentral Agostini A, Floridi C, Borgheresi A, et al. Proposal of a low-dose, long-pitch, dual-source chest CT protocol on third-generation dual-source CT using a tin filter for spectral shaping at 100 kVp for CoronaVirus Disease 2019 (COVID-19) patients: a feasibility study. Radiol Med. 2020;125:365–73.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Dangis A, Gieraerts C, De Bruecker Y, et al. Accuracy and reproducibility of low-dose submillisievert chest CT for the diagnosis of COVID-19. Radiol Cardiothorac Imaging. 2020;2: e200196.CrossRefPubMedPubMedCentral Dangis A, Gieraerts C, De Bruecker Y, et al. Accuracy and reproducibility of low-dose submillisievert chest CT for the diagnosis of COVID-19. Radiol Cardiothorac Imaging. 2020;2: e200196.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Li M, Hsu W, Xie X, Cong J, Gao W. SACNN: self-attention Convolutional Neural Network for low-dose CT denoising with self-supervised perceptual loss network. IEEE Trans Med Imaging. 2020;39:2289–301.CrossRefPubMed Li M, Hsu W, Xie X, Cong J, Gao W. SACNN: self-attention Convolutional Neural Network for low-dose CT denoising with self-supervised perceptual loss network. IEEE Trans Med Imaging. 2020;39:2289–301.CrossRefPubMed
Metadaten
Titel
Subjective and objective image quality of low-dose CT images processed using a self-supervised denoising algorithm
verfasst von
Yuya Kimura
Takeru Q. Suyama
Yasuteru Shimamura
Jun Suzuki
Masato Watanabe
Hiroshi Igei
Yuya Otera
Takayuki Kaneko
Maho Suzukawa
Hirotoshi Matsui
Hiroyuki Kudo
Publikationsdatum
27.02.2024
Verlag
Springer Nature Singapore
Erschienen in
Radiological Physics and Technology / Ausgabe 2/2024
Print ISSN: 1865-0333
Elektronische ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-024-00786-x

Neu im Fachgebiet Radiologie

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Stören weiße Wände und viel Licht die Bildqualitätskontrolle?

Wenn es darum geht, die technische Qualität eines Mammogramms zu beurteilen, könnten graue Wandfarbe und reduzierte Beleuchtung im Bildgebungsraum von Vorteil sein. Darauf deuten zumindest Ergebnisse einer kleinen Studie hin. 

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.