Skip to main content
Erschienen in: Digestive Diseases and Sciences 9/2017

01.08.2017 | Review

Sulfur Cycling and the Intestinal Microbiome

verfasst von: Larry L. Barton, Nathaniel L. Ritz, Guy D. Fauque, Henry C. Lin

Erschienen in: Digestive Diseases and Sciences | Ausgabe 9/2017

Einloggen, um Zugang zu erhalten

Abstract

In this review, we focus on the activities transpiring in the anaerobic segment of the sulfur cycle occurring in the gut environment where hydrogen sulfide is produced. While sulfate-reducing bacteria are considered as the principal agents for hydrogen sulfide production, the enzymatic desulfhydration of cysteine by heterotrophic bacteria also contributes to production of hydrogen sulfide. For sulfate-reducing bacteria respiration, molecular hydrogen and lactate are suitable as electron donors while sulfate functions as the terminal electron acceptor. Dietary components provide fiber and macromolecules that are degraded by bacterial enzymes to monomers, and these are fermented by intestinal bacteria with the production to molecular hydrogen which promotes the metabolic dominance by sulfate-reducing bacteria. Sulfate is also required by the sulfate-reducing bacteria, and this can be supplied by sulfate- and sulfonate-containing compounds that are hydrolyzed by intestinal bacterial with the release of sulfate. While hydrogen sulfide in the intestinal biosystem may be beneficial to bacteria by increasing resistance to antibiotics, and protecting them from reactive oxygen species, hydrogen sulfide at elevated concentrations may become toxic to the host.
Literatur
2.
Zurück zum Zitat Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev. 2012;92:791–896.PubMedCrossRef Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev. 2012;92:791–896.PubMedCrossRef
5.
Zurück zum Zitat Gallego D, Clavé P, Donovan J, et al. The gaseous mediator, hydrogen sulphide, inhibits in vitro motor patterns in the human, rat and mouse colon and jejunum. Neurogastroenterol Motil. 2008;20:1306–1316.PubMedCrossRef Gallego D, Clavé P, Donovan J, et al. The gaseous mediator, hydrogen sulphide, inhibits in vitro motor patterns in the human, rat and mouse colon and jejunum. Neurogastroenterol Motil. 2008;20:1306–1316.PubMedCrossRef
6.
Zurück zum Zitat Guo C, Liang F, Shah Masood W, et al. Hydrogen sulfide protected gastric epithelial cell from ischemia/reperfusion injury by Keap1s-sulfhydration, MAPK dependent anti-apoptosis and NF-κB dependent anti-inflammation pathway. Eur J Pharmacol. 2014;725:70–78.PubMedCrossRef Guo C, Liang F, Shah Masood W, et al. Hydrogen sulfide protected gastric epithelial cell from ischemia/reperfusion injury by Keap1s-sulfhydration, MAPK dependent anti-apoptosis and NF-κB dependent anti-inflammation pathway. Eur J Pharmacol. 2014;725:70–78.PubMedCrossRef
7.
Zurück zum Zitat Wallace JL, Dicay M, McKnight W, et al. Hydrogen sulfide enhances ulcer healing in rats. FASEB J. 2007;21:4070–4076.PubMedCrossRef Wallace JL, Dicay M, McKnight W, et al. Hydrogen sulfide enhances ulcer healing in rats. FASEB J. 2007;21:4070–4076.PubMedCrossRef
8.
Zurück zum Zitat Mok YYP, Moore PK. Hydrogen sulfide is pro-inflammatory in haemorrhagic shock. Inflamm Res. 2008;57:512–518.PubMedCrossRef Mok YYP, Moore PK. Hydrogen sulfide is pro-inflammatory in haemorrhagic shock. Inflamm Res. 2008;57:512–518.PubMedCrossRef
9.
Zurück zum Zitat Finegold SM, Downes J, Summanen PH. Microbiology of regressive autism. Anaerobe. 2012;18:260–262.PubMedCrossRef Finegold SM, Downes J, Summanen PH. Microbiology of regressive autism. Anaerobe. 2012;18:260–262.PubMedCrossRef
10.
Zurück zum Zitat Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci. 1996;16:1066–1071.PubMed Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci. 1996;16:1066–1071.PubMed
12.
Zurück zum Zitat Attene-Ramos MS, Wagner ED, Plewa MJ, et al. Evidence that hydrogen sulfide is a genotoxic agent. Mol Cancer Res. 2006;4:9–14.PubMedCrossRef Attene-Ramos MS, Wagner ED, Plewa MJ, et al. Evidence that hydrogen sulfide is a genotoxic agent. Mol Cancer Res. 2006;4:9–14.PubMedCrossRef
13.
Zurück zum Zitat Levine J, Ellis CJ, Furne JK, et al. Fecal hydrogen sulfide production in ulcerative colitis. Am J Gastroenterol. 1998;93:83–87.PubMedCrossRef Levine J, Ellis CJ, Furne JK, et al. Fecal hydrogen sulfide production in ulcerative colitis. Am J Gastroenterol. 1998;93:83–87.PubMedCrossRef
14.
Zurück zum Zitat Chassard C, Dapoigny M, Scott KP, et al. Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment Pharmacol. 2012;35:828–838.CrossRef Chassard C, Dapoigny M, Scott KP, et al. Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment Pharmacol. 2012;35:828–838.CrossRef
15.
Zurück zum Zitat Ritz NL, Lin DM, Wilson MR, et al. Sulfate-reducing bacteria slow intestinal transit in a bismuth-reversible fashion in mice. Neurogastroenterol Motil. 2016;. doi:10.1111/nmo.12907.PubMed Ritz NL, Lin DM, Wilson MR, et al. Sulfate-reducing bacteria slow intestinal transit in a bismuth-reversible fashion in mice. Neurogastroenterol Motil. 2016;. doi:10.​1111/​nmo.​12907.PubMed
16.
Zurück zum Zitat Ritz NL, Burnett BJ, Setty P, et al. Sulfate-reducing bacteria impairs working memory in mice. Physiol Behav. 2016;157:281–287.PubMedCrossRef Ritz NL, Burnett BJ, Setty P, et al. Sulfate-reducing bacteria impairs working memory in mice. Physiol Behav. 2016;157:281–287.PubMedCrossRef
17.
Zurück zum Zitat Gibson GR, Macfarlane GT, Cummings JH. Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. J Appl Bacteriol. 1988;65:103–111.PubMedCrossRef Gibson GR, Macfarlane GT, Cummings JH. Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. J Appl Bacteriol. 1988;65:103–111.PubMedCrossRef
18.
