Skip to main content
Erschienen in:

03.03.2018 | Original Article

Surgical skills: Can learning curves be computed from recordings of surgical activities?

verfasst von: Germain Forestier, Laurent Riffaud, François Petitjean, Pierre-Louis Henaux, Pierre Jannin

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 5/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Surgery is one of the riskiest and most important medical acts that are performed today. The need to improve patient outcomes and surgeon training, and to reduce the costs of surgery, has motivated the equipment of operating rooms with sensors that record surgical interventions. The richness and complexity of the data that are collected call for new methods to support computer-assisted surgery. The aim of this paper is to support the monitoring of junior surgeons learning their surgical skill sets.

Methods

Our method is fully automatic and takes as input a series of surgical interventions each represented by a low-level recording of all activities performed by the surgeon during the intervention (e.g., cut the skin with a scalpel). Our method produces a curve describing the process of standardization of the behavior of junior surgeons. Given the fact that junior surgeons receive constant feedback from senior surgeons during surgery, these curves can be directly interpreted as learning curves.

Results

Our method is assessed using the behavior of a junior surgeon in anterior cervical discectomy and fusion surgery over his first three years after residency. They revealed the ability of the method to accurately represent the surgical skill evolution. We also showed that the learning curves can be computed by phases allowing a finer evaluation of the skill progression.

