Skip to main content
Erschienen in: BMC Surgery 1/2016

Open Access 01.12.2016 | Research article

Surgical anatomy of the right hepatic artery in Rouviere’s sulcus evaluated by preoperative multidetector-row CT images

verfasst von: Shuichi Aoki, Masamichi Mizuma, Hiroki Hayashi, Kei Nakagawa, Takanori Morikawa, Fuyuhiko Motoi, Takeshi Naitoh, Shinichi Egawa, Michiaki Unno

Erschienen in: BMC Surgery | Ausgabe 1/2016

Abstract

Background

Lymph node dissection in Rouviere’s sulcus (RS) is essential during left-sided hepatectomy and caudate lobectomy for hilar cholangiocarcinoma. However, the small segmental or subsegmental arteries (SA/SSA) are often encountered in RS and must be preserved to prevent critical complications, such as liver infarction or liver failure. The aim of this study is to elucidate the anatomy of SA/SSA around RS, which should be understood preoperatively.

Methods

Between January 2008 and April 2013 from a total of 124 consecutive patients with hilar cholangiocarcinoma, preoperative multidetector-row computed tomography (MDCT) images were obtained at our institution and evaluated. The bifurcation patterns of the SA/SSA, the courses of the posterior SA/SSA and the bifurcation site of the SA/SSA were investigated using MDCT images.

Results

The typical form, in which right hepatic artery (RHA) bifurcated into the anterior (Aant) and posterior (Apost) hepatic artery and thereafter, Aant/Apost bifurcated into the SA and SSA, was observed in 75 patients (60.5 %). On the other hand, the atypical forms, in which the SA/SSA were independently branched off from RHA before the main bifurcation of the Aant and Apost, were observed in 43 patients (34.7 %). The prior branched arteries supplied the whole or ventral area of segment VI (A6 or A6a) in 11 patients (8.9 %), which was most commonly observed in the atypical form. 15 patients (34.9 %) of the 43 patients with atypical form had partially supraportal posterior branches, that showed early-bifurcated posterior SA/SAA following supraportal course, while the other posterior SA/SSA followed infraportal course. The SA/SSA were extrahepatically bifurcated in 82 patients (66.1 %), comprised of all 43 atypical form and 39 of typical form, while the SA/SSA were intrahepatically bifurcated in remaining 36 patients of typical forms (29.0 %).

Conclusion

The extrahepatic bifurcation of the SA/SSA from RHA was relatively common. The early-bifurcated SA/SSA was often observed (34.7 % of total cohort) and, in 34.8 % of those atypical forms, posterior SA/SSA from RHA followed a supraportal course. The detailed preoperative knowledge of the anatomy, including SA/SSA, is crucial for left-sided hepatectomy for hilar cholangiocarcinoma.

Background

Left-sided hepatectomy with caudate lobectomy is ordinarily applied for patients with Bismuth type IIIb hilar cholangiocarcinoma. In recent years, even if a Bismuth type IIIb tumor extends to the right-side hilum involving the right hepatic artery (RHA), long-term survival after left hepatectomy or trisectionectomy with concomitant arterial resection and reconstruction has been reported [13]. However, this surgical technique is still extremely difficult and has a high risk for postoperative complications. To understand thoroughly the surgical anatomy around Rouviere’s sulcus (RS) is pivotal for lymph node dissection and arterial reconstruction in left-sided hepatectomy for hilar cholangiocarcinoma.
In RS, located at the boundary between the caudate lobe and the right hepatic lobe, the branches from the right hepatic artery, right portal vein and right hepatic bile duct run into the liver parenchyma. In general, RHA is bifurcated from the proper hepatic artery (primary bifurcation) and, thereafter, bifurcates into the anterior (Aant) and posterior (Apost) hepatic artery immediately before entering into the liver parenchyma (secondary bifurcation). Then, segmental (SA) or subsegmental arteries (SSA) from Aant or Apost are bifurcated within the liver parenchyma (tertiary bifurcation). However, SA or SSA is often atypically branched off from the RHA. In addition, the posterior SA or SSA occasionally run cranially to the right portal vein (RPV) (supraportal course), although Apost typically runs caudally to RPV (infraportal course) [4]. Thus, the branching form of the arteries around RS is complicated. The preoperative understanding of anatomical variation of the SA/SSA branches and course variations of the arterial posterior branches around RS, especially the supraportal/infraportal posterior SA/SSA, is crucial in left-sided hepatectomy for hilar cholangiocarcinoma in order to avoid critical surgical complications, such as intraoperative arterial injury, hepatic infarction and hepatic failure. However, there have been few reports that provide a detailed discussion about the anatomical variation of SA/SSA in RS from the standpoint of surgical resection.
The objective of this study is to elucidate the bifurcation patterns of the SA/SSA using multidetector-row computed tomography (MDCT). We clarified the incidence of early-bifurcated SA/SSA around RS, the variations in the courses they followed. The findings of this study should be helpful for left-sided hepatectomy for hilar cholangiocarcinoma.

