Skip to main content
Erschienen in: Sports Medicine 10/2018

18.05.2018 | Current Opinion

Substrate Metabolism During Ironman Triathlon: Different Horses on the Same Courses

verfasst von: Ed Maunder, Andrew E. Kilding, Daniel J. Plews

Erschienen in: Sports Medicine | Ausgabe 10/2018

Einloggen, um Zugang zu erhalten

Abstract

Ironman triathlons are ultra-endurance events of extreme duration. The performance level of those competing varies dramatically, with elite competitors finishing in ~ 8:00:00, and lower performing amateurs finishing in ~ 14–15:00:00. When applying appropriate values for swimming, cycling and running economies to these performance times, it is demonstrated that the absolute energy cost of these events is high, and the rate of energy expenditure increases in proportion with the athlete’s competitive level. Given the finite human capacity for endogenous carbohydrate storage, minimising the endogenous carbohydrate cost associated with performing exercise at competitive intensities should be a goal of Ironman preparation. A range of strategies exist that may help to achieve this goal, including, but not limited to, adoption of a low-carbohydrate diet, exogenous carbohydrate supplementation and periodised training with low carbohydrate availability. Given the diverse metabolic stimuli evoked by Ironman triathlons at different performance levels, it is proposed that the performance level of the Ironman triathlete is considered when adopting metabolic strategies to minimise the endogenous carbohydrate cost associated with exercise at competitive intensities. Specifically, periodised training with low carbohydrate availability combined with exogenous carbohydrate supplementation during competition might be most appropriate for elite and top-amateur Ironman triathletes who elicit very high rates of energy expenditure. Conversely, the adoption of a low-carbohydrate or ketogenic diet might be appropriate for some lower performance amateurs (> 12 h), in whom associated high rates of fat oxidation may be almost completely sufficient to match the energy demands required.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
2.
Zurück zum Zitat McLaughlin JE, Howley ET, Bassett DR Jr, Thompson DL, Fitzhugh EC. Test of the classic model for predicting endurance running performance. Med Sci Sports Exerc. 2010;42:991–7.CrossRefPubMed McLaughlin JE, Howley ET, Bassett DR Jr, Thompson DL, Fitzhugh EC. Test of the classic model for predicting endurance running performance. Med Sci Sports Exerc. 2010;42:991–7.CrossRefPubMed
3.
Zurück zum Zitat Bassett DR Jr, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:70–84.CrossRefPubMed Bassett DR Jr, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:70–84.CrossRefPubMed
4.
Zurück zum Zitat Romijn JA, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol Endocrinol Metab. 1993;265:380–91.CrossRef Romijn JA, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol Endocrinol Metab. 1993;265:380–91.CrossRef
5.
Zurück zum Zitat van Loon LJC, Greenhaff PL, Constantin-Teodosiu D, Saris WHM, Wagenmakers AJM. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol. 2001;536:295–304.CrossRefPubMedPubMedCentral van Loon LJC, Greenhaff PL, Constantin-Teodosiu D, Saris WHM, Wagenmakers AJM. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol. 2001;536:295–304.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Febbraio MA, Snow RJ, Hargreaves M, Stathis CG, Martin IK, Carey MF. Muscle metabolism during exercise and heat stress in trained men: effect of acclimation. J Appl Physiol. 1994;76:589–97.CrossRefPubMed Febbraio MA, Snow RJ, Hargreaves M, Stathis CG, Martin IK, Carey MF. Muscle metabolism during exercise and heat stress in trained men: effect of acclimation. J Appl Physiol. 1994;76:589–97.CrossRefPubMed
7.
Zurück zum Zitat Febbraio MA, Snow RJ, Stathis CG, Hargreaves M, Carey MF. Effect of heat stress on muscle energy metabolism during exercise. J Appl Physiol. 1994;77:2827–31.CrossRefPubMed Febbraio MA, Snow RJ, Stathis CG, Hargreaves M, Carey MF. Effect of heat stress on muscle energy metabolism during exercise. J Appl Physiol. 1994;77:2827–31.CrossRefPubMed
8.