Conclusion

Preliminary results suggest that our approach constitutes a useful addition to surgical training monitoring.
Literatur
1.
Zurück zum Zitat Akiyoshi T, Kuroyanagi H, Ueno M, Oya M, Fujimoto Y, Konishi T, Yamaguchi T (2011) Learning curve for standardized laparoscopic surgery for colorectal cancer under supervision: a single-center experience. Surg Endosc 25(5):1409–1414CrossRefPubMed Akiyoshi T, Kuroyanagi H, Ueno M, Oya M, Fujimoto Y, Konishi T, Yamaguchi T (2011) Learning curve for standardized laparoscopic surgery for colorectal cancer under supervision: a single-center experience. Surg Endosc 25(5):1409–1414CrossRefPubMed
2.
Zurück zum Zitat Arora KS, Khan N, Abboudi H, Khan MS, Dasgupta P, Ahmed K (2015) Learning curves for cardiothoracic and vascular surgical procedures-a systematic review. Postgrad Med 127(2):202–214 Arora KS, Khan N, Abboudi H, Khan MS, Dasgupta P, Ahmed K (2015) Learning curves for cardiothoracic and vascular surgical procedures-a systematic review. Postgrad Med 127(2):202–214
3.
Zurück zum Zitat Barrie J, Jayne DG, Wright J, Murray CJC, Collinson FJ, Pavitt SH (2014) Attaining surgical competency and its implications in surgical clinical trial design: a systematic review of the learning curve in laparoscopic and robot-assisted laparoscopic colorectal cancer surgery. Ann Surg Oncol 21(3):829–840CrossRefPubMed Barrie J, Jayne DG, Wright J, Murray CJC, Collinson FJ, Pavitt SH (2014) Attaining surgical competency and its implications in surgical clinical trial design: a systematic review of the learning curve in laparoscopic and robot-assisted laparoscopic colorectal cancer surgery. Ann Surg Oncol 21(3):829–840CrossRefPubMed
4.
Zurück zum Zitat Birkmeyer JD, Finks JF, O’Reilly A, Oerline M, Carlin AM, Nunn AR, Dimick J, Banerjee M, Birkmeyer NJ (2013) Surgical skill and complication rates after bariatric surgery. N Engl J Med 369(15):1434–1442CrossRefPubMed Birkmeyer JD, Finks JF, O’Reilly A, Oerline M, Carlin AM, Nunn AR, Dimick J, Banerjee M, Birkmeyer NJ (2013) Surgical skill and complication rates after bariatric surgery. N Engl J Med 369(15):1434–1442CrossRefPubMed
5.
Zurück zum Zitat Choi DH, Jeong WK, Lim S-W, Chung TS, Park J-I, Lim S-B, Choi HS, Nam B-H, Chang HJ, Jeong S-Y (2009) Learning curves for laparoscopic sigmoidectomy used to manage curable sigmoid colon cancer: single-institute, three-surgeon experience. Surg Endosc 23(3):622–628CrossRefPubMed Choi DH, Jeong WK, Lim S-W, Chung TS, Park J-I, Lim S-B, Choi HS, Nam B-H, Chang HJ, Jeong S-Y (2009) Learning curves for laparoscopic sigmoidectomy used to manage curable sigmoid colon cancer: single-institute, three-surgeon experience. Surg Endosc 23(3):622–628CrossRefPubMed
6.
Zurück zum Zitat Despinoy F, Bouget D, Forestier G, Penet C, Zemiti N, Poignet P, Jannin P (2015) Unsupervised trajectory segmentation for surgical gesture recognition in robotic training. IEEE Trans Biomed Eng 63:1280–1291CrossRefPubMed Despinoy F, Bouget D, Forestier G, Penet C, Zemiti N, Poignet P, Jannin P (2015) Unsupervised trajectory segmentation for surgical gesture recognition in robotic training. IEEE Trans Biomed Eng 63:1280–1291CrossRefPubMed
7.
Zurück zum Zitat Dewey RA (2007) Psychology: an introduction. Russ Dewey Dewey RA (2007) Psychology: an introduction. Russ Dewey
8.
Zurück zum Zitat Dlouhy BJ, Rao RC (2014) Surgical skill and complication rates after bariatric surgery. N Engl J Med 370(3):285–285CrossRefPubMed Dlouhy BJ, Rao RC (2014) Surgical skill and complication rates after bariatric surgery. N Engl J Med 370(3):285–285CrossRefPubMed
9.
Zurück zum Zitat Forestier G, Lalys F, Riffaud L, Trelhu B, Jannin P (2012) Classification of surgical processes using dynamic time warping. J Biomed Inform 45(2):255–264CrossRefPubMed Forestier G, Lalys F, Riffaud L, Trelhu B, Jannin P (2012) Classification of surgical processes using dynamic time warping. J Biomed Inform 45(2):255–264CrossRefPubMed
10.
Zurück zum Zitat Forestier G, Lalys F, Riffaud R, Collins L, Meixensberger J, Wassef SN, Neumuth T, Goulet B, Jannin P (2013) Multi-site study of surgical practice in neurosurgery based on surgical process models. J Biomed Inform 46(5):822–829CrossRefPubMed Forestier G, Lalys F, Riffaud R, Collins L, Meixensberger J, Wassef SN, Neumuth T, Goulet B, Jannin P (2013) Multi-site study of surgical practice in neurosurgery based on surgical process models. J Biomed Inform 46(5):822–829CrossRefPubMed
11.
Zurück zum Zitat Forestier G, Riffaud L, Jannin P (2015) Automatic phase prediction from low-level surgical activities. Int J Comput Assist Radiol Surg 10(6):833–841 Forestier G, Riffaud L, Jannin P (2015) Automatic phase prediction from low-level surgical activities. Int J Comput Assist Radiol Surg 10(6):833–841
12.
Zurück zum Zitat Hanzly M, Frederick A, Creighton T, Atwood K, Mehedint D, Kauffman EC, Kim HL, Schwaab T (2014) Learning curves for robot-assisted and laparoscopic partial nephrectomy. J Endourol 20:297–303 Hanzly M, Frederick A, Creighton T, Atwood K, Mehedint D, Kauffman EC, Kim HL, Schwaab T (2014) Learning curves for robot-assisted and laparoscopic partial nephrectomy. J Endourol 20:297–303
14.
Zurück zum Zitat Islam G, Kahol K, Li B, Smith M, Patel VL (2016) Affordable, web-based surgical skill training and evaluation tool. J Biomed Inform 59:102–114CrossRefPubMed Islam G, Kahol K, Li B, Smith M, Patel VL (2016) Affordable, web-based surgical skill training and evaluation tool. J Biomed Inform 59:102–114CrossRefPubMed
15.
Zurück zum Zitat Jackson C, Gibbin K (2006) ‘per ardua...’training tomorrow’s surgeons using inter alia lessons from aviation. J R Soc Med 99(11):554–558PubMedPubMedCentral Jackson C, Gibbin K (2006) ‘per ardua...’training tomorrow’s surgeons using inter alia lessons from aviation. J R Soc Med 99(11):554–558PubMedPubMedCentral