Zurück zum Zitat Laue H, Denger K, Cook AM. Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAu. Appl Environ Microbiol. 1997;63:2016–2021.PubMedPubMedCentral Laue H, Denger K, Cook AM. Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAu. Appl Environ Microbiol. 1997;63:2016–2021.PubMedPubMedCentral
19.
Zurück zum Zitat Laue H, Friedrich M, Ruff J, et al. Dissimilatory sulfite reductase (desulfoviridin) of the taurine-degrading, non-sulfate-reducing bacterium Bilophila wadsworthia RZATAU contains a fused DsrB-DsrD subunit. J Bacteriol. 2001;183:1727–1733.PubMedPubMedCentralCrossRef Laue H, Friedrich M, Ruff J, et al. Dissimilatory sulfite reductase (desulfoviridin) of the taurine-degrading, non-sulfate-reducing bacterium Bilophila wadsworthia RZATAU contains a fused DsrB-DsrD subunit. J Bacteriol. 2001;183:1727–1733.PubMedPubMedCentralCrossRef
20.
21.
Zurück zum Zitat Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–298.PubMedPubMedCentralCrossRef Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–298.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306.PubMedPubMedCentralCrossRef Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Arzese A, Mercuri F, Trevisan R, et al. Recovery of Bilophila wadsworthia from clinical specimens in Italy. Anaerobe. 1997;3:219–224.PubMedCrossRef Arzese A, Mercuri F, Trevisan R, et al. Recovery of Bilophila wadsworthia from clinical specimens in Italy. Anaerobe. 1997;3:219–224.PubMedCrossRef
25.
Zurück zum Zitat Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–848.PubMedCrossRef Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–848.PubMedCrossRef
27.
Zurück zum Zitat Magierowski M, Magierowska K, Kwiecien S, et al. Gaseous mediators nitric oxide and hydrogen sulfide in the mechanism of gastrointestinal integrity, protection and ulcer healing. Molecules. 2015;20:9099–10123.PubMedCrossRef Magierowski M, Magierowska K, Kwiecien S, et al. Gaseous mediators nitric oxide and hydrogen sulfide in the mechanism of gastrointestinal integrity, protection and ulcer healing. Molecules. 2015;20:9099–10123.PubMedCrossRef
28.
Zurück zum Zitat Farrugia G, Szurszewski JH. Carbon monoxide, hydrogen sulfide, and nitric oxide as signaling molecules in the gastrointestinal tract. Gastroenterology. 2014;147:303–313.PubMedPubMedCentralCrossRef Farrugia G, Szurszewski JH. Carbon monoxide, hydrogen sulfide, and nitric oxide as signaling molecules in the gastrointestinal tract. Gastroenterology. 2014;147:303–313.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Macfarlane GT, Cummings JH, Macfarlane S. Sulphate-reducing bacteria and the human large intestine. In: Barton LL, Hamilton WA, eds. Sulphate-reducing bacteria: Environmental and engineered systems. Cambridge: Cambridge University Press; 2007:503–521.CrossRef Macfarlane GT, Cummings JH, Macfarlane S. Sulphate-reducing bacteria and the human large intestine. In: Barton LL, Hamilton WA, eds. Sulphate-reducing bacteria: Environmental and engineered systems. Cambridge: Cambridge University Press; 2007:503–521.CrossRef
30.
Zurück zum Zitat Wilson K, Mudra M, Furne J, et al. Differentiation of the roles of sulfide oxidase and rhodanese in the detoxification of sulfide by the colonic mucosa. Dig Dis Sci. 2008;53:277–283.PubMedCrossRef Wilson K, Mudra M, Furne J, et al. Differentiation of the roles of sulfide oxidase and rhodanese in the detoxification of sulfide by the colonic mucosa. Dig Dis Sci. 2008;53:277–283.PubMedCrossRef
31.
Zurück zum Zitat Kertesz MA. Riding the sulfur cycle—metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol Rev. 2000;24:135–175.PubMed Kertesz MA. Riding the sulfur cycle—metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol Rev. 2000;24:135–175.PubMed
32.
Zurück zum Zitat Shoveller AK, Stoll B, Ball RO, et al. Nutritional and functional importance of intestinal sulfur amino acid metabolism. J Nutr. 2005;135:1609–1612.PubMed Shoveller AK, Stoll B, Ball RO, et al. Nutritional and functional importance of intestinal sulfur amino acid metabolism. J Nutr. 2005;135:1609–1612.PubMed
34.
Zurück zum Zitat Bauchart-Thevret C, Stoll B, Burrin DG. Intestinal metabolism of sulfur amino acids. Nutr Res Rev. 2009;22:175–187.PubMedCrossRef Bauchart-Thevret C, Stoll B, Burrin DG. Intestinal metabolism of sulfur amino acids. Nutr Res Rev. 2009;22:175–187.PubMedCrossRef
35.
Zurück zum Zitat Ahlman B, Leijonmarck CE, Lind C, et al. Free amino acids in biopsy specimens from the human colonic mucosa. J Surg Res. 1993;55:647–653.PubMedCrossRef Ahlman B, Leijonmarck CE, Lind C, et al. Free amino acids in biopsy specimens from the human colonic mucosa. J Surg Res. 1993;55:647–653.PubMedCrossRef
36.
Zurück zum Zitat Burrin DG, Stoll B. Emerging aspects of gut sulfur amino acid metabolism. Curr Opin Clin Nutr Metab Care. 2007;10:63–68.PubMedCrossRef Burrin DG, Stoll B. Emerging aspects of gut sulfur amino acid metabolism. Curr Opin Clin Nutr Metab Care. 2007;10:63–68.PubMedCrossRef
37.
Zurück zum Zitat Townsend JH, Davis SR, Mackey AD, et al. Folate deprivation reduces homocysteine remethylation in a human intestinal epithelial cell culture model: role of serine in one-carbon donation. Am J Physiol Gastrointest Liver Physiol. 2004;286:G588–G595.PubMedCrossRef Townsend JH, Davis SR, Mackey AD, et al. Folate deprivation reduces homocysteine remethylation in a human intestinal epithelial cell culture model: role of serine in one-carbon donation. Am J Physiol Gastrointest Liver Physiol. 2004;286:G588–G595.PubMedCrossRef
38.
Zurück zum Zitat Burnell JN, Whatley FR. Sulphur metabolism in Paracoccus denitrificans. Purification, properties, and regulation of serine transacetylase, O-acetylserine sulphydrylase, and beta cystathionase. Biochim Biophys Acta. 1997;481:246–265.CrossRef Burnell JN, Whatley FR. Sulphur metabolism in Paracoccus denitrificans. Purification, properties, and regulation of serine transacetylase, O-acetylserine sulphydrylase, and beta cystathionase. Biochim Biophys Acta. 1997;481:246–265.CrossRef
39.
