Skip to main content
Erschienen in: Inflammation 4/2011

01.08.2011

Suppressive Effects of Procaterol on Expression of IP-10/CXCL 10 and RANTES/CCL 5 by Bronchial Epithelial Cells

verfasst von: Ka-Pan Lam, Yu-Te Chu, Chang-Hung Kuo, Wei-Li Wang, Teck-Siang Tok, Yow-Yue Chin, Solomon Chih-Cheng Chen, Chih-Hsing Hung

Erschienen in: Inflammation | Ausgabe 4/2011

Einloggen, um Zugang zu erhalten

Abstract

As indicated in the Global Initiative for Asthma guidelines, short-acting β2-adrenoreceptor agonists (SABAs) are important relievers in asthma exacerbation. Interferon γ-inducible protein (IP)-10/CXCL 10 is a T-helper type 1 (Th1) cell-related chemokine which is important in the recruitment of Th1 cells involved in host immune defense against intracellular pathogens such as viral infection. Regulated on activation, normal T expressed and secreted (RANTES)/CCL 5 is a chemokine which plays a role in attractant of eosinophils, mast cells, and basophils toward the site of allergic inflammation. Bronchial epithelial cells are first-line barriers against pathogen invasion. However, whether SABAs have regulatory effects on the expression of IP-10 and RANTES in bronchial epithelial cells is unknown. BEAS-2B cells, the human bronchial epithelial cell lines, were pretreated with procaterol (one of the SABAs) or dibutyryl-cAMP (a cyclic AMP analog) at different doses for 1 h and then stimulated with poly I:C (10 μg/mL). Supernatants were collected 12 and 24 h after poly I:C stimulation to determine the concentrations of IP-10 and RANTES by ELISA. In some cases, the cells were pretreated with selective β2-adrenoreceptor antagonist, ICI-118551, 30 min before procaterol treatment. To investigate the intracellular signaling, the cells were pretreated with mitogen-activated protein kinase (MAPK) inhibitors and a NF-κB inhibitor 30 min before procaterol treatment. Western blot was also used to explore the intracellular signaling. Procaterol significantly suppressed poly I:C-induced IP-10 and RANTES in BEAS-2B cells in a dose-dependent manner. ICI-118551, a selective β2-adrenoreceptor antagonist, could significantly reverse the suppressive effects. Dibutyryl-cAMP could confer the similar effects of procaterol on poly I:C-induced IP-10 and RANTES expression. Data of Western blot revealed that poly I:C-induced p-ERK, p-JNK, and pp38 expression, but not pp65, were suppressed by procaterol. SABAs could suppress poly I:C-induced IP-10 and RANTES expression in bronchial epithelial cells, at least in part, via β2-adrenoreceptor-cAMP and MAPK-ERK, JNK, and p38 pathways.
Literatur
1.
Zurück zum Zitat van Aalderen, W.M., A.B. Sprikkelman, and M.O. Hoekstra. 1999. Is childhood asthma an inflammatory disease? Allergy 54((Suppl 49)): 62–67.PubMedCrossRef van Aalderen, W.M., A.B. Sprikkelman, and M.O. Hoekstra. 1999. Is childhood asthma an inflammatory disease? Allergy 54((Suppl 49)): 62–67.PubMedCrossRef
2.
Zurück zum Zitat Woodfolk, J.A. 2007. T-cell responses to allergens. The Journal of Allergy and Clinical Immunology 119: 280–294.PubMedCrossRef Woodfolk, J.A. 2007. T-cell responses to allergens. The Journal of Allergy and Clinical Immunology 119: 280–294.PubMedCrossRef