16.
Zurück zum Zitat Jiménez-Rodríguez RM, Díaz-Pavón JM, de Juan F d l P, Prendes-Sillero E, Dussort HC, Padillo J (2013) Learning curve for robotic-assisted laparoscopic rectal cancer surgery. Int J Colorectal Dis 28(6):815–821CrossRefPubMed Jiménez-Rodríguez RM, Díaz-Pavón JM, de Juan F d l P, Prendes-Sillero E, Dussort HC, Padillo J (2013) Learning curve for robotic-assisted laparoscopic rectal cancer surgery. Int J Colorectal Dis 28(6):815–821CrossRefPubMed
17.
Zurück zum Zitat Kang J-C, Jao S-W, Chung M-H, Feng C-C, Chang Y-J (2007) The learning curve for hand-assisted laparoscopic colectomy: a single surgeon’s experience. Surg Endosc 21(2):234–237CrossRefPubMed Kang J-C, Jao S-W, Chung M-H, Feng C-C, Chang Y-J (2007) The learning curve for hand-assisted laparoscopic colectomy: a single surgeon’s experience. Surg Endosc 21(2):234–237CrossRefPubMed
18.
Zurück zum Zitat Khan N, Abboudi H, Khan MS, Dasgupta P, Ahmed K (2014) Measuring the surgical learning curve: methods, variables and competency. BJU Int 113(3):504–508CrossRefPubMed Khan N, Abboudi H, Khan MS, Dasgupta P, Ahmed K (2014) Measuring the surgical learning curve: methods, variables and competency. BJU Int 113(3):504–508CrossRefPubMed
19.
Zurück zum Zitat Lalys F, Bouget D, Riffaud L, Jannin P (2013) Automatic knowledge-based recognition of low-level tasks in ophthalmological procedures. Int J Comput Assist Radiol Surg 8(1):39–49CrossRefPubMed Lalys F, Bouget D, Riffaud L, Jannin P (2013) Automatic knowledge-based recognition of low-level tasks in ophthalmological procedures. Int J Comput Assist Radiol Surg 8(1):39–49CrossRefPubMed
20.
Zurück zum Zitat Lalys F, Jannin P (2013) Surgical process modelling: a review. Int J Comput Assist Radiol Surg 8(5):1–17 Lalys F, Jannin P (2013) Surgical process modelling: a review. Int J Comput Assist Radiol Surg 8(5):1–17
21.
Zurück zum Zitat Lalys F, Riffaud L, Morandi X, Jannin P (2010) Automatic phases recognition in pituitary surgeries by microscope images classification. In: Information processing in computer-assisted interventions. Springer, pp 34–44 Lalys F, Riffaud L, Morandi X, Jannin P (2010) Automatic phases recognition in pituitary surgeries by microscope images classification. In: Information processing in computer-assisted interventions. Springer, pp 34–44
22.
Zurück zum Zitat Le Reste P-J, Henaux P-L, Riffaud L, Haegelen C, Morandi X (2015) Influence of cumulative surgical experience on the outcome of poor-grade patients with ruptured intracranial aneurysm. Acta Neurochir 157(1):1–7CrossRefPubMed Le Reste P-J, Henaux P-L, Riffaud L, Haegelen C, Morandi X (2015) Influence of cumulative surgical experience on the outcome of poor-grade patients with ruptured intracranial aneurysm. Acta Neurochir 157(1):1–7CrossRefPubMed
23.
Zurück zum Zitat Lin HC, Shafran I, Murphy TE, Okamura AM, Yuh DD, Hager GD (2005) Automatic detection and segmentation of robot-assisted surgical motions. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2005. Springer, pp 802–810 Lin HC, Shafran I, Murphy TE, Okamura AM, Yuh DD, Hager GD (2005) Automatic detection and segmentation of robot-assisted surgical motions. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2005. Springer, pp 802–810
24.
Zurück zum Zitat Lin HC, Shafran I, Yuh D, Hager GD (2006) Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions. Comput Aided Surg 11(5):220–230CrossRefPubMed Lin HC, Shafran I, Yuh D, Hager GD (2006) Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions. Comput Aided Surg 11(5):220–230CrossRefPubMed
25.
Zurück zum Zitat MacKenzie L, Ibbotson J, Cao C, Lomax A (2001) Hierarchical decomposition of laparoscopic surgery: a human factors approach to investigating the operating room environment. Minim Invasive Therapy Allied Technol 10(3):121–127CrossRef MacKenzie L, Ibbotson J, Cao C, Lomax A (2001) Hierarchical decomposition of laparoscopic surgery: a human factors approach to investigating the operating room environment. Minim Invasive Therapy Allied Technol 10(3):121–127CrossRef
26.
Zurück zum Zitat Martin J, Regehr G, Reznick R, MacRae H, Murnaghan J, Hutchison C, Brown M (1997) Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg 84(2):273–278CrossRefPubMed Martin J, Regehr G, Reznick R, MacRae H, Murnaghan J, Hutchison C, Brown M (1997) Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg 84(2):273–278CrossRefPubMed
27.
Zurück zum Zitat Mazur JE, Hastie R (1978) Learning as accumulation: a reexamination of the learning curve. Psychol Bull 85(6):1256CrossRefPubMed Mazur JE, Hastie R (1978) Learning as accumulation: a reexamination of the learning curve. Psychol Bull 85(6):1256CrossRefPubMed
28.
Zurück zum Zitat Mehta N, Haluck R, Frecker M, Snyder A (2002) Sequence and task analysis of instrument use in common laparoscopic procedures. Surg Endosc 16(2):280–285CrossRefPubMed Mehta N, Haluck R, Frecker M, Snyder A (2002) Sequence and task analysis of instrument use in common laparoscopic procedures. Surg Endosc 16(2):280–285CrossRefPubMed
29.
Zurück zum Zitat Meißner C, Meixensberger J, Pretschner A, Neumuth T (2014) Sensor-based surgical activity recognition in unconstrained environments. Minim Invasive Therapy Allied Technol 23:198–205CrossRef Meißner C, Meixensberger J, Pretschner A, Neumuth T (2014) Sensor-based surgical activity recognition in unconstrained environments. Minim Invasive Therapy Allied Technol 23:198–205CrossRef
30.
Zurück zum Zitat Neumuth T, Durstewitz N, Fischer M, Strauß G, Dietz A, Meixensberger J, Jannin P, Cleary K, Lemke HU, Burgert O (2006) Structured recording of intraoperative surgical workflows. In: Medical imaging. International Society for Optics and Photonics, pp 61450A–61450A Neumuth T, Durstewitz N, Fischer M, Strauß G, Dietz A, Meixensberger J, Jannin P, Cleary K, Lemke HU, Burgert O (2006) Structured recording of intraoperative surgical workflows. In: Medical imaging. International Society for Optics and Photonics, pp 61450A–61450A