Zurück zum Zitat Nagasawa T, Kanzaki H, Yamada H. Cystathionine γ-lyase of Streptomyces phaeochromogenes. The occurrence of cystathionine γ-lyase in filamentous bacteria and its purification and characterization. J Biol Chem. 1984;259:10393–10403.PubMed Nagasawa T, Kanzaki H, Yamada H. Cystathionine γ-lyase of Streptomyces phaeochromogenes. The occurrence of cystathionine γ-lyase in filamentous bacteria and its purification and characterization. J Biol Chem. 1984;259:10393–10403.PubMed
41.
Zurück zum Zitat Cohen GN. Microbial biochemistry. 2nd ed. New York: Springer; 2011:557.CrossRef Cohen GN. Microbial biochemistry. 2nd ed. New York: Springer; 2011:557.CrossRef
42.
Zurück zum Zitat Sato D, Nozaki T. Methionine gamma-lyase: the unique reaction mechanism, physiological roles, and therapeutic applications against infectious diseases and cancers. IUBMB Life. 2009;61:1019–1028.PubMedCrossRef Sato D, Nozaki T. Methionine gamma-lyase: the unique reaction mechanism, physiological roles, and therapeutic applications against infectious diseases and cancers. IUBMB Life. 2009;61:1019–1028.PubMedCrossRef
43.
Zurück zum Zitat Levitt MD, Furne J, Springfield J, et al. Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa. J Clin Invest. 1999;104:1107–1114.PubMedPubMedCentralCrossRef Levitt MD, Furne J, Springfield J, et al. Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa. J Clin Invest. 1999;104:1107–1114.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Suarez FL, Springfield J, Levitt MD. Identification of gases responsible for the odour of human flatus and evaluation of a device purported to reduce this odour. Gut. 1998;43:100–104.PubMedPubMedCentralCrossRef Suarez FL, Springfield J, Levitt MD. Identification of gases responsible for the odour of human flatus and evaluation of a device purported to reduce this odour. Gut. 1998;43:100–104.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Tallant TC, Krzycki JA. Methylthiol:coenzyme M methyltransferase from Methanosarcina barkeri, an enzyme of methanogenesis from dimethylsulfide and methylmercaptopropionate. J Bacteriol. 1997;179:6902–6911.PubMedPubMedCentralCrossRef Tallant TC, Krzycki JA. Methylthiol:coenzyme M methyltransferase from Methanosarcina barkeri, an enzyme of methanogenesis from dimethylsulfide and methylmercaptopropionate. J Bacteriol. 1997;179:6902–6911.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Stipanuk MH, Ueki I, Dominy JE Jr, et al. Cysteine dioxygenase: A robust system for regulation of cellular cysteine levels. Amino Acids. 2009;37:55–63.PubMedCrossRef Stipanuk MH, Ueki I, Dominy JE Jr, et al. Cysteine dioxygenase: A robust system for regulation of cellular cysteine levels. Amino Acids. 2009;37:55–63.PubMedCrossRef
48.
Zurück zum Zitat Chiku T, Padovani D, Zhu W, et al. H2S biogenesis by human cystathionine γ-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem. 2009;284:11601–11612.PubMedPubMedCentralCrossRef Chiku T, Padovani D, Zhu W, et al. H2S biogenesis by human cystathionine γ-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem. 2009;284:11601–11612.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Singh S, Padovani D, Leslie RA, et al. Relative contributions of cystathionine β-synthase and γ-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem. 2009;284:22457–22466.PubMedPubMedCentralCrossRef Singh S, Padovani D, Leslie RA, et al. Relative contributions of cystathionine β-synthase and γ-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem. 2009;284:22457–22466.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Guarneros G, Ortega MV. Cysteine desulfhydrase activities of Salmonella typhimurium and Escherichia coli. Biochim Biophys Acta Enzymol. 1970;198:132–142.CrossRef Guarneros G, Ortega MV. Cysteine desulfhydrase activities of Salmonella typhimurium and Escherichia coli. Biochim Biophys Acta Enzymol. 1970;198:132–142.CrossRef
51.
Zurück zum Zitat Ikkert OP, Gerasimchuk AL, Bukhtiyarova PA, et al. Characterization of precipitates formed by H2S –producing, Cu-resistant Firmicute isolates of Tissierella from human gut and Desulfosporosinus from mine waste. Antonie Van Leeukenhoek. 2013;103:1221–1234.CrossRef Ikkert OP, Gerasimchuk AL, Bukhtiyarova PA, et al. Characterization of precipitates formed by H2S –producing, Cu-resistant Firmicute isolates of Tissierella from human gut and Desulfosporosinus from mine waste. Antonie Van Leeukenhoek. 2013;103:1221–1234.CrossRef
54.
Zurück zum Zitat Claesson R, Edlund M-B, Persson S, et al. Production of volatile sulfur compounds by various Fusobacterium species. Oral Microbiol Immunol. 1990;5:137–142.PubMedCrossRef Claesson R, Edlund M-B, Persson S, et al. Production of volatile sulfur compounds by various Fusobacterium species. Oral Microbiol Immunol. 1990;5:137–142.PubMedCrossRef
55.
Zurück zum Zitat Soutourina J, Blanquet S, Plateau P. Role of d-cysteine desulfhydrase in the adaption of Escherichia coli to D-cysteine. J Biol Chem. 2001;276:40864–40872.PubMedCrossRef Soutourina J, Blanquet S, Plateau P. Role of d-cysteine desulfhydrase in the adaption of Escherichia coli to D-cysteine. J Biol Chem. 2001;276:40864–40872.PubMedCrossRef
56.
Zurück zum Zitat Vairavamurthy A, Zhou W, Eglinton T, et al. Sulfonates: a novel class of organic sulfur compounds in marine sediments. Geochim Cosmochim Acta. 1994;58:4681–4687.CrossRef Vairavamurthy A, Zhou W, Eglinton T, et al. Sulfonates: a novel class of organic sulfur compounds in marine sediments. Geochim Cosmochim Acta. 1994;58:4681–4687.CrossRef
57.
Zurück zum Zitat Vairavamurthy MA, Maletic D, Wang SK, et al. Characterization of sulfur-containing functional groups in sedimentary humic substances by X-ray absorption near-edge structure spectroscopy. Energy Fuels. 1997;11:546–553.CrossRef Vairavamurthy MA, Maletic D, Wang SK, et al. Characterization of sulfur-containing functional groups in sedimentary humic substances by X-ray absorption near-edge structure spectroscopy. Energy Fuels. 1997;11:546–553.CrossRef
58.