3.
Zurück zum Zitat Barnes, P.J., K.F. Chung, and C.P. Page. 1998. Inflammatory mediators of asthma: An update. Pharmacological Reviews 50: 515–596.PubMed Barnes, P.J., K.F. Chung, and C.P. Page. 1998. Inflammatory mediators of asthma: An update. Pharmacological Reviews 50: 515–596.PubMed
4.
Zurück zum Zitat Akdis, M., and C.A. Akdis. 2007. Mechanisms of allergen-specific immunotherapy. The Journal of Allergy and Clinical Immunology 119: 780–789.PubMedCrossRef Akdis, M., and C.A. Akdis. 2007. Mechanisms of allergen-specific immunotherapy. The Journal of Allergy and Clinical Immunology 119: 780–789.PubMedCrossRef
5.
Zurück zum Zitat Cockcroft, D.W., and B.E. Davis. 2006. Mechanisms of airway hyperresponsiveness. The Journal of Allergy and Clinical Immunology 118: 551–559.PubMedCrossRef Cockcroft, D.W., and B.E. Davis. 2006. Mechanisms of airway hyperresponsiveness. The Journal of Allergy and Clinical Immunology 118: 551–559.PubMedCrossRef
6.
Zurück zum Zitat Rosenberg, H.F., S. Phipps, and P.S. Foster. 2007. Eosinophil trafficking in allergy and asthma. The Journal of Allergy and Clinical Immunology 119: 1303–1310.PubMedCrossRef Rosenberg, H.F., S. Phipps, and P.S. Foster. 2007. Eosinophil trafficking in allergy and asthma. The Journal of Allergy and Clinical Immunology 119: 1303–1310.PubMedCrossRef
7.
Zurück zum Zitat Tamura, S., and T. Kurata. 2004. Defense mechanisms against influenza virus infection in the respiratory tract mucosa. Japanese Journal of Infectious Diseases 57: 236–247.PubMed Tamura, S., and T. Kurata. 2004. Defense mechanisms against influenza virus infection in the respiratory tract mucosa. Japanese Journal of Infectious Diseases 57: 236–247.PubMed
8.
Zurück zum Zitat Ono, S.J., T. Nakamura, D. Miyazaki, M. Ohbayashi, M. Dawson, and M. Toda. 2003. Chemokines: Roles in leukocyte development, trafficking, and effector function. The Journal of Allergy and Clinical Immunology 111: 1185–1199.PubMedCrossRef Ono, S.J., T. Nakamura, D. Miyazaki, M. Ohbayashi, M. Dawson, and M. Toda. 2003. Chemokines: Roles in leukocyte development, trafficking, and effector function. The Journal of Allergy and Clinical Immunology 111: 1185–1199.PubMedCrossRef
9.
Zurück zum Zitat Zimmermann, N., G.K. Hershey, P.S. Foster, and M.E. Rothenberg. 2003. Chemokines in asthma: Cooperative between chemokines & IL-13. The Journal of Allergy and Clinical Immunology 111: 227–242.PubMedCrossRef Zimmermann, N., G.K. Hershey, P.S. Foster, and M.E. Rothenberg. 2003. Chemokines in asthma: Cooperative between chemokines & IL-13. The Journal of Allergy and Clinical Immunology 111: 227–242.PubMedCrossRef
10.
Zurück zum Zitat Busse, W.W., and R.F. Lemanske. 2001. Asthma. The New England Journal of Medicine 344: 350–362.PubMedCrossRef Busse, W.W., and R.F. Lemanske. 2001. Asthma. The New England Journal of Medicine 344: 350–362.PubMedCrossRef
11.
Zurück zum Zitat Qin, S., J.B. Rottman, P. Myers, N. Kassam, M. Weinblatt, M. Loetscher, A.E. Koch, B. Moser, and C.R. Mackay. 1998. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. Journal of Clinical Investigation 101: 746–754.PubMedCrossRef Qin, S., J.B. Rottman, P. Myers, N. Kassam, M. Weinblatt, M. Loetscher, A.E. Koch, B. Moser, and C.R. Mackay. 1998. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. Journal of Clinical Investigation 101: 746–754.PubMedCrossRef