Zurück zum Zitat Hargreaves M, Angus D, Howlett K, Conus NM, Febbraio MA. Effect of heat stress on glucose kinetics during exercise. J Appl Physiol. 1996;81:1594–7.CrossRefPubMed Hargreaves M, Angus D, Howlett K, Conus NM, Febbraio MA. Effect of heat stress on glucose kinetics during exercise. J Appl Physiol. 1996;81:1594–7.CrossRefPubMed
9.
Zurück zum Zitat Bergström J, Hultman E. A study of the glycogen metabolism during exercise in man. Scand J Clin Lab Invest. 1967;19:218–28.CrossRefPubMed Bergström J, Hultman E. A study of the glycogen metabolism during exercise in man. Scand J Clin Lab Invest. 1967;19:218–28.CrossRefPubMed
10.
Zurück zum Zitat Bergström J, Hermansen L, Hultman E, Saltin B. Diet, muscle glycogen and physical performance. Acta Physiol Scand. 1967;71:140–50.CrossRefPubMed Bergström J, Hermansen L, Hultman E, Saltin B. Diet, muscle glycogen and physical performance. Acta Physiol Scand. 1967;71:140–50.CrossRefPubMed
11.
Zurück zum Zitat Nilsson LH. Liver glycogen content in man in the postabsorptive state. Scand J Clin Lab Invest. 1973;32:317–23.CrossRefPubMed Nilsson LH. Liver glycogen content in man in the postabsorptive state. Scand J Clin Lab Invest. 1973;32:317–23.CrossRefPubMed
12.
Zurück zum Zitat Nilsson LH, Fürst P, Hultman E. Carbohydrate metabolism of the liver in normal man under varying dietary conditions. Scand J Clin Lab Invest. 1973;32:331–7.CrossRefPubMed Nilsson LH, Fürst P, Hultman E. Carbohydrate metabolism of the liver in normal man under varying dietary conditions. Scand J Clin Lab Invest. 1973;32:331–7.CrossRefPubMed
13.
Zurück zum Zitat Jensen J, Rustad PI, Kolnes AJ, Lai YC. The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front Physiol. 2011;2:112.CrossRefPubMedPubMedCentral Jensen J, Rustad PI, Kolnes AJ, Lai YC. The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front Physiol. 2011;2:112.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Gonzalez JT, Fuchs CJ, Betts JA, van Loon LJC. Liver glycogen metabolism during and after prolonged endurance-type exercise. Am J Physiol Endocrinol Metab. 2016;311:E543–53.CrossRefPubMed Gonzalez JT, Fuchs CJ, Betts JA, van Loon LJC. Liver glycogen metabolism during and after prolonged endurance-type exercise. Am J Physiol Endocrinol Metab. 2016;311:E543–53.CrossRefPubMed
15.
Zurück zum Zitat Jeukendrup AE, Wallis GA. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med. 2005;26:S28–37.CrossRefPubMed Jeukendrup AE, Wallis GA. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med. 2005;26:S28–37.CrossRefPubMed
16.
Zurück zum Zitat Ahlborg B, Bergström J, Ekelund L, Hultman E. Muscle glycogen and muscle electrolytes during prolonged phyiscal exercise. Acta Physiol Scand. 1967;70:129–42.CrossRef Ahlborg B, Bergström J, Ekelund L, Hultman E. Muscle glycogen and muscle electrolytes during prolonged phyiscal exercise. Acta Physiol Scand. 1967;70:129–42.CrossRef
17.
Zurück zum Zitat Hermansen L, Hultman E, Saltin B. Muscle glycogen during prolonged severe exercise. Acta Physiol Scand. 1967;71:129–39.CrossRefPubMed Hermansen L, Hultman E, Saltin B. Muscle glycogen during prolonged severe exercise. Acta Physiol Scand. 1967;71:129–39.CrossRefPubMed
18.
Zurück zum Zitat Hultman E. Physiological role of muscle glycogen in man, with special reference to exercise. Circ Res. 1967;20:I99–114.CrossRef Hultman E. Physiological role of muscle glycogen in man, with special reference to exercise. Circ Res. 1967;20:I99–114.CrossRef
19.