Methods

Patients

Between January 2008 and April 2013, 124 consecutive patients with hilar cholangiocarcinoma who underwent preoperative MDCT and received surgical resection at our institution were examined. The bifurcation pattern and the course of SA/SSA from RHA around RS were evaluated using preoperative MDCT. This study was approved by the institutional review board of Tohoku University, which waived the need for consent because this study was a retrospective study using enhanced CT images obtained during usual clinical examinations under written consent from all of the patients.

MDCT imaging

MDCT is the gold standard for imaging the anatomy of the hilar vessels and assessment of the cancer progression. The 64-row MDCT (Toshiba) was performed in all patients except for those allergic to iodine contrast medium prior to the biliary drainage. In cases in which the patients had already received biliary intervention at another institution, MDCT imaging was evaluated at our institution immediately after referral. Images were taken prior to injection and at 20 s (early arterial phase); 40 s (late arterial phase); 70 s (portal phase); and 120 s (delayed phase) after injection of a nonionic contrast agent (300 mg/ml) at a rate of 4 ml/h. In addition to axial images, multi planar reformation (MPR) images were routinely obtained using OsiriX® medical imaging software (open source software, http://​www.​osirix-viewer.​com/​). Three-dimensional (3D) images of the arteries and portal vein were prepared by a volume-rendering method to improve understanding of vascular relationships.

Bifurcation pattern of the SA/SSA from RHA

RHA typically bifurcates into Aant and Apost and, thereafter, Aant/Apost bifurcates into the SA and SSA, defined as the typical form. SA/SSA, such as the artery to segment VI (A6) or the artery to the ventral area of VI (A6a), often branch off separately before the main bifurcation into the Aant and Apost, classified as the atypical form (Figs. 1 and 2). The bifurcation patterns of the SA/SSA from RHA, comprised of typical and atypical forms, were evaluated. Moreover, the course patterns of the posterior SA/SSA around the RPV, namely supraportal or infraportal [4], were investigated.
To examine whether SA/SSA bifurcated inside or outside the liver, the cohort was separated into the two groups, “extrahepatic type” and “intrahepatic type” (Figs. 3 and 4). “Extrahepatic type” was defined as a bifurcation of the SA/SSA that showed no direct contact with the hepatic parenchyma in MDCT. On the other hand, contact between the bifurcation and the hepatic parenchyma or the bifurcation inside the hepatic parenchyma was designated as the “intrahepatic type”. The frequency and anatomical characteristics of the extrahepatic and intrahepatic types were investigated.
Permission was granted by the patients for the publication of Figs. 2 and 4.

Results

Patient characteristics and surgical procedures

Of 124 patients (median age: 69 y.o.), 80 men and 44 women received surgical resection. Left hepatectomy, left trisectionectomy, right hepatectomy and right trisectionectomy with caudate lobectomy were performed in 50 patients (40.3 %), 9 patients (7.3 %), 60 patients (48.3 %) and 3 patients (2.3 %), respectively (Table 1). 2 patients (1.6 %) underwent biliary resection with no hepatectomy. Patients with concomitant resection and reconstruction of the portal vein and the hepatic artery were 34 (27.4 %) and 6 (4.8 %), respectively. Hepatectomy combined with pancreaticoduodenectomy was done in 22 patients (17.7 %).
Table 1
Patients characteristics and surgical procedures
Gender
Male
 