Zurück zum Zitat de Wolf W, Feijtel T. Terrestrial risk assessment for linear alkylbenzenesulfonate (LAS) in sludge-amended soils. Chemosphere. 1998;36:1319–1343.PubMedCrossRef de Wolf W, Feijtel T. Terrestrial risk assessment for linear alkylbenzenesulfonate (LAS) in sludge-amended soils. Chemosphere. 1998;36:1319–1343.PubMedCrossRef
59.
61.
Zurück zum Zitat Eichhorn E, van der Ploeg JR, Kertesz MA, et al. Characterization of α-ketoglutarate dependent taurine dioxygenase from Escherichia coli. J Biol Chem. 1997;272:23031–23036.PubMedCrossRef Eichhorn E, van der Ploeg JR, Kertesz MA, et al. Characterization of α-ketoglutarate dependent taurine dioxygenase from Escherichia coli. J Biol Chem. 1997;272:23031–23036.PubMedCrossRef
62.
Zurück zum Zitat Brüggemann C, Denger K, Cook AM, et al. Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans. Microbiology. 2004;150:805–816.PubMedCrossRef Brüggemann C, Denger K, Cook AM, et al. Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans. Microbiology. 2004;150:805–816.PubMedCrossRef
63.
Zurück zum Zitat Denger K, Cook AM. Ethanedisulfonate is degraded via sulfoacetaldehyde in Ralstonia sp. strain EDSI. Arch Microbiol. 2001;176:89–95.PubMedCrossRef Denger K, Cook AM. Ethanedisulfonate is degraded via sulfoacetaldehyde in Ralstonia sp. strain EDSI. Arch Microbiol. 2001;176:89–95.PubMedCrossRef
64.
Zurück zum Zitat Denger K, Stackebrandt E, Cook AM. Desulfonispora thiosulfatigenes gen. nov., sp. nov., a taurine-fermenting thiosulfate-producing anaerobic bacterium. Int J Syst Bacteriol. 1999;49:1599–1603.PubMedCrossRef Denger K, Stackebrandt E, Cook AM. Desulfonispora thiosulfatigenes gen. nov., sp. nov., a taurine-fermenting thiosulfate-producing anaerobic bacterium. Int J Syst Bacteriol. 1999;49:1599–1603.PubMedCrossRef
65.
Zurück zum Zitat Lie TJ, Clawson ML, Godchaux W, Leadbetter ER. Sulfidogenesis from 2-aminoethanesulfonate (taurine) fermentation by a morphologically unusual sulfate-reducing bacterium, Desulforhopalus singaporensis sp.nov. Appl Environ Microbiol. 1999;65:3328–3334.PubMedPubMedCentral Lie TJ, Clawson ML, Godchaux W, Leadbetter ER. Sulfidogenesis from 2-aminoethanesulfonate (taurine) fermentation by a morphologically unusual sulfate-reducing bacterium, Desulforhopalus singaporensis sp.nov. Appl Environ Microbiol. 1999;65:3328–3334.PubMedPubMedCentral
66.
Zurück zum Zitat Lie TJ, Godchaux W, Leadbetter ER. Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria (Desulfitobacterium spp.) and sulfate-reducing bacteria: effects of inhibitors of sulfidogenesis. Appl Environ Microbiol. 1999;65:4611–4617.PubMedPubMedCentral Lie TJ, Godchaux W, Leadbetter ER. Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria (Desulfitobacterium spp.) and sulfate-reducing bacteria: effects of inhibitors of sulfidogenesis. Appl Environ Microbiol. 1999;65:4611–4617.PubMedPubMedCentral
67.
Zurück zum Zitat Speciale G, Jin Y, Davies GJ, et al. YihQ is a sulfoquinovosidase that cleaves sulfoquinovosyl diacylglyceride sulfolipids. Nat Chem Biol. 2016;12:215–217.PubMedCrossRef Speciale G, Jin Y, Davies GJ, et al. YihQ is a sulfoquinovosidase that cleaves sulfoquinovosyl diacylglyceride sulfolipids. Nat Chem Biol. 2016;12:215–217.PubMedCrossRef
68.
Zurück zum Zitat Tobacman JK. The common food additive carrageenan and the alpha-gal epitope. J Allergy Clin Immunol. 2015;136:1708–1709.PubMedCrossRef Tobacman JK. The common food additive carrageenan and the alpha-gal epitope. J Allergy Clin Immunol. 2015;136:1708–1709.PubMedCrossRef
69.
Zurück zum Zitat Hofmann AF, Loening-Baucke V, Lavine JE, et al. Altered bile acid metabolism in childhood functional constipation: inactivation of secretory bile acids by sulfation in a subset of patients. J Pediatr Gastroenterol Nutr. 2008;47:598–606.PubMedCrossRef Hofmann AF, Loening-Baucke V, Lavine JE, et al. Altered bile acid metabolism in childhood functional constipation: inactivation of secretory bile acids by sulfation in a subset of patients. J Pediatr Gastroenterol Nutr. 2008;47:598–606.PubMedCrossRef
70.
Zurück zum Zitat Toesch M, Schober M, Faber K. Microbial alkyl- and aryl-sulfatases: mechanism, occurrence, screening and stereoselectivities. Appl Microbiol Biotechnol. 2014;98:1485–1496.PubMedCrossRef Toesch M, Schober M, Faber K. Microbial alkyl- and aryl-sulfatases: mechanism, occurrence, screening and stereoselectivities. Appl Microbiol Biotechnol. 2014;98:1485–1496.PubMedCrossRef
71.
Zurück zum Zitat Robben J, Parmentier G, Eyssen H. Isolation of a rat intestinal Clostridium strain producing 5-alpha and 5-beta bile salt 3-alpha-sulfatase activity. Appl Environ Microbiol. 1986;51:32–38.PubMedPubMedCentral Robben J, Parmentier G, Eyssen H. Isolation of a rat intestinal Clostridium strain producing 5-alpha and 5-beta bile salt 3-alpha-sulfatase activity. Appl Environ Microbiol. 1986;51:32–38.PubMedPubMedCentral
72.
Zurück zum Zitat Wright DP, Rosendale DI, Roberton AM. Prevotella enzymes involved in mucin oligosaccharide degradation and evidence for a small operon of genes expressed during growth on mucin. FEMS Microbiol Lett. 2000;190:73–79.PubMedCrossRef Wright DP, Rosendale DI, Roberton AM. Prevotella enzymes involved in mucin oligosaccharide degradation and evidence for a small operon of genes expressed during growth on mucin. FEMS Microbiol Lett. 2000;190:73–79.PubMedCrossRef
73.