Zurück zum Zitat Hultman E, Bergström J. Muscle glycogen synthesis in relation to diet studied in normal subjects. Acta Med Scand. 1967;182:109–17.CrossRefPubMed Hultman E, Bergström J. Muscle glycogen synthesis in relation to diet studied in normal subjects. Acta Med Scand. 1967;182:109–17.CrossRefPubMed
22.
Zurück zum Zitat Zamparo P, Bonifazi M, Faina M, Milan A, Sardella F, Schena F, et al. Energy cost of swimming of elite long-distance swimmers. Eur J Appl Physiol. 2005;94:697–704.CrossRefPubMed Zamparo P, Bonifazi M, Faina M, Milan A, Sardella F, Schena F, et al. Energy cost of swimming of elite long-distance swimmers. Eur J Appl Physiol. 2005;94:697–704.CrossRefPubMed
23.
Zurück zum Zitat Bell PG, Furber MJW, Van Someren KA, Antón-Solanas A, Swart J. The physiological profile of a multiple Tour de France winning cyclist. Med Sci Sports Exerc. 2017;49:115–23.CrossRefPubMed Bell PG, Furber MJW, Van Someren KA, Antón-Solanas A, Swart J. The physiological profile of a multiple Tour de France winning cyclist. Med Sci Sports Exerc. 2017;49:115–23.CrossRefPubMed
24.
Zurück zum Zitat Shaw AJ, Ingham SA, Fudge BW, Folland JP. The reliability of running economy expressed as oxygen cost and energy cost in trained distance runners. Appl Physiol Nutr Metab. 2013;38:1268–72.CrossRefPubMed Shaw AJ, Ingham SA, Fudge BW, Folland JP. The reliability of running economy expressed as oxygen cost and energy cost in trained distance runners. Appl Physiol Nutr Metab. 2013;38:1268–72.CrossRefPubMed
25.
Zurück zum Zitat Moseley L, Achten J, Martin JC, Jeukendrup AE. No differences in cycling efficiency between world-class and recreational cyclists. Int J Sports Med. 2004;25:374–9.CrossRefPubMed Moseley L, Achten J, Martin JC, Jeukendrup AE. No differences in cycling efficiency between world-class and recreational cyclists. Int J Sports Med. 2004;25:374–9.CrossRefPubMed
26.
Zurück zum Zitat Fletcher JR, Esau SP, MacIntosh BR. Economy of running: beyond the measurement of oxygen uptake. J Appl Physiol. 2009;107:1918–22.CrossRefPubMed Fletcher JR, Esau SP, MacIntosh BR. Economy of running: beyond the measurement of oxygen uptake. J Appl Physiol. 2009;107:1918–22.CrossRefPubMed
27.
Zurück zum Zitat Fletcher JR, Pfister TR, Macintosh BR. Energy cost of running and achilles tendon stiffness in man and woman trained runners. Physiol Rep. 2013;1:e00178.CrossRefPubMedPubMedCentral Fletcher JR, Pfister TR, Macintosh BR. Energy cost of running and achilles tendon stiffness in man and woman trained runners. Physiol Rep. 2013;1:e00178.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Frandsen J, Vest S, Larsen S, Dela F, Helge JW. Maximal fat oxidation is related to performance in an Ironman triathlon. Int J Sports Med. 2017;38(13):975–82.CrossRefPubMed Frandsen J, Vest S, Larsen S, Dela F, Helge JW. Maximal fat oxidation is related to performance in an Ironman triathlon. Int J Sports Med. 2017;38(13):975–82.CrossRefPubMed
29.
Zurück zum Zitat Kimber NE, Ross JJ, Mason SL, Speedy DB. Energy balance during an Ironman triathlon in male and female triathletes. Int J Sport Nutr Exerc Metab. 2002;12:47–62.CrossRefPubMed Kimber NE, Ross JJ, Mason SL, Speedy DB. Energy balance during an Ironman triathlon in male and female triathletes. Int J Sport Nutr Exerc Metab. 2002;12:47–62.CrossRefPubMed
30.