12.
Zurück zum Zitat Medoff, B.D., A. Sauty, A.M. Tager, J.A. Maclean, R.N. Smith, A. Mathew, J.H. Dufour, and A.D. Luster. 2002. IFN-gamma-inducible protein 10 (CXCL10) contributes to airway hyperreactivity and airway inflammation in a mouse model of asthma. Journal of Immunology 168: 5278–5286. Medoff, B.D., A. Sauty, A.M. Tager, J.A. Maclean, R.N. Smith, A. Mathew, J.H. Dufour, and A.D. Luster. 2002. IFN-gamma-inducible protein 10 (CXCL10) contributes to airway hyperreactivity and airway inflammation in a mouse model of asthma. Journal of Immunology 168: 5278–5286.
13.
Zurück zum Zitat Wark, P.A., F. Bucchieri, S.L. Johnston, P.G. Gibson, L. Hamilton, J. Mimica, G. Zummo, S.T. Holgate, J. Attia, A. Thakkinstian, and D.E. Davies. 2007. IFN-gamma-induced protein 10 is a novel biomarker of rhinovirus-induced asthma exacerbations. The Journal of Allergy and Clinical Immunology 120: 586–593.PubMedCrossRef Wark, P.A., F. Bucchieri, S.L. Johnston, P.G. Gibson, L. Hamilton, J. Mimica, G. Zummo, S.T. Holgate, J. Attia, A. Thakkinstian, and D.E. Davies. 2007. IFN-gamma-induced protein 10 is a novel biomarker of rhinovirus-induced asthma exacerbations. The Journal of Allergy and Clinical Immunology 120: 586–593.PubMedCrossRef
14.
Zurück zum Zitat Lai, S.T., C.H. Hung, Y.M. Hua, S.H. Hsu, Y.J. Jong, and J.L. Suen. 2008. T-helper 1-related chemokines in the exacerbation of childhood asthma. Pediatrics International 50: 99–102.PubMedCrossRef Lai, S.T., C.H. Hung, Y.M. Hua, S.H. Hsu, Y.J. Jong, and J.L. Suen. 2008. T-helper 1-related chemokines in the exacerbation of childhood asthma. Pediatrics International 50: 99–102.PubMedCrossRef
15.
Zurück zum Zitat Bateman, E.D., S.S. Hurd, P.J. Barnes, J. Bousquet, J.M. Drazen, M. FitzGerald, P. Gibson, K. Ohta, P. O’Byrne, S.E. Pedersen, E. Pizzichini, S.D. Sullivan, S.E. Wenzel, and H.J. Zar. 2008. Global strategy for asthma management and prevention: GINA executive summary. The European Respiratory Journal 31: 143–178.PubMedCrossRef Bateman, E.D., S.S. Hurd, P.J. Barnes, J. Bousquet, J.M. Drazen, M. FitzGerald, P. Gibson, K. Ohta, P. O’Byrne, S.E. Pedersen, E. Pizzichini, S.D. Sullivan, S.E. Wenzel, and H.J. Zar. 2008. Global strategy for asthma management and prevention: GINA executive summary. The European Respiratory Journal 31: 143–178.PubMedCrossRef
16.
Zurück zum Zitat Nelson, H.S. 2006. Is there a problem with inhaled long-acting beta-adrenergic agonists? The Journal of Allergy and Clinical Immunology 117: 3–16.PubMedCrossRef Nelson, H.S. 2006. Is there a problem with inhaled long-acting beta-adrenergic agonists? The Journal of Allergy and Clinical Immunology 117: 3–16.PubMedCrossRef
17.
Zurück zum Zitat Smucny, J.J., C.A. Flynn, L.A. Becker, and R.H. Glazier. 2001. Are beta2-agonists effective treatment for acute bronchitis or acute cough in patients without underlying pulmonary disease? A systemic review. The Journal of Family Practice 50: 945–951.PubMed Smucny, J.J., C.A. Flynn, L.A. Becker, and R.H. Glazier. 2001. Are beta2-agonists effective treatment for acute bronchitis or acute cough in patients without underlying pulmonary disease? A systemic review. The Journal of Family Practice 50: 945–951.PubMed