80
 
Female
 
44
Age
Median
 
69
 
Range
 
41–82
Surgical procedure
Hepatectomya
 
  
S1,2,3,4,5,8,
9
  
S1,2,3,4,
50
  
S1,5,6,7,8,
60
  
S1,4,5,6,7,8,
3
  
Bile duct resection
2
 
Other combined resection
 
  
Portal vein reconstruction
34
  
Hepatic artery reconstruction
6
  
Pancreaticoduodenectomy
22
aResection area of the liver is described as Couinaud’s hepatic segment(s)

Bifurcation pattern of RHA (typical or atypical form)

The typical form was observed in 75 patients (60.5 %) (Table 2 and Fig. 1). On the other hand, the atypical form was seen in 43 patients (34.7 %), 24 patients (19.4 %) of whom showed SA/SSA branching off separately before the bifurcation of the Aant and Apost. These separately branched arteries supplied the whole or ventral area of segment VI (A6 or A6a) in 11 patients (8.9 %), which was most commonly observed in the atypical type. Trifurcation of RHA was revealed in 18 patients (14.5 %), and indicated Aant + A6 + A7 in 9 patients (7.3 %). One patient (0.8 %) showed a RHA that diverged into four branches, designated as A6 + A7 + A8a (arteries to the ventral region of segment VIII) + A8c (arterial branches to the posterior region of segment VIII). The bifurcation pattern could not be identified in six patients (4.8 %) due to tumor infiltration.
Table 2
The bifurcation pattern of SA/SSA from RHA
Typical form
75 (60.5 %)
Atypical form
43 (34.7 %)
 
SA/SSA separately branched off before main bifurcation of Aant and Apost
 
24 (19.4 %)
  
A5
  
2
  
A6 or A6a
  
11
  
A7
  
4
  
A8 or A8a or A8c
  
7
 
Trifurcarion of RHA
 
18 (14.5 %)
  
A5 + A8 + Apost
  
4
  
A8a + A8c + Apost
  
5
  
Aant + A6 + A7
  
9
 
Simultaneous ramification of RHA to four branches
 
1 (0.8 %)
  
A6 + A7 + A8a + A8c
  
1
Unclear form (because of cancer invasion)
6 (4.8 %)
SA/SSA segmental or subsegmental arteries, RHA right hepatic artery, Aant and Apost anterior and posterior hepatic artery, SA/SSA segmental or subsegmental arteries, A5, 6, 7 and 8 segmental artery supplying segment V, VI, VII and VIII, respectively, A6a, A8a and A8c subsegmental artery suppling ventral segment VI, ventral segment VIII and dorsal segment VIII, respectively

The course of the posterior SA/SSA in relation to RPV

The posterior segmental arteries including their branches followed an infraportal course or a supraportal course in 94 patients (75.8 %) or 24 patients (19.4 %), respectively (Table 3). Of 24 patients with supraportal courses, 9 patients (7.3 %) showed a completely supraportal course without any infraportal branches, while 15 patients (12.1 %) showed a partially supraportal course with infraportal branches (Fig. 1). Of the 15 partially supraportal cases, 4 patients (3.2 %) had infraportal A6 and supraportal A7 (Fig. 2). In the remaining 11 patients (8.9 %), A6a followed an infraportal course and the other posterior segmental arteries (A6bc7) followed a supraportal course. All of the partially supraportal cases, in whom the supraportal posterior branches were early bifurcated from the RHA, were classified as the atypical form. On the other hand, 15 cases (34.9 %) of the 43 atypical form cases showed early-bifurcated posterior SA/SAA with partially supraportal course (Fig. 1).
Table 3
The courses of the posterior SA/SSA in relation to RPV
Infraportal form
94 (75.8 %)
Supraportal form
24 (19.4 %)
 
Completely supraportal
 
9 (7.3 %)
 
Partially supraportal
 
15 (12.1 %)
  
A6a of infraportal course and A6bc7 of supraportal course
  
11 (8.9 %)
  