Zurück zum Zitat Benjdia A, Martens EC, Gordon JI, et al. Sulfatases and a radical S-adenosyl-l-methionine (AdoMet) enzyme are key for mucosal foraging and fitness of the prominent human gut symbiont Bacteroides thetaiotaomicron. J Biol Chem. 2011;286:25973–25982.PubMedPubMedCentralCrossRef Benjdia A, Martens EC, Gordon JI, et al. Sulfatases and a radical S-adenosyl-l-methionine (AdoMet) enzyme are key for mucosal foraging and fitness of the prominent human gut symbiont Bacteroides thetaiotaomicron. J Biol Chem. 2011;286:25973–25982.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Nava GM, Carbonero F, Croix JA, et al. Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. ISEM J. 2012;6:57–70.CrossRef Nava GM, Carbonero F, Croix JA, et al. Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. ISEM J. 2012;6:57–70.CrossRef
76.
Zurück zum Zitat Stackebrandt E. The emended family Peptococcaceae and description of the families Desulfitobacteriaceae, Desulfotomaculaceae, and Thermincolaceae. The Prokaryotes Firmicutes and Tenericutes. In: Fourth Edition. E Rosenberg (Editor-in-Chief) E F. DeLong, S Lory, E Stackebrandt and F Thompson (Eds.) Berlin: Springer; 2014: 285–291 Stackebrandt E. The emended family Peptococcaceae and description of the families Desulfitobacteriaceae, Desulfotomaculaceae, and Thermincolaceae. The Prokaryotes Firmicutes and Tenericutes. In: Fourth Edition. E Rosenberg (Editor-in-Chief) E F. DeLong, S Lory, E Stackebrandt and F Thompson (Eds.) Berlin: Springer; 2014: 285–291
77.
Zurück zum Zitat O’Flaherty V, Mahony T, O’Kennedy R, et al. Effect of pH on growth kinetics and suphide toxicolocy thresholds of a range of methanogenic, syntrophic and sulphate-reducing bacteria. Proc Biochem. 1998;33:555–569.CrossRef O’Flaherty V, Mahony T, O’Kennedy R, et al. Effect of pH on growth kinetics and suphide toxicolocy thresholds of a range of methanogenic, syntrophic and sulphate-reducing bacteria. Proc Biochem. 1998;33:555–569.CrossRef
78.
Zurück zum Zitat Gibson GR, Cummings JH, Macfarlane GT. Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Appl Environ Microbiol. 1988;54:2750–2755.PubMedPubMedCentral Gibson GR, Cummings JH, Macfarlane GT. Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Appl Environ Microbiol. 1988;54:2750–2755.PubMedPubMedCentral
79.
Zurück zum Zitat Barton LL, Fardeau M-L, Fauque GD. Hydrogen sulfide: A toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by sulfur oxidation. Metal Ions Life Sci. 2014;14:237–277.CrossRef Barton LL, Fardeau M-L, Fauque GD. Hydrogen sulfide: A toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by sulfur oxidation. Metal Ions Life Sci. 2014;14:237–277.CrossRef
80.
Zurück zum Zitat Nakamura N, Lin HC, McSweeney CS, et al. Mechanisms of microbial hydrogen disposal in the human colon and implications for health and disease. Annu Rev Food Sci Technol. 2010;1:363–395.PubMedCrossRef Nakamura N, Lin HC, McSweeney CS, et al. Mechanisms of microbial hydrogen disposal in the human colon and implications for health and disease. Annu Rev Food Sci Technol. 2010;1:363–395.PubMedCrossRef
81.
Zurück zum Zitat Rey FE, Gonzalez MD, Cheng J, et al. Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc Natl Acad Sci USA. 2013;110:13582–13587.PubMedPubMedCentralCrossRef Rey FE, Gonzalez MD, Cheng J, et al. Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc Natl Acad Sci USA. 2013;110:13582–13587.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Pester M, Knorr KH, Friedrich MW, et al. Sulfate-reducing microorganisms in wetlands—fameless actors in carbon cycling and climate change. Front Microbiol. 2012;3:72.PubMedPubMedCentralCrossRef Pester M, Knorr KH, Friedrich MW, et al. Sulfate-reducing microorganisms in wetlands—fameless actors in carbon cycling and climate change. Front Microbiol. 2012;3:72.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Fauque GD, Barton LL. Hemoproteins in dissimilatory sulfate- and sulfur-reducing prokaryotes. Adv Microbiol Physol. 2012;60:2–90. Fauque GD, Barton LL. Hemoproteins in dissimilatory sulfate- and sulfur-reducing prokaryotes. Adv Microbiol Physol. 2012;60:2–90.
85.
86.
Zurück zum Zitat Finster K. Microbiological disproportionation of inorganic sulfur compounds. J Sulfur Chem. 2008;29:281–292.CrossRef Finster K. Microbiological disproportionation of inorganic sulfur compounds. J Sulfur Chem. 2008;29:281–292.CrossRef
87.
Zurück zum Zitat Devkota S, Wang Y, Musch M, et al. Dietary fat-induced taurocholic acid production promotes pathobiont and colitis in IL-10−/− mice. Nature. 2012;487:104–108.PubMedPubMedCentral Devkota S, Wang Y, Musch M, et al. Dietary fat-induced taurocholic acid production promotes pathobiont and colitis in IL-10−/− mice. Nature. 2012;487:104–108.PubMedPubMedCentral
88.
Zurück zum Zitat Devkota S, Chang EB. Interactions between diet, bile acid metabolism, gut microbiota, and inflammatory bowel diseases. Dig Dis. 2015;33:351–356.PubMedPubMedCentralCrossRef Devkota S, Chang EB. Interactions between diet, bile acid metabolism, gut microbiota, and inflammatory bowel diseases. Dig Dis. 2015;33:351–356.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Molitor M, Dahl C, Molitor I, et al. A dissimilatory sirohaem-sulfite-reductase-type protein from the hyperthermophilic archaeon Pyrobaculum islandicum. Microbiology. 1998;144:529–541.PubMedCrossRef Molitor M, Dahl C, Molitor I, et al. A dissimilatory sirohaem-sulfite-reductase-type protein from the hyperthermophilic archaeon Pyrobaculum islandicum. Microbiology. 1998;144:529–541.PubMedCrossRef
90.
Zurück zum Zitat Itoh T, Suzuki K, Nakase T. Vulcanisaeta distributa gen. nov., sp. nov., and Vulcanisaeta souniana sp. nov., novel hyperthermophilic, rod-shaped crenarchaeotes isolated from hot springs in Japan. Int J Syst Evol Microbiol. 2002;52:1097–1104.PubMed Itoh T, Suzuki K, Nakase T. Vulcanisaeta distributa gen. nov., sp. nov., and Vulcanisaeta souniana sp. nov., novel hyperthermophilic, rod-shaped crenarchaeotes isolated from hot springs in Japan. Int J Syst Evol Microbiol. 2002;52:1097–1104.PubMed
91.