Zurück zum Zitat Tanaka H. Effects of cross-training: transfer of training effects on \({\dot{\text{V}}\text{O}}_{{ 2 {\text{max}}}}\) between cycling, running and swimming. Sports Med. 1994;18:330–9.CrossRefPubMed Tanaka H. Effects of cross-training: transfer of training effects on \({\dot{\text{V}}\text{O}}_{{ 2 {\text{max}}}}\) between cycling, running and swimming. Sports Med. 1994;18:330–9.CrossRefPubMed
31.
Zurück zum Zitat Volek JS, Noakes TD, Phinney SD. Rethinking fat as a fuel for endurance exercise. Eur J Sport Sci. 2015;15:13–20.CrossRefPubMed Volek JS, Noakes TD, Phinney SD. Rethinking fat as a fuel for endurance exercise. Eur J Sport Sci. 2015;15:13–20.CrossRefPubMed
32.
Zurück zum Zitat Burke LM, Hawley JA, Wong SHS, Jeukendrup AE. Carbohydrates for training and competition. J Sports Sci. 2011;29:S17–27.CrossRefPubMed Burke LM, Hawley JA, Wong SHS, Jeukendrup AE. Carbohydrates for training and competition. J Sports Sci. 2011;29:S17–27.CrossRefPubMed
33.
Zurück zum Zitat Burke LM. Re-examining high-fat diets for sports performance: did we call the “nail in the coffin” too soon? Sports Med. 2015;45:33–49.CrossRefPubMedCentral Burke LM. Re-examining high-fat diets for sports performance: did we call the “nail in the coffin” too soon? Sports Med. 2015;45:33–49.CrossRefPubMedCentral
34.
Zurück zum Zitat Yeo WK, Carey AL, Burke LM, Spriet LL, Hawley JA. Fat adaptation in well-trained athletes: effects on cell metabolism. Appl Physiol Nutr Metab. 2011;22:12–22.CrossRef Yeo WK, Carey AL, Burke LM, Spriet LL, Hawley JA. Fat adaptation in well-trained athletes: effects on cell metabolism. Appl Physiol Nutr Metab. 2011;22:12–22.CrossRef
35.
Zurück zum Zitat Volek JS, Freidenreich DJ, Saenz C, Kunces LJ, Creighton BC, Bartley JM, et al. Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism. 2016;65:100–10.CrossRefPubMed Volek JS, Freidenreich DJ, Saenz C, Kunces LJ, Creighton BC, Bartley JM, et al. Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism. 2016;65:100–10.CrossRefPubMed
36.
Zurück zum Zitat Phinney SD, Bistrian BR, Evans WJ, Gervino E, Blackburn GL. The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism. 1983;32:769–76.CrossRefPubMed Phinney SD, Bistrian BR, Evans WJ, Gervino E, Blackburn GL. The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism. 1983;32:769–76.CrossRefPubMed
37.
Zurück zum Zitat Rowlands DS, Hopkins WG. Effects of high-fat and high-carbohydrate diets on metabolism and performance in cycling. Metabolism. 2002;51:678–90.CrossRefPubMed Rowlands DS, Hopkins WG. Effects of high-fat and high-carbohydrate diets on metabolism and performance in cycling. Metabolism. 2002;51:678–90.CrossRefPubMed
38.
Zurück zum Zitat Burke LM, Angus DJ, Cox GR, Cummings NK, Febbraio MA, Gawthorn K, et al. Effect of fat adaptation and carbohydrate restoration on metabolism and performance during prolonged cycling. J Appl Physiol. 2000;89:2413–21.CrossRefPubMed Burke LM, Angus DJ, Cox GR, Cummings NK, Febbraio MA, Gawthorn K, et al. Effect of fat adaptation and carbohydrate restoration on metabolism and performance during prolonged cycling. J Appl Physiol. 2000;89:2413–21.CrossRefPubMed
39.
Zurück zum Zitat Stellingwerff T, Spriet LL, Watt MJ, Kimber NE, Hargreaves M, Hawley JA, et al. Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. Am J Physiol Endocrinol Metab. 2006;290:E380–8.CrossRefPubMed Stellingwerff T, Spriet LL, Watt MJ, Kimber NE, Hargreaves M, Hawley JA, et al. Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. Am J Physiol Endocrinol Metab. 2006;290:E380–8.CrossRefPubMed
40.