A6 of infraportal course and A7 of supraportal course
  
4 (3.2 %)
Unclear form (because of cancer invasion)
6 (4.8 %)
SA/SSA segmental or subsegmental arteries, RPV right portal vein, A6 and 7 segmental artery supplying segment VI and VII, respectively, A6a subsegmental artery suppling ventral segment VI, A6bc7 subsegmental arteries suppling lateral and dorsal segment VI and segment VII

Site of SA/SSA bifurcation (extrahepatic/intrahepatic type)

Extrahepatic bifurcation of the SA/SSA branches was revealed in 82 patients (66.1 %), consisting of 39 with the typical form and all 43 with the atypical form (Table 4 and Figs. 3 and 4). The remaining 36 patients with the typical form (29.0 %) were the intrahepatic type.
Table 4
The bifurcation site of the SA/SSA (intrahepatic/extrahepatic type)
Intrahepatic type
36 (29.0 %)
Extrahepatic type
82 (66.1 %)
 
Branched off before main bifurcation of Aant and Apost (atypical form)
 
43
 
Branched off after main bifurcation of Aant and Apost (typical form)
 
39
Unclear (because of cancer invasion)
6 (4.9 %)
SA/SSA segmental or subsegmental arteries, Aant and Apost anterior and posterior hepatic artery

Discussion

Lymph node dissection in RS is essential in left-sided hepatectomy for hilar cholangiocarcinoma. In recent years, left-sided hepatectomy with concomitant resection and reconstruction of RHA may offer a better chance of long-term survival in patients with the Bismuth type IIIb cholangiocarcinoma involving RHA [13]. However, small SA/SSA, which early bifurcate from the RHA and separately enter the hepatic parenchyma, are often found in RS during lymph node dissection. Therefore, a detail preoperative examination of these vascular bifurcation patterns around RS is more crucial in en block arterial resection with left-sided hepatectomy for hilar cholangiocarcinoma to avoid postoperative complications, such as hepatic infarction and subsequent hepatic failure. The present study clarified the various anatomical patterns of SA/SSA around the RS from three viewpoints, bifurcation patterns of the SA/SSA (typical or atypical form), course of the posterior SA/SSA for the RPV (supraportal or infraportal course) and bifurcation site of the SA/SSA (extrahepatic or intrahepatic bifurcations).
The ramification variant of RHA, bifurcated from the superior mesenteric artery or the celiac trunk, has already been reported [5]. On the other hand, there have been few detailed reports on anatomical variants of the SA or SSA around the RS. In this study, atypical SA or SSA (A6 or A6a and so on), which bifurcated independently prior to the main bifurcation of Aant and Apost, were observed in 34.7 % of the hilar cholangiocarcnioma patients. Furthermore, in cases with the atypical form, the early-bifurcated posterior SA/SSA following supraportal course, which is called as “partially supraportal type”, was seen in more than 30 %. In total cohort of our study, the frequency of supraportal posterior branches was 19.5 %, similar to that in a previous report [4]. In Bismuth type IIIb patients with supraportal posterior branches, the risk of intraoperative arterial injury during left-sided hepatectomy is increased. Particularly, during left trisectionectomy for patients with partially supraportal branches, meticulous attention is needed to avoid mistaking partially suprapotal branches (A7 and so on) for the anterior ones. Misidentification of the supraportal posterior branches can result in severe postoperative complications, such as hepatic infarction and hepatic failure [4]. Additionaly, in en bloc resection and reconstruction of RHA with cancer invasion, the uninvolved distal arterial branch should be identified around RS before hepatic transection. However, in cases of supraportal Apost, it is difficult to find uninvolved distal Apost. Since supraportal Apost runs behind portal pedicles, distal Apost is usually exposed on the cutting surface during or after hepatic transection, increasing the risk of arterial injury. Therefore, preoperative examination of the bifurcation pattern of SA/SSA and the course of the posterior SA/SSA (supraportal or partially supraportal) using MDCT is mandatory for left-sided hepatectomy, especially left trisectionectomy.
Anatomical variations of an artery, portal vein or bile duct commonly arise around the hepatic hilum before forming Glisson’s triad. Since Glisson’s triad is formed with an intimate fixation in the liver parenchyma, abnormal ramification of these vessels is rare in the liver parenchyma [6]. In this study, the SA/SSA were bifurcated extrahepatically (extrahepatic type) in 82 (66.1 %) of total cohort, all 43 atypical forms and in 39 of 75 typical forms. Even in typical forms, the extrahepatic bifurcation of SA/SSA was observed in 52 %. There is a limitation in our classification of the two types, the extrahepatic or intrahepatic types, due to the difficulty in identifying the starting point of Glisson’s sheath using MDCT. In other words, these types do not necessarily correspond to an anatomical boundary between the outside and inside of the liver. However, based on the CT criteria of the present study, a bifurcation of the SA/SSA determined to be the extrahepatic type is usually exposed during lymph node dissection for RS. Furthermore, even in some patients classified as the intrahepatic type, the bifurcation of the SA/SSA might be exposed at the extrahepatic area in cases of left trisectionectomy or soft hepatic parenchyma, enabling the RS to be opened easily. Our results showed that the extrahepatic type occurred with a high incidence (66.1 %).
In this study, arterial variation around the RS evaluated with preoperative MDCT was not confirmed intraoperatively in all cases because we included cases of right-sided hepatectomy. However, imagining of the vascular 3D structure has been dramatically improved due to advances in the spatial resolution of volume-rendered multidetector CT angiography. Consequently, homology between the preoperative anatomical imaging and intraoperative findings has been reported [4]. Meanwhile, in recent years, the advent of imaging analysis software such as SYNAPSE Vincent® (Fuji Film) has enabled 3D visualization of the vascular structure and liver volumetry of perfused regions, and is expected to be applied for intraoperative navigation [7, 8]. Nevertheless, there are limitations in the automated vascular analysis of these kinds of software. A thin and complex vessel configuration is not necessarily delineated by the software, such as branches of the SA/SSA in RS. Surgical procedures in which injury to the SA/SSA has a critical impact on the residual hepatic function still need a conventional detailed investigation using MDCT to obtain 3D imaging of the anatomical structure.