Zurück zum Zitat Peck HD Jr. Evidence for oxidative phosphorylation during the reduction of sulfate with hydrogen by Desulfovibrio desulfuricans. J Biol Chem. 1960;235:2734–2738.PubMed Peck HD Jr. Evidence for oxidative phosphorylation during the reduction of sulfate with hydrogen by Desulfovibrio desulfuricans. J Biol Chem. 1960;235:2734–2738.PubMed
94.
Zurück zum Zitat Winter SE, Thiennimitr P, Winter MG, et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature. 2010;467:426–429.PubMedPubMedCentralCrossRef Winter SE, Thiennimitr P, Winter MG, et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature. 2010;467:426–429.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Barrett EL, Clark MA. Tetrathionate reduction and production of hydrogen sulfide from thiosulfate. Microbiol Rev. 1987;51:192–205.PubMedPubMedCentral Barrett EL, Clark MA. Tetrathionate reduction and production of hydrogen sulfide from thiosulfate. Microbiol Rev. 1987;51:192–205.PubMedPubMedCentral
96.
Zurück zum Zitat Liu YW, Denkmann K, Kosciow K, et al. Tetrathionate stimulated growth of Campylobacter jejuni identifies a new type of bi-functional tetrathionate reductase (TsdA) that is widely distributed in bacteria. Mol Microbiol. 2013;88:173–188.PubMedCrossRef Liu YW, Denkmann K, Kosciow K, et al. Tetrathionate stimulated growth of Campylobacter jejuni identifies a new type of bi-functional tetrathionate reductase (TsdA) that is widely distributed in bacteria. Mol Microbiol. 2013;88:173–188.PubMedCrossRef
97.
Zurück zum Zitat Skyring GW, Jones HE, Goodchild D. The taxonomy of some new isolates of dissimilatory sulfate-reducing bacteria. Can J Microbiol. 1977;23:1415–1425.PubMedCrossRef Skyring GW, Jones HE, Goodchild D. The taxonomy of some new isolates of dissimilatory sulfate-reducing bacteria. Can J Microbiol. 1977;23:1415–1425.PubMedCrossRef
98.
Zurück zum Zitat Stoffels L, Krehenbrink M, Berks BC, et al. Thiosulfate reduction in Salmonella enterica is driven by the proton motive force. J Bacteriol. 2011;194:475–485.PubMedCrossRef Stoffels L, Krehenbrink M, Berks BC, et al. Thiosulfate reduction in Salmonella enterica is driven by the proton motive force. J Bacteriol. 2011;194:475–485.PubMedCrossRef
99.
Zurück zum Zitat Huang C, Barrett EL. Sequence analysis and expression of the Salmonella typhimurium asr operon encoding production of hydrogen sulfide from sulfite. J Bacteriol. 1991;173:1544–1553.PubMedPubMedCentralCrossRef Huang C, Barrett EL. Sequence analysis and expression of the Salmonella typhimurium asr operon encoding production of hydrogen sulfide from sulfite. J Bacteriol. 1991;173:1544–1553.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Siegel LM, Davis PS. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. IV. The Escherichia coli hemoflavoprotein: subunit structure and dissociation into hemoprotein and flavoprotein components. J Biol Chem.. 1974;249:1587–1598.PubMed Siegel LM, Davis PS. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. IV. The Escherichia coli hemoflavoprotein: subunit structure and dissociation into hemoprotein and flavoprotein components. J Biol Chem.. 1974;249:1587–1598.PubMed
101.
Zurück zum Zitat Harrison G, Curle C, Laishley EJ. Purification and characterization of an inducible dissimilatory type sulfite reductase from Clostridium pasteurianum. Arch Microbiol. 1984;138:72–78.PubMedCrossRef Harrison G, Curle C, Laishley EJ. Purification and characterization of an inducible dissimilatory type sulfite reductase from Clostridium pasteurianum. Arch Microbiol. 1984;138:72–78.PubMedCrossRef
102.
Zurück zum Zitat Johnson EF, Mukhopadhyay B. Coenzyme F420-dependent sulfite reductase-enabled sulfite detoxification and use of sulfite as a sole sulfur source by Methanococcus maripaludis. Appl Environ Microbiol. 2008;74:3591–3595.PubMedPubMedCentralCrossRef Johnson EF, Mukhopadhyay B. Coenzyme F420-dependent sulfite reductase-enabled sulfite detoxification and use of sulfite as a sole sulfur source by Methanococcus maripaludis. Appl Environ Microbiol. 2008;74:3591–3595.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Rabus R, Venceslau SS, Wöhlbrand L, et al. A post-genomic view of the ecophysiology, catabolism and biotechnological relevance of sulphate-reducing prokaryotes. Adv Microb Physiol. 2015;66:55–321.PubMedCrossRef Rabus R, Venceslau SS, Wöhlbrand L, et al. A post-genomic view of the ecophysiology, catabolism and biotechnological relevance of sulphate-reducing prokaryotes. Adv Microb Physiol. 2015;66:55–321.PubMedCrossRef
104.
105.
Zurück zum Zitat Cooper CF, Brown GC. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanisms and physiological significance. J Bioenerg Biomembr. 2008;40:533–539.PubMedCrossRef Cooper CF, Brown GC. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanisms and physiological significance. J Bioenerg Biomembr. 2008;40:533–539.PubMedCrossRef
106.
Zurück zum Zitat Roediger WEW, Duncan A, Kapaniris O, et al. Sulphide impairment of substrate oxidation in rat colonocytes: a biochemical basis for ulcerative colitis? Clin Sci. 1993;85:623–627.PubMedCrossRef Roediger WEW, Duncan A, Kapaniris O, et al. Sulphide impairment of substrate oxidation in rat colonocytes: a biochemical basis for ulcerative colitis? Clin Sci. 1993;85:623–627.PubMedCrossRef
108.
Zurück zum Zitat Berglin EH, Carlsson J. Potentiation by sulfide of hydrogen peroxide-induced killing of Escherichia coli. Infect Immun. 1985;49:538–543.PubMedPubMedCentral Berglin EH, Carlsson J. Potentiation by sulfide of hydrogen peroxide-induced killing of Escherichia coli. Infect Immun. 1985;49:538–543.PubMedPubMedCentral
109.