18.
Zurück zum Zitat Ritter, M., D. Mennerich, A. Weith, and P. Seither. 2005. Characterization of Toll-like receptors in primary lung epithelial cells: Strong impact of the TLR3 ligand poly(I:C) on the regulation of Toll-like receptors, adaptor proteins and inflammatory response. J Inflamm (Lond) 2: 16.CrossRef Ritter, M., D. Mennerich, A. Weith, and P. Seither. 2005. Characterization of Toll-like receptors in primary lung epithelial cells: Strong impact of the TLR3 ligand poly(I:C) on the regulation of Toll-like receptors, adaptor proteins and inflammatory response. J Inflamm (Lond) 2: 16.CrossRef
19.
Zurück zum Zitat Stowell, N.C., J. Seideman, H.A. Raymond, K.A. Smalley, R.J. Lamb, D.D. Egenolf, P.J. Bugelski, L.A. Murray, P.A. Marsters, R.A. Bunting, R.A. Flavell, L. Alexopoulou, L.R. San Mateo, D.E. Griswold, R.T. Sarisky, M.L. Mbow, and A.M. Das. 2009. Long-term activation of TLR3 by poly(I:C) induces inflammation and impairs lung function in mice. Respiratory Research 10: 43.PubMedCrossRef Stowell, N.C., J. Seideman, H.A. Raymond, K.A. Smalley, R.J. Lamb, D.D. Egenolf, P.J. Bugelski, L.A. Murray, P.A. Marsters, R.A. Bunting, R.A. Flavell, L. Alexopoulou, L.R. San Mateo, D.E. Griswold, R.T. Sarisky, M.L. Mbow, and A.M. Das. 2009. Long-term activation of TLR3 by poly(I:C) induces inflammation and impairs lung function in mice. Respiratory Research 10: 43.PubMedCrossRef
20.
Zurück zum Zitat Bérubé, J., C. Bourdon, Y. Yao, and S. Rousseau. 2009. Distinct intracellular signaling pathways control the synthesis of IL-8 and RANTES in TLR1/TLR2, TLR3 or NOD1 activated human airway epithelial cells. Cellular Signalling 21: 448–456.PubMedCrossRef Bérubé, J., C. Bourdon, Y. Yao, and S. Rousseau. 2009. Distinct intracellular signaling pathways control the synthesis of IL-8 and RANTES in TLR1/TLR2, TLR3 or NOD1 activated human airway epithelial cells. Cellular Signalling 21: 448–456.PubMedCrossRef
21.
Zurück zum Zitat Hallsworth, M.P., C.H. Twort, T.H. Lee, and S.J. Hirst. 2001. Beta 2-adrenoceptor agonists inhibit release of eosinophil activating cytokines from human airway smooth muscle cells. British Journal of Pharmacology 132: 729–741.PubMedCrossRef Hallsworth, M.P., C.H. Twort, T.H. Lee, and S.J. Hirst. 2001. Beta 2-adrenoceptor agonists inhibit release of eosinophil activating cytokines from human airway smooth muscle cells. British Journal of Pharmacology 132: 729–741.PubMedCrossRef
22.
Zurück zum Zitat Koyama, S., E. Sato, T. Masubuchi, A. Takamizawa, K. Kubo, S. Nagai, and T. Isumi. 1999. Procaterol inhibits IL-1beta- and TNF-alpha-mediated epithelial cell eosinophil chemotactic activity. The European Respiratory Journal 14: 767–775.PubMedCrossRef Koyama, S., E. Sato, T. Masubuchi, A. Takamizawa, K. Kubo, S. Nagai, and T. Isumi. 1999. Procaterol inhibits IL-1beta- and TNF-alpha-mediated epithelial cell eosinophil chemotactic activity. The European Respiratory Journal 14: 767–775.PubMedCrossRef