31.
Zurück zum Zitat PARK1a S-H, Suh IH, Chien J-h, Paik J, Ritter FE, Oleynikov D, Siu K-C (2011) Modeling surgical skill learning with cognitive simulation. Medi Meets Virtual Real 18: NextMed, 163:428 PARK1a S-H, Suh IH, Chien J-h, Paik J, Ritter FE, Oleynikov D, Siu K-C (2011) Modeling surgical skill learning with cognitive simulation. Medi Meets Virtual Real 18: NextMed, 163:428
32.
Zurück zum Zitat Pavlidis I, Tsiamyrtzis P, Shastri D, Wesley A, Zhou Y, Lindner P, Buddharaju P, Joseph R, Mandapati A, Dunkin B, Bass B (2012) Fast by nature-how stress patterns define human experience and performance in dexterous tasks. Sci Rep 2:305CrossRefPubMedPubMedCentral Pavlidis I, Tsiamyrtzis P, Shastri D, Wesley A, Zhou Y, Lindner P, Buddharaju P, Joseph R, Mandapati A, Dunkin B, Bass B (2012) Fast by nature-how stress patterns define human experience and performance in dexterous tasks. Sci Rep 2:305CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Ramsay CR, Grant AM, Wallace SA, Garthwaite PH, Monk AF, Russell IT (2001) Statistical assessment of the learning curves of health technologies. Health Technol Assess 5(12):1–79CrossRefPubMed Ramsay CR, Grant AM, Wallace SA, Garthwaite PH, Monk AF, Russell IT (2001) Statistical assessment of the learning curves of health technologies. Health Technol Assess 5(12):1–79CrossRefPubMed
34.
Zurück zum Zitat Ritter FE, Schooler LJ (2001) The learning curve. Int Encycl Social Behav Sci 13:8602–8605 Ritter FE, Schooler LJ (2001) The learning curve. Int Encycl Social Behav Sci 13:8602–8605
35.
Zurück zum Zitat Rodriguez-Paz J, Kennedy M, Salas E, Wu A, Sexton J, Hunt E, Pronovost P (2009) Beyond “see one, do one, teach one” : toward a different training paradigm. Qual Saf Health Care 18(1):63–68PubMed Rodriguez-Paz J, Kennedy M, Salas E, Wu A, Sexton J, Hunt E, Pronovost P (2009) Beyond “see one, do one, teach one” : toward a different training paradigm. Qual Saf Health Care 18(1):63–68PubMed
36.
Zurück zum Zitat Rogers SO, Gawande AA, Kwaan M, Puopolo AL, Yoon C, Brennan TA, Studdert DM (2006) Analysis of surgical errors in closed malpractice claims at 4 liability insurers. Surgery 140(1):25–33CrossRefPubMed Rogers SO, Gawande AA, Kwaan M, Puopolo AL, Yoon C, Brennan TA, Studdert DM (2006) Analysis of surgical errors in closed malpractice claims at 4 liability insurers. Surgery 140(1):25–33CrossRefPubMed
37.
Zurück zum Zitat Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans Acoust Speech Signal Process 26(1):43–49CrossRef Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans Acoust Speech Signal Process 26(1):43–49CrossRef
38.
Zurück zum Zitat Schumann S, Bühligen U, Neumuth T (2015) Outcome quality assessment by surgical process compliance measures in laparoscopic surgery. Artif Intell Med 63(2):85–90CrossRefPubMed Schumann S, Bühligen U, Neumuth T (2015) Outcome quality assessment by surgical process compliance measures in laparoscopic surgery. Artif Intell Med 63(2):85–90CrossRefPubMed
39.
Zurück zum Zitat Sharma Y, Plötz T, Hammerld N, Mellor S, McNaney R, Olivier P, Deshmukh S, McCaskie A, Essa I (2014) Automated surgical osats prediction from videos. In 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI). IEEE, pp 461–464 Sharma Y, Plötz T, Hammerld N, Mellor S, McNaney R, Olivier P, Deshmukh S, McCaskie A, Essa I (2014) Automated surgical osats prediction from videos. In 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI). IEEE, pp 461–464
40.
Zurück zum Zitat Tekkis PP, Senagore AJ, Delaney CP, Fazio VW (2005) Evaluation of the learning curve in laparoscopic colorectal surgery: comparison of right-sided and left-sided resections. Ann Surg 242(1):83CrossRefPubMedPubMedCentral Tekkis PP, Senagore AJ, Delaney CP, Fazio VW (2005) Evaluation of the learning curve in laparoscopic colorectal surgery: comparison of right-sided and left-sided resections. Ann Surg 242(1):83CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Van Hove P, Tuijthof G, Verdaasdonk E, Stassen L, Dankelman J (2010) Objective assessment of technical surgical skills. Br J Surg 97(7):972–987CrossRefPubMed Van Hove P, Tuijthof G, Verdaasdonk E, Stassen L, Dankelman J (2010) Objective assessment of technical surgical skills. Br J Surg 97(7):972–987CrossRefPubMed
42.
Zurück zum Zitat Varadarajan B, Reiley C, Lin H, Khudanpur S, Hager G (2009) Data-derived models for segmentation with application to surgical assessment and training. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2009. Springer, pp 426–434 Varadarajan B, Reiley C, Lin H, Khudanpur S, Hager G (2009) Data-derived models for segmentation with application to surgical assessment and training. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2009. Springer, pp 426–434
43.
Zurück zum Zitat Wright TP (2012) Factors affecting the cost of airplanes. J Aeronaut Sci (Inst Aeronaut Sci) 3(4):122–128CrossRef Wright TP (2012) Factors affecting the cost of airplanes. J Aeronaut Sci (Inst Aeronaut Sci) 3(4):122–128CrossRef
44.
Zurück zum Zitat Yelle LE (1979) The learning curve: historical review and comprehensive survey. Decis Sci 10(2):302–328CrossRef Yelle LE (1979) The learning curve: historical review and comprehensive survey. Decis Sci 10(2):302–328CrossRef
Metadaten
Titel
Surgical skills: Can learning curves be computed from recordings of surgical activities?
verfasst von
Germain Forestier
Laurent Riffaud
François Petitjean
Pierre-Louis Henaux
Pierre Jannin
Publikationsdatum
03.03.2018
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 5/2018
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-018-1713-y

