Skip to main content
Erschienen in: Heart and Vessels 1/2019

24.07.2018 | Original Article

Sustained delivery of vascular endothelial growth factor using a dextran/poly(lactic-co-glycolic acid)-combined microsphere system for therapeutic neovascularization

verfasst von: Zhen Dong Zhang, Ying Qi Xu, Feng Chen, Jun Fu Luo, Chong Dong Liu

Erschienen in: Heart and Vessels | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

We hypothesize that the controlled delivery of vascular endothelial growth factor (VEGF) using a novel protein sustained-release system based on the combination of protein-loaded dextran microparticles and PLGA microspheres could be useful to achieve mature vessel formation in a rat hind-limb ischemic model. VEGF-loaded dextran microparticles were fabricated and then encapsulated into poly(lactic-co-glycolic acid) (PLGA) microspheres to prepare VEGF–dextran–PLGA microspheres. The release behavior and bioactivity in promoting endothelial cell proliferation of VEGF from PLGA microspheres were monitored in vitro. VEGF–dextran–PLGA microsphere-loaded fibrin gel was injected into an ischemic rat model, and neovascularization at the ischemic site was evaluated. The release of VEGF from PLGA microspheres was in a sustained manner for more than 1 month in vitro with low level of initial burst release. The released VEGF enhanced the proliferation of endothelial cells in vitro, and significantly promoted the capillaries and smooth muscle α-actin positive vessels formation in vivo. The retained bioactivity of VEGF released from VEGF–dextran–PLGA microspheres potentiated the angiogenic efficacy of VEGF. This sustained-release system may be a promising vehicle for delivery of multiple angiogenic factors for therapeutic neovascularization.
Literatur
1.
Zurück zum Zitat Layman H, Sacasa M, Murphy AE, Murphy AM, Pham SM, Andreopoulos FM (2009) Co-delivery of FGF-2 and G-CSF from gelatin-based hydrogels as angiogenic therapy in a murine critical limb ischemic model. Acta Biomater 5:230–239CrossRefPubMed Layman H, Sacasa M, Murphy AE, Murphy AM, Pham SM, Andreopoulos FM (2009) Co-delivery of FGF-2 and G-CSF from gelatin-based hydrogels as angiogenic therapy in a murine critical limb ischemic model. Acta Biomater 5:230–239CrossRefPubMed
2.
Zurück zum Zitat Li L, Okada H, Takemura G, Esaki M, Kobayashi H, Kanamori H, Kawamura I, Maruyama R, Fujiwara T, Fujiwara H, Tabata Y, Minatoguchi S (2009) Sustained release of erythropoietin using biodegradable gelatin hydrogel microspheres persistently improves lower leg ischemia. J Am Coll Cardiol 53:2378–2388CrossRefPubMed Li L, Okada H, Takemura G, Esaki M, Kobayashi H, Kanamori H, Kawamura I, Maruyama R, Fujiwara T, Fujiwara H, Tabata Y, Minatoguchi S (2009) Sustained release of erythropoietin using biodegradable gelatin hydrogel microspheres persistently improves lower leg ischemia. J Am Coll Cardiol 53:2378–2388CrossRefPubMed
3.
Zurück zum Zitat Bao H, Lv F, Liu T (2017) A pro-angiogenic degradable Mg-poly(lactic-co-glycolic acid) implant combined with rhbFGF in a rat limb ischemia model. Acta Biomater 64:279–289CrossRefPubMed Bao H, Lv F, Liu T (2017) A pro-angiogenic degradable Mg-poly(lactic-co-glycolic acid) implant combined with rhbFGF in a rat limb ischemia model. Acta Biomater 64:279–289CrossRefPubMed
4.
Zurück zum Zitat Ylä-Herttuala S (2013) Cardiovascular gene therapy with vascular endothelial growth factors. Gene 525:217–219CrossRefPubMed Ylä-Herttuala S (2013) Cardiovascular gene therapy with vascular endothelial growth factors. Gene 525:217–219CrossRefPubMed