Zurück zum Zitat Park S, Imlay JA. High levels of intracellular cysteine promote oxidative DNA damage by driving the Fenton reaction. J Bacteriol. 2003;185:1942–1950.PubMedPubMedCentralCrossRef Park S, Imlay JA. High levels of intracellular cysteine promote oxidative DNA damage by driving the Fenton reaction. J Bacteriol. 2003;185:1942–1950.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Korshunov S, Imlay KRC, Imlay JA. The cytochrome bd oxidase of Escherichia coli prevents respiratory inhibition by endogenous and exogenous hydrogen sulfide. Mol Microbiol. 2016;101:62–77.PubMedPubMedCentralCrossRef Korshunov S, Imlay KRC, Imlay JA. The cytochrome bd oxidase of Escherichia coli prevents respiratory inhibition by endogenous and exogenous hydrogen sulfide. Mol Microbiol. 2016;101:62–77.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Deplancke B, Gaskins HR. Hydrogen sulfide induces serum-independent cell cycle entry in nontransformed rat intestinal epithelial cells. FASEB J. 2003;17:1310–1312.PubMed Deplancke B, Gaskins HR. Hydrogen sulfide induces serum-independent cell cycle entry in nontransformed rat intestinal epithelial cells. FASEB J. 2003;17:1310–1312.PubMed
114.
Zurück zum Zitat Christl SU, Eisner HD, Dusel G, et al. Antagonistic effects of sulfide and butyrate on proliferation of colonic mucosa: a potential role for these agents in the pathogenesis of ulcerative colitis. Dig Dis Sci. 1996;41:2477–2481.PubMedCrossRef Christl SU, Eisner HD, Dusel G, et al. Antagonistic effects of sulfide and butyrate on proliferation of colonic mucosa: a potential role for these agents in the pathogenesis of ulcerative colitis. Dig Dis Sci. 1996;41:2477–2481.PubMedCrossRef
115.
Zurück zum Zitat Mathai JC, Missner A, Kügler P, et al. No facilitator required for membrane transport of hydrogen sulfide. Proc Natl Acad Sci USA. 2009;106:16633–16638.PubMedPubMedCentralCrossRef Mathai JC, Missner A, Kügler P, et al. No facilitator required for membrane transport of hydrogen sulfide. Proc Natl Acad Sci USA. 2009;106:16633–16638.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Magee EA, Richardson CJ, Hughes R, et al. Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans. Am J Clin Nutr. 2000;72:1488–1494.PubMed Magee EA, Richardson CJ, Hughes R, et al. Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans. Am J Clin Nutr. 2000;72:1488–1494.PubMed
117.
Zurück zum Zitat Hao OJ, Chen JM, Huang L, et al. Sulfate-reducing bacteria. Crit Rev Environ Sci Technol. 1996;26:155–187.CrossRef Hao OJ, Chen JM, Huang L, et al. Sulfate-reducing bacteria. Crit Rev Environ Sci Technol. 1996;26:155–187.CrossRef
118.
Zurück zum Zitat Fauque GD. Sulfur reductases form thiophilic sulfate-reducing bacteria. Meth Enzymol. 1994;243:353–367.CrossRef Fauque GD. Sulfur reductases form thiophilic sulfate-reducing bacteria. Meth Enzymol. 1994;243:353–367.CrossRef
119.
Zurück zum Zitat Oleszkiewicz JA, Marstaller T, McCartney DM. Effects of pH on sulfide toxicity to anaerobic processes. Environ Technol Lett. 1989;10:815–822.CrossRef Oleszkiewicz JA, Marstaller T, McCartney DM. Effects of pH on sulfide toxicity to anaerobic processes. Environ Technol Lett. 1989;10:815–822.CrossRef
120.
Zurück zum Zitat Caffrey SM, Voordouw G. Effect of sulfide on growth physiology and gene expression of Desulfovibrio vulgaris Hildenborough. Antonie Van Leeuwenhoek. 2010;97:11–20.PubMedCrossRef Caffrey SM, Voordouw G. Effect of sulfide on growth physiology and gene expression of Desulfovibrio vulgaris Hildenborough. Antonie Van Leeuwenhoek. 2010;97:11–20.PubMedCrossRef
121.
Zurück zum Zitat Oguri T, Schneider B, Reitzer L. Cysteine catabolism and cysteine desulfhydrase (CdsH/STM0458) in Salmonella enterica Serovar Typhimurium. J Bacteriol. 2012;194:4366–4376.PubMedPubMedCentralCrossRef Oguri T, Schneider B, Reitzer L. Cysteine catabolism and cysteine desulfhydrase (CdsH/STM0458) in Salmonella enterica Serovar Typhimurium. J Bacteriol. 2012;194:4366–4376.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Mandelstam J, McQuillen K, Dawes I. Biochemistry of Bacterial Growth. 3rd ed. London: Blackwell; 1982. Mandelstam J, McQuillen K, Dawes I. Biochemistry of Bacterial Growth. 3rd ed. London: Blackwell; 1982.
123.
Zurück zum Zitat Price MN, Ray J, Wetmore KM, et al. The genetic basis of energy conservation in the sulfate-reducing bacterium Desulfovibrio alaskensis G20. Front Microbiol. 2014;. doi:10.3389/fmicb.2014.00577. Price MN, Ray J, Wetmore KM, et al. The genetic basis of energy conservation in the sulfate-reducing bacterium Desulfovibrio alaskensis G20. Front Microbiol. 2014;. doi:10.​3389/​fmicb.​2014.​00577.
124.
Zurück zum Zitat Blachier F, Davila AM, Mimoun S, et al. Luminal sulfide and large intestine mucosa: friend or foe? Amino Acids. 2010;39:335–347.PubMedCrossRef Blachier F, Davila AM, Mimoun S, et al. Luminal sulfide and large intestine mucosa: friend or foe? Amino Acids. 2010;39:335–347.PubMedCrossRef
125.
Zurück zum Zitat Kushkevych IV. Growth of the Desulfomicrobium sp. strains, their sulfate- and lactate usage, production of sulfide and acetate by the strains isolated from the human large intestine. Microbiol Discov. 2014;. doi:10.7243/2052-6180-2-1. Kushkevych IV. Growth of the Desulfomicrobium sp. strains, their sulfate- and lactate usage, production of sulfide and acetate by the strains isolated from the human large intestine. Microbiol Discov. 2014;. doi:10.​7243/​2052-6180-2-1.
126.
Zurück zum Zitat Okabe S, Nielsen PH, Charackis WG. Factors affecting microbial sulfate reduction by Desulfovibrio desulfuricans in continuous culture: limiting nutrients and sulfide concentrations. Biotechnol Bioeng. 1992;40:725–734.PubMedCrossRef Okabe S, Nielsen PH, Charackis WG. Factors affecting microbial sulfate reduction by Desulfovibrio desulfuricans in continuous culture: limiting nutrients and sulfide concentrations. Biotechnol Bioeng. 1992;40:725–734.PubMedCrossRef
127.