Conclusion

Extrahepatic bifurcation of the SA/SSA from RHA is relatively common (66.1 %). In particular, more than 30 % of the early-branched posterior SA/SSA from RHA (atypical form) often follow a supraportal course. Although the anatomical variation of arterial branches around the RS is complex, detailed preoperative knowledge of the anatomy, including SA/SSA, is crucial for left-sided hepatectomy for hilar cholangiocarcinoma.

Abbreviations

3D images, three-dimensional images; Aant, anterior hepatic artery; Apost, posterior hepatic artery; MDCT, multidetector-row computed tomography; MPR, multi planar reformation; RHA, right hepatic artery; RPV, right portal vein; RS, Rouviere’s sulcus; SA, segmental artery; SSA, subsegmental arteries

Acknowledgements

The authors thank Yu Katayose (Tohoku Rosai Hospital, Sendai, Japan), Hiroshi Yoshida (Iwaki Kyoritsu Hospital, Iwaki, Japan) and the other surgeons in the division of Hepato-Biliary Pancreatic Surgery, Tohoku University Hospital. The authors also thank all radiologists and technologists in the department of diagnostic radiology, Tohoku University Hospital.

Funding

Michiaki Unno: Management Expenses Grants from the Government of Japan to national university corporations supplied every fiscal year.

Availability of data and materials

The datasets supporting the conclusions of this article are included within the article.