5.
Zurück zum Zitat Helisch A, Schaper W (2003) Arteriogenesis: the development and growth of collateral arteries. Microcirculation 10:83–97CrossRefPubMed Helisch A, Schaper W (2003) Arteriogenesis: the development and growth of collateral arteries. Microcirculation 10:83–97CrossRefPubMed
6.
Zurück zum Zitat Heil M, Eitenmüller I, Schmitz-Rixen T, Schaper W (2006) Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med 10:45–55CrossRef Heil M, Eitenmüller I, Schmitz-Rixen T, Schaper W (2006) Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med 10:45–55CrossRef
7.
Zurück zum Zitat Troidl K, Schaper W (2012) Arteriogenesis versus angiogenesis in peripheral artery disease. Diabetes Metab Res Rev 28(Suppl 1):27–29CrossRefPubMed Troidl K, Schaper W (2012) Arteriogenesis versus angiogenesis in peripheral artery disease. Diabetes Metab Res Rev 28(Suppl 1):27–29CrossRefPubMed
9.
Zurück zum Zitat Nair KL, Jagadeeshan S, Nair SA, Kumar GS (2011) Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. Int J Nanomedicine 6:1685–1697PubMedPubMedCentral Nair KL, Jagadeeshan S, Nair SA, Kumar GS (2011) Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. Int J Nanomedicine 6:1685–1697PubMedPubMedCentral
10.
Zurück zum Zitat El-Hammadi MM, Delgado ÁV, Melguizo C, Prados JC, Arias JL (2017) Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil. Int J Pharm 516:61–70CrossRefPubMed El-Hammadi MM, Delgado ÁV, Melguizo C, Prados JC, Arias JL (2017) Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil. Int J Pharm 516:61–70CrossRefPubMed
11.
Zurück zum Zitat Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75:1–18CrossRefPubMed Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75:1–18CrossRefPubMed
12.
Zurück zum Zitat Raza K, Kumar N, Misra C, Kaushik L, Guru SK, Kumar P, Malik R, Bhushan S, Katare OP (2016) Dextran-PLGA-loaded docetaxel micelles with enhanced cytotoxicity and better pharmacokinetic profile. Int J Biol Macromol 88:206–212CrossRefPubMed Raza K, Kumar N, Misra C, Kaushik L, Guru SK, Kumar P, Malik R, Bhushan S, Katare OP (2016) Dextran-PLGA-loaded docetaxel micelles with enhanced cytotoxicity and better pharmacokinetic profile. Int J Biol Macromol 88:206–212CrossRefPubMed
13.
Zurück zum Zitat Suarez SL, Muñoz A, Mitchell A, Braden RL, Luo C, Cochran JR, Almutairi A, Christman KL (2016) Degradable acetalated dextran microparticles for tunable release of an engineered hepatocyte growth factor fragment. ACS Biomater Sci Eng 2:197–204CrossRefPubMed Suarez SL, Muñoz A, Mitchell A, Braden RL, Luo C, Cochran JR, Almutairi A, Christman KL (2016) Degradable acetalated dextran microparticles for tunable release of an engineered hepatocyte growth factor fragment. ACS Biomater Sci Eng 2:197–204CrossRefPubMed
14.
Zurück zum Zitat Ribeiro MP, Morgado PI, Miguel SP, Coutinho P, Correia IJ (2013) Dextran-based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing. Mater Sci Eng C Mater Biol Appl 33:2958–2966CrossRefPubMed Ribeiro MP, Morgado PI, Miguel SP, Coutinho P, Correia IJ (2013) Dextran-based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing. Mater Sci Eng C Mater Biol Appl 33:2958–2966CrossRefPubMed
15.