Zurück zum Zitat van Loon LJC, Jeukendrup AE, Saris WH, Wagenmakers AJ. Effect of training status on fuel selection during submaximal exercise with glucose ingestion. J Appl Physiol. 1999;87:1413–20.CrossRefPubMed van Loon LJC, Jeukendrup AE, Saris WH, Wagenmakers AJ. Effect of training status on fuel selection during submaximal exercise with glucose ingestion. J Appl Physiol. 1999;87:1413–20.CrossRefPubMed
41.
Zurück zum Zitat Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GF, Hill RE, Grant SM. Effects of training duration on substrate turnover and oxidation during exercise. J Appl Physiol. 1996;81:2182–91.CrossRefPubMed Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GF, Hill RE, Grant SM. Effects of training duration on substrate turnover and oxidation during exercise. J Appl Physiol. 1996;81:2182–91.CrossRefPubMed
42.
Zurück zum Zitat Clark SA, Chen ZP, Murphy KT, Aughey RJ, McKenna MJ, Kemp BE, et al. Intensified exercise training does not alter AMPK signaling in human skeletal muscle. Am J Physiol Endocrinol Metab. 2004;286:E737–43.CrossRefPubMed Clark SA, Chen ZP, Murphy KT, Aughey RJ, McKenna MJ, Kemp BE, et al. Intensified exercise training does not alter AMPK signaling in human skeletal muscle. Am J Physiol Endocrinol Metab. 2004;286:E737–43.CrossRefPubMed
43.
Zurück zum Zitat Burke LM. Fueling strategies to optimize performance: training high or training low? Scand J Med Sci Sports. 2010;20:48–58.CrossRefPubMed Burke LM. Fueling strategies to optimize performance: training high or training low? Scand J Med Sci Sports. 2010;20:48–58.CrossRefPubMed
44.
Zurück zum Zitat Philp A, Hargreaves M, Baar K. More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol Endocrinol Metab. 2012;302:E1343–51.CrossRefPubMed Philp A, Hargreaves M, Baar K. More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol Endocrinol Metab. 2012;302:E1343–51.CrossRefPubMed
45.
Zurück zum Zitat Chan MHS, McGee SL, Watt MJ, Hargreaves M, Febbraio MA. Altering dietary nutrient intake that reduces glycogen content leads to phosphorylation of nuclear p38 MAP kinase in human skeletal muscle: association with IL-6 gene transcription during contraction. FASEB J. 2004;18:1785–7.CrossRefPubMed Chan MHS, McGee SL, Watt MJ, Hargreaves M, Febbraio MA. Altering dietary nutrient intake that reduces glycogen content leads to phosphorylation of nuclear p38 MAP kinase in human skeletal muscle: association with IL-6 gene transcription during contraction. FASEB J. 2004;18:1785–7.CrossRefPubMed
46.
Zurück zum Zitat Psilander N, Frank P, Flockhart M, Sahlin K. Exercise with low glycogen increases PGC-1α gene expression in human skeletal muscle. Eur J Appl Physiol. 2013;113:951–63.CrossRefPubMed Psilander N, Frank P, Flockhart M, Sahlin K. Exercise with low glycogen increases PGC-1α gene expression in human skeletal muscle. Eur J Appl Physiol. 2013;113:951–63.CrossRefPubMed
47.
Zurück zum Zitat Bartlett JD, Louhelainen J, Iqbal Z, Cochran AJ, Gibala MJ, Gregson W, et al. Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: implications for mitochondrial biogenesis. Am J Physiol Regul Integr Comp Physiol. 2013;304:R450–8.CrossRefPubMed Bartlett JD, Louhelainen J, Iqbal Z, Cochran AJ, Gibala MJ, Gregson W, et al. Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: implications for mitochondrial biogenesis. Am J Physiol Regul Integr Comp Physiol. 2013;304:R450–8.CrossRefPubMed
48.