23.
Zurück zum Zitat Tashimo, H., N. Yamashita, H. Ishida, H. Nagase, T. Adachi, J. Nakano, K. Yamamura, T. Yano, H. Yoshihara, and K. Ohta. 2007. Effect of procaterol, a beta(2) selective adrenergic receptor agonist, on airway inflammation and hyperresponsiveness. Allergology International 56: 241–247.PubMedCrossRef Tashimo, H., N. Yamashita, H. Ishida, H. Nagase, T. Adachi, J. Nakano, K. Yamamura, T. Yano, H. Yoshihara, and K. Ohta. 2007. Effect of procaterol, a beta(2) selective adrenergic receptor agonist, on airway inflammation and hyperresponsiveness. Allergology International 56: 241–247.PubMedCrossRef
24.
Zurück zum Zitat Horikoshi, S., F. Kokubu, and M. Adachi. 1996. Anti-allergic effects of beta-adrenoceptor agonists in the clinical pharmacological studies. Nippon Rinsho 54: 3068–3072.PubMed Horikoshi, S., F. Kokubu, and M. Adachi. 1996. Anti-allergic effects of beta-adrenoceptor agonists in the clinical pharmacological studies. Nippon Rinsho 54: 3068–3072.PubMed
25.
Zurück zum Zitat Tomerak, A.A., H. Vyas, M. Lakenpaul, J.J. McGlashan, and M. McKean. 2005. Inhaled beta2-agonists for treating non-specific chronic cough in children. Cochrane Database Syst Rev. CD005373. Tomerak, A.A., H. Vyas, M. Lakenpaul, J.J. McGlashan, and M. McKean. 2005. Inhaled beta2-agonists for treating non-specific chronic cough in children. Cochrane Database Syst Rev. CD005373.
26.
Zurück zum Zitat Bradding, P., I. Rushby, J. Scullion, and M.D. Morgan. 1999. As-required versus regular neubulized salbutamol for the treatment of acute severe asthma. The European Respiratory Journal 13: 290–294.PubMedCrossRef Bradding, P., I. Rushby, J. Scullion, and M.D. Morgan. 1999. As-required versus regular neubulized salbutamol for the treatment of acute severe asthma. The European Respiratory Journal 13: 290–294.PubMedCrossRef
27.
Zurück zum Zitat Kemper, M.J., E. Harps, H.H. Hellwege, and D.E. Müller-Wiefel. 1996. Effective treatment of acute hyperkalaemia in childhood by short-term infusion of salbutamol. European Journal of Pediatrics 155: 495–497.PubMedCrossRef Kemper, M.J., E. Harps, H.H. Hellwege, and D.E. Müller-Wiefel. 1996. Effective treatment of acute hyperkalaemia in childhood by short-term infusion of salbutamol. European Journal of Pediatrics 155: 495–497.PubMedCrossRef
28.
Zurück zum Zitat Helfrich, E., T.W. de Vries, and E.N. van Roon. 2001. Salbutamol for hyperkalaemia in children. Acta Paediatrica 90: 1213–1216.PubMedCrossRef Helfrich, E., T.W. de Vries, and E.N. van Roon. 2001. Salbutamol for hyperkalaemia in children. Acta Paediatrica 90: 1213–1216.PubMedCrossRef
Metadaten
Titel
Suppressive Effects of Procaterol on Expression of IP-10/CXCL 10 and RANTES/CCL 5 by Bronchial Epithelial Cells
verfasst von
Ka-Pan Lam
Yu-Te Chu
Chang-Hung Kuo
Wei-Li Wang
Teck-Siang Tok
Yow-Yue Chin
Solomon Chih-Cheng Chen
Chih-Hsing Hung
Publikationsdatum
01.08.2011
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2011
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-010-9229-9

Weitere Artikel der Ausgabe 4/2011

Inflammation 4/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.