Neu im Fachgebiet Radiologie

Ab sofort gelten die neuen Verordnungsausnahmen für Lipidsenker

Freie Fahrt für Lipidsenker? Das nicht, doch mit niedrigerem Schwellenwert fürs Infarktrisiko und neuen Indikationen hat der G-BA die Verordnungs-Handbremse ein gutes Stück weit gelockert.

Abdominale CT bei Kindern: 40% mit Zufallsbefunden

Wird bei Kindern mit stumpfem Trauma eine CT des Bauchraums veranlasst, sind in rund 40% der Fälle Auffälligkeiten zu sehen, die nichts mit dem Trauma zu tun haben. Die allerwenigsten davon sind klinisch relevant.

Genügt die biparametrische MRT für die Prostatadiagnostik?

Die multiparametrische Magnetresonanztomografie hat einen festen Platz im Screening auf klinisch signifikante Prostatakarzinome. Ob auch ein biparametrisches Vorgehen ausreicht, ist in einer Metaanalyse untersucht worden.

Höhere Trefferquoten bei Brustkrebsscreening dank KI?

Künstliche Intelligenz unterstützt bei der Auswertung von Mammografie-Screenings und senkt somit den Arbeitsaufwand für Radiologen. Wie wirken sich diese Technologien auf die Trefferquote und die Falsch-positiv-Rate aus? Das hat jetzt eine Studie aus Schweden untersucht.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.