Zurück zum Zitat Hawley JA, Morton JP. Ramping up the signal: promoting endurance training adaptation in skeletal muscle by nutritional manipulation. Clin Exp Pharmacol Physiol. 2014;41:608–13.CrossRefPubMed Hawley JA, Morton JP. Ramping up the signal: promoting endurance training adaptation in skeletal muscle by nutritional manipulation. Clin Exp Pharmacol Physiol. 2014;41:608–13.CrossRefPubMed
49.
Zurück zum Zitat Hulston CJ, Venables MC, Mann CH, Martin C, Philp A, Baar K, et al. Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med Sci Sports Exerc. 2010;42:2046–55.CrossRefPubMed Hulston CJ, Venables MC, Mann CH, Martin C, Philp A, Baar K, et al. Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med Sci Sports Exerc. 2010;42:2046–55.CrossRefPubMed
50.
Zurück zum Zitat Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL, Hawley JA. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol. 2008;105:1462–70.CrossRefPubMed Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL, Hawley JA. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol. 2008;105:1462–70.CrossRefPubMed
51.
Zurück zum Zitat Impey SG, Hearris MA, Hammond KM, Bartlett JD, Louis J, Close GL, et al. Fuel for the work required: a theoretical framework for carbohydrate periodization and the glycogen threshold hypothesis. Sports Med. 2018;5:1031–48.CrossRef Impey SG, Hearris MA, Hammond KM, Bartlett JD, Louis J, Close GL, et al. Fuel for the work required: a theoretical framework for carbohydrate periodization and the glycogen threshold hypothesis. Sports Med. 2018;5:1031–48.CrossRef
52.
Zurück zum Zitat Marquet LA, Brisswalter J, Louis J, Tiollier E, Burke LM, Hawley JA, et al. Enhanced endurance performance by periodization of carbohydrate intake: “sleep low” strategy. Med Sci Sports Exerc. 2016;48:663–72.CrossRefPubMed Marquet LA, Brisswalter J, Louis J, Tiollier E, Burke LM, Hawley JA, et al. Enhanced endurance performance by periodization of carbohydrate intake: “sleep low” strategy. Med Sci Sports Exerc. 2016;48:663–72.CrossRefPubMed
53.
Zurück zum Zitat Pfeiffer B, Stellingwerff T, Hodgson AB, Randell R, Pöttgen K, Res P, et al. Nutritional intake and gastrointestinal problems during competitive endurance events. Med Sci Sports Exerc. 2012;44:344–51.CrossRefPubMed Pfeiffer B, Stellingwerff T, Hodgson AB, Randell R, Pöttgen K, Res P, et al. Nutritional intake and gastrointestinal problems during competitive endurance events. Med Sci Sports Exerc. 2012;44:344–51.CrossRefPubMed
54.
Zurück zum Zitat Wallis GA, Rowlands DS, Shaw C, Jentjens RLPG, Jeukendrup AE. Oxidation of combined ingestion of maltodextrins and fructose during exercise. Med Sci Sports Exerc. 2005;37:426–32.CrossRefPubMed Wallis GA, Rowlands DS, Shaw C, Jentjens RLPG, Jeukendrup AE. Oxidation of combined ingestion of maltodextrins and fructose during exercise. Med Sci Sports Exerc. 2005;37:426–32.CrossRefPubMed
55.
Zurück zum Zitat Jentjens RLPG, Venables MC, Jeukendrup AE. Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol. 2004;96:1285–91.CrossRefPubMed Jentjens RLPG, Venables MC, Jeukendrup AE. Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol. 2004;96:1285–91.CrossRefPubMed
56.
Zurück zum Zitat Jentjens RLPG, Achten J, Jeukendrup AE. High oxidation rates from combined carbohydrates ingested during exercise. Med Sci Sports Exerc. 2004;36:1551–8.CrossRefPubMed Jentjens RLPG, Achten J, Jeukendrup AE. High oxidation rates from combined carbohydrates ingested during exercise. Med Sci Sports Exerc. 2004;36:1551–8.CrossRefPubMed
58.