Authors’ contributions

SA designed and performed the research. MM supported this research and SA and MM wrote the paper. HH, KN, TM, FM, TN, SE and MU reviewed the manuscript and revised it critically for important intellectual content. MM integrated the entire study. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
This study was approved by the institutional review board of Tohoku University, which waived the need for consent because this study was a retrospective study using enhanced CT images obtained during usual clinical examinations under written consent from all of the patients. Permission was granted by the patients for the publication of Figs. 2 and 4.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Nagino M, Nimura Y, Nishio H, Ebata T, Igami T, Matsushita M, et al. Hepatectomy with simultaneous resection of the portal vein and hepatic artery for advanced perihilar cholangiocarcinoma: an audit of 50 consecutive cases. Ann Surg. 2010;252(1):115–23. doi:10.1097/SLA.0b013e3181e463a7.CrossRefPubMed Nagino M, Nimura Y, Nishio H, Ebata T, Igami T, Matsushita M, et al. Hepatectomy with simultaneous resection of the portal vein and hepatic artery for advanced perihilar cholangiocarcinoma: an audit of 50 consecutive cases. Ann Surg. 2010;252(1):115–23. doi:10.​1097/​SLA.​0b013e3181e463a7​.CrossRefPubMed
2.
Zurück zum Zitat Sakamoto Y, Sano T, Shimada K, Kosuge T, Kimata Y, Sakuraba M, et al. Clinical significance of reconstruction of the right hepatic artery for biliary malignancy. Langenbecks Arch Surg. 2006;391(3):203–8. doi:10.1007/s00423-006-0026-8.CrossRefPubMed Sakamoto Y, Sano T, Shimada K, Kosuge T, Kimata Y, Sakuraba M, et al. Clinical significance of reconstruction of the right hepatic artery for biliary malignancy. Langenbecks Arch Surg. 2006;391(3):203–8. doi:10.​1007/​s00423-006-0026-8.CrossRefPubMed
3.
Zurück zum Zitat Shimada H, Endo I, Sugita M, Masunari H, Fujii Y, Tanaka K, et al. Hepatic resection combined with portal vein or hepatic artery reconstruction for advanced carcinoma of the hilar bile duct and gallbladder. World J Surg. 2003;27(10):1137–42. doi:10.1007/s00268-003-6801-6.CrossRefPubMed Shimada H, Endo I, Sugita M, Masunari H, Fujii Y, Tanaka K, et al. Hepatic resection combined with portal vein or hepatic artery reconstruction for advanced carcinoma of the hilar bile duct and gallbladder. World J Surg. 2003;27(10):1137–42. doi:10.​1007/​s00268-003-6801-6.CrossRefPubMed
4.
Zurück zum Zitat Yoshioka Y, Ebata T, Yokoyama Y, Igami T, Sugawara G, Nagino M. “Supraportal” right posterior hepatic artery: an anatomic trap in hepatobiliary and transplant surgery. World J Surg. 2011;35(6):1340–4. doi:10.1007/s00268-011-1075-x.CrossRefPubMed Yoshioka Y, Ebata T, Yokoyama Y, Igami T, Sugawara G, Nagino M. “Supraportal” right posterior hepatic artery: an anatomic trap in hepatobiliary and transplant surgery. World J Surg. 2011;35(6):1340–4. doi:10.​1007/​s00268-011-1075-x.CrossRefPubMed
6.
Zurück zum Zitat Couinaud C. Surgical anatomy of the liver. Several new aspects. Chirurgie memoires de l’Academie de chirurgie. 1986;112(5):337–42.PubMed Couinaud C. Surgical anatomy of the liver. Several new aspects. Chirurgie memoires de l’Academie de chirurgie. 1986;112(5):337–42.PubMed
8.
Zurück zum Zitat Sakai H, Okuda K, Yasunaga M, Kinoshita H, Aoyagi S. Reliability of hepatic artery configuration in 3D CT angiography compared with conventional angiography--special reference to living-related liver transplant donors. Transpl Int. 2005;18(5):499–505. doi:10.1111/j.1432-2277.2004.00009.x.CrossRefPubMed Sakai H, Okuda K, Yasunaga M, Kinoshita H, Aoyagi S. Reliability of hepatic artery configuration in 3D CT angiography compared with conventional angiography--special reference to living-related liver transplant donors. Transpl Int. 2005;18(5):499–505. doi:10.​1111/​j.​1432-2277.​2004.​00009.​x.CrossRefPubMed
Metadaten
Titel
Surgical anatomy of the right hepatic artery in Rouviere’s sulcus evaluated by preoperative multidetector-row CT images
verfasst von
Shuichi Aoki
Masamichi Mizuma
Hiroki Hayashi
Kei Nakagawa
Takanori Morikawa
Fuyuhiko Motoi
Takeshi Naitoh
Shinichi Egawa
Michiaki Unno
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
BMC Surgery / Ausgabe 1/2016
Elektronische ISSN: 1471-2482
DOI
https://doi.org/10.1186/s12893-016-0155-0

Weitere Artikel der Ausgabe 1/2016

BMC Surgery 1/2016 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.