Zurück zum Zitat Schwendeman SP (2002) Recent advances in the stabilization of proteins encapsulated in injectable PLGA delivery systems. Crit Rev Ther Drug Carrier Syst 19:73–98CrossRefPubMed Schwendeman SP (2002) Recent advances in the stabilization of proteins encapsulated in injectable PLGA delivery systems. Crit Rev Ther Drug Carrier Syst 19:73–98CrossRefPubMed
16.
Zurück zum Zitat Zhu G, Mallery SR, Schwendeman SP (2000) Stabilization of proteins encapsulated in injectable poly (lactide- co-glycolide). Nat Biotechnol 18:52–57CrossRefPubMed Zhu G, Mallery SR, Schwendeman SP (2000) Stabilization of proteins encapsulated in injectable poly (lactide- co-glycolide). Nat Biotechnol 18:52–57CrossRefPubMed
17.
Zurück zum Zitat Schellekens H (2005) Immunologic mechanisms of EPO-associated pure red cell aplasia. Best Pract Res Clin Haematol 18:473–480CrossRef Schellekens H (2005) Immunologic mechanisms of EPO-associated pure red cell aplasia. Best Pract Res Clin Haematol 18:473–480CrossRef
18.
Zurück zum Zitat Maas C, Hermeling S, Bouma B, Jiskoot W, Gebbink MF (2007) A role for protein misfolding in immunogenicity of biopharmaceuticals. J Biol Chem 282:2229–2236CrossRefPubMed Maas C, Hermeling S, Bouma B, Jiskoot W, Gebbink MF (2007) A role for protein misfolding in immunogenicity of biopharmaceuticals. J Biol Chem 282:2229–2236CrossRefPubMed
19.
Zurück zum Zitat Jiang W, Schwendeman SP (2001) Stabilization and controlled release of bovine serum albumin encapsulated in poly(d, l-lactide) and poly(ethylene glycol) microsphere blends. Pharm Res 18:878–885CrossRefPubMed Jiang W, Schwendeman SP (2001) Stabilization and controlled release of bovine serum albumin encapsulated in poly(d, l-lactide) and poly(ethylene glycol) microsphere blends. Pharm Res 18:878–885CrossRefPubMed
20.
Zurück zum Zitat Kang J, Wu F, Cai Y, Xu M, He M, Yuan W (2014) Development of recombinant human growth hormone (rhGH) sustained-release microspheres by a low temperature aqueous phase/aqueous phase emulsion method. Eur J Pharm Sci 62:141–147CrossRefPubMed Kang J, Wu F, Cai Y, Xu M, He M, Yuan W (2014) Development of recombinant human growth hormone (rhGH) sustained-release microspheres by a low temperature aqueous phase/aqueous phase emulsion method. Eur J Pharm Sci 62:141–147CrossRefPubMed
21.
Zurück zum Zitat Wu F, Dai L, Geng L, Zhu H, Jin T (2017) Practically feasible production of sustained-release microspheres of granulocyte-macrophage colony-stimulating factor (rhGM–CSF). J Control Release 259:195–202CrossRefPubMed Wu F, Dai L, Geng L, Zhu H, Jin T (2017) Practically feasible production of sustained-release microspheres of granulocyte-macrophage colony-stimulating factor (rhGM–CSF). J Control Release 259:195–202CrossRefPubMed
22.
Zurück zum Zitat Geng Y, Yuan W, Wu F, Chen J, He M, Jin T (2008) Formulating erythropoietin-loaded sustained-release PLGA microspheres without protein aggregation. J Control Release 130:259–265CrossRefPubMed Geng Y, Yuan W, Wu F, Chen J, He M, Jin T (2008) Formulating erythropoietin-loaded sustained-release PLGA microspheres without protein aggregation. J Control Release 130:259–265CrossRefPubMed
23.
Zurück zum Zitat Yuan W, Wu F, Guo M, Jin T (2009) Development of protein delivery microsphere system by a novel S/O/O/W multi-emulsion. Eur J Pharm Sci 36:212–218CrossRefPubMed Yuan W, Wu F, Guo M, Jin T (2009) Development of protein delivery microsphere system by a novel S/O/O/W multi-emulsion. Eur J Pharm Sci 36:212–218CrossRefPubMed
24.
Zurück zum Zitat Yang S, Yuan W, Jin T (2009) Formulating protein therapeutics into particulate forms. Expert Opin Drug Deliv 6