Zurück zum Zitat Rodger S, Plews D, Laursen P, Driller M. Oral β-hydroxybutyrate salt fails to improve 4-minute cycling performance following submaximal exercise. J Sci Cycl. 2017;6:26–31. Rodger S, Plews D, Laursen P, Driller M. Oral β-hydroxybutyrate salt fails to improve 4-minute cycling performance following submaximal exercise. J Sci Cycl. 2017;6:26–31.
59.
Zurück zum Zitat Robinson AM, Williamson DH. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev. 1980;60:143–87.CrossRefPubMed Robinson AM, Williamson DH. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev. 1980;60:143–87.CrossRefPubMed
60.
Zurück zum Zitat Cox PJ, Kirk T, Ashmore T, Willerton K, Evans R, Smith A, et al. Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metab. 2016;24:256–68.CrossRefPubMed Cox PJ, Kirk T, Ashmore T, Willerton K, Evans R, Smith A, et al. Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metab. 2016;24:256–68.CrossRefPubMed
61.
Zurück zum Zitat Burgess SC, Iizuka K, Jeoung NH, Harris RA, Kashiwaya Y, Veech RL, et al. Carbohydrate-response element-binding protein deletion alters substrate utilization producing an energy-deficient liver. J Biol Chem. 2008;283:1670–8.CrossRefPubMed Burgess SC, Iizuka K, Jeoung NH, Harris RA, Kashiwaya Y, Veech RL, et al. Carbohydrate-response element-binding protein deletion alters substrate utilization producing an energy-deficient liver. J Biol Chem. 2008;283:1670–8.CrossRefPubMed
62.
Zurück zum Zitat Leckey JJ, Ross ML, Quod M, Hawley JA, Burke LM. Ketone diester ingestion impairs time-trial performance in professional cyclists. Front Physiol. 2017;8:806.CrossRefPubMedPubMedCentral Leckey JJ, Ross ML, Quod M, Hawley JA, Burke LM. Ketone diester ingestion impairs time-trial performance in professional cyclists. Front Physiol. 2017;8:806.CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Stubbs BJ, Cox PJ, Evans RD, Santer P, Miller JJ, Faull OK, et al. On the metabolism of exogenous ketones in humans. Front Physiol. 2017;8:1–13.CrossRef Stubbs BJ, Cox PJ, Evans RD, Santer P, Miller JJ, Faull OK, et al. On the metabolism of exogenous ketones in humans. Front Physiol. 2017;8:1–13.CrossRef
64.
Zurück zum Zitat Jeukendrup AE. Training the gut for athletes. Sports Med. 2017;47:S101–10.CrossRef Jeukendrup AE. Training the gut for athletes. Sports Med. 2017;47:S101–10.CrossRef
65.
Zurück zum Zitat Costa RJS, Miall A, Khoo A, Rauch C, Snipe R, Camões-Costa V, et al. Gut-training: the impact of two weeks repetitive gut-challenge during exercise on gastrointestinal status, glucose availability, fuel kinetics, and running performance. Appl Physiol Nutr Metab. 2017;42:547–57.CrossRefPubMed Costa RJS, Miall A, Khoo A, Rauch C, Snipe R, Camões-Costa V, et al. Gut-training: the impact of two weeks repetitive gut-challenge during exercise on gastrointestinal status, glucose availability, fuel kinetics, and running performance. Appl Physiol Nutr Metab. 2017;42:547–57.CrossRefPubMed
66.
Zurück zum Zitat Rowlands DS, Houltham S, Musa-Veloso K, Brown F, Paulionis L, Bailey D. Fructose–glucose composite carbohydrates and endurance performance: critical review and future perspectives. Sports Med. 2015;45:1561–76.CrossRefPubMed Rowlands DS, Houltham S, Musa-Veloso K, Brown F, Paulionis L, Bailey D. Fructose–glucose composite carbohydrates and endurance performance: critical review and future perspectives. Sports Med. 2015;45:1561–76.CrossRefPubMed
Metadaten
Titel
Substrate Metabolism During Ironman Triathlon: Different Horses on the Same Courses
verfasst von
Ed Maunder
Andrew E. Kilding
Daniel J. Plews
Publikationsdatum
18.05.2018
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 10/2018
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-018-0938-9

Weitere Artikel der Ausgabe 10/2018

Sports Medicine 10/2018 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.