Zurück zum Zitat Reis MAM, Almeida JS, Lemos PC, et al. Effect of hydrogen sulfide on growth of sulfate-reducing bacteria. Biotechnol Bioeng. 1992;40:593–600.PubMedCrossRef Reis MAM, Almeida JS, Lemos PC, et al. Effect of hydrogen sulfide on growth of sulfate-reducing bacteria. Biotechnol Bioeng. 1992;40:593–600.PubMedCrossRef
128.
Zurück zum Zitat Darland G, Davis BR. Biochemical and serological characterization of hydrogen sulfide-positive variants of Escherichia coli. Appl Microbiol. 1974;27:54–58.PubMedPubMedCentral Darland G, Davis BR. Biochemical and serological characterization of hydrogen sulfide-positive variants of Escherichia coli. Appl Microbiol. 1974;27:54–58.PubMedPubMedCentral
129.
Zurück zum Zitat Chen X, Katchar K, Goldsmith JD, et al. A mouse model of Clostridium difficile-associated disease. Gastroenterol. 2008;135:1984–1992.CrossRef Chen X, Katchar K, Goldsmith JD, et al. A mouse model of Clostridium difficile-associated disease. Gastroenterol. 2008;135:1984–1992.CrossRef
130.
Zurück zum Zitat Shatalin K, Shatalina E, Mironov A, et al. H2S: a universal defense against antibiotics in bacteria. Science. 2011;334:986–990.PubMedCrossRef Shatalin K, Shatalina E, Mironov A, et al. H2S: a universal defense against antibiotics in bacteria. Science. 2011;334:986–990.PubMedCrossRef
131.
132.
Zurück zum Zitat Aruoma OI, Halliwell B, Gajewski E, et al. Damage to the bases in DNA induced by hydrogen peroxide and ferric ion chelates. J Biol Chem. 1989;264:20509–20512.PubMed Aruoma OI, Halliwell B, Gajewski E, et al. Damage to the bases in DNA induced by hydrogen peroxide and ferric ion chelates. J Biol Chem. 1989;264:20509–20512.PubMed
133.
Zurück zum Zitat Tyagi N, Moshal KS, Sen U, et al. H2S protects against methionine-induced oxidative stress in brain endothelial cells. Antioxid Redox Signal. 2009;11:25–33.PubMedPubMedCentralCrossRef Tyagi N, Moshal KS, Sen U, et al. H2S protects against methionine-induced oxidative stress in brain endothelial cells. Antioxid Redox Signal. 2009;11:25–33.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Kimura H. Hydrogen sulfide and its therapeutic applications. Wien: Springer; 2013.CrossRef Kimura H. Hydrogen sulfide and its therapeutic applications. Wien: Springer; 2013.CrossRef
135.
136.
Zurück zum Zitat Griffith OW. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med. 1999;27:922–935.PubMedCrossRef Griffith OW. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med. 1999;27:922–935.PubMedCrossRef
137.
Zurück zum Zitat Franklin CC, Backos DS, Mohar I, et al. Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol Aspects Med. 2009;30:86–98.PubMedCrossRef Franklin CC, Backos DS, Mohar I, et al. Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol Aspects Med. 2009;30:86–98.PubMedCrossRef
138.
Zurück zum Zitat Kohanski MA, Dwyer DJ, Hayete B, et al. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130:797–810.PubMedCrossRef Kohanski MA, Dwyer DJ, Hayete B, et al. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130:797–810.PubMedCrossRef
139.
Zurück zum Zitat Whiteman M, Armstrong JS, Chu SH, et al. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J Neurochem. 2004;90:765–768.PubMedCrossRef Whiteman M, Armstrong JS, Chu SH, et al. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J Neurochem. 2004;90:765–768.PubMedCrossRef
140.
Zurück zum Zitat Kimura Y, Goto Y-I, Kimura H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal. 2010;12:1–13.PubMedCrossRef Kimura Y, Goto Y-I, Kimura H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal. 2010;12:1–13.PubMedCrossRef
141.
Zurück zum Zitat Ezraty B, Vergnes A, Banzhaf M, et al. Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway. Science. 2013;340:1583–1587.PubMedCrossRef Ezraty B, Vergnes A, Banzhaf M, et al. Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway. Science. 2013;340:1583–1587.PubMedCrossRef
142.
Zurück zum Zitat Keren I, Wu Y, Inocencio J, et al. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science. 2013;339:1213–1216.PubMedCrossRef Keren I, Wu Y, Inocencio J, et al. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science. 2013;339:1213–1216.PubMedCrossRef
143.
Zurück zum Zitat Jørgensen BB. A thiosulfate shunt in the sulfur cycle of marine sediments. Science. 1990;249:152–154.PubMedCrossRef Jørgensen BB. A thiosulfate shunt in the sulfur cycle of marine sediments. Science. 1990;249:152–154.PubMedCrossRef
144.
Zurück zum Zitat Furne J, Springfield J, Koenig T, et al. Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: a specialized function of the colonic mucosa. Biochem Pharmacol. 2001;62:255–259.PubMedCrossRef Furne J, Springfield J, Koenig T, et al. Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: a specialized function of the colonic mucosa. Biochem Pharmacol. 2001;62:255–259.PubMedCrossRef
145.
146.
Zurück zum Zitat Jakobsson HE, Rodriguez-Piñeiro AM, Schütte A, et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 2015;16:164–177.PubMedCrossRef Jakobsson HE, Rodriguez-Piñeiro AM, Schütte A, et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 2015;16:164–177.PubMedCrossRef
147.
Zurück zum Zitat Rokhsefat S, Lin A, Comelli EM. Mucin-microbiota interaction during postnatal maturation of the intestinal ecosystem: clinical implications. Dig Dis Sci. 2016;61:1473–1486.PubMedCrossRef Rokhsefat S, Lin A, Comelli EM. Mucin-microbiota interaction during postnatal maturation of the intestinal ecosystem: clinical implications. Dig Dis Sci. 2016;61:1473–1486.PubMedCrossRef
Metadaten
Titel
Sulfur Cycling and the Intestinal Microbiome
verfasst von
Larry L. Barton
Nathaniel L. Ritz
Guy D. Fauque
Henry C. Lin
Publikationsdatum
01.08.2017
Verlag
Springer US
Erschienen in
Digestive Diseases and Sciences / Ausgabe 9/2017
Print ISSN: 0163-2116
Elektronische ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-017-4689-5

Weitere Artikel der Ausgabe 9/2017

Digestive Diseases and Sciences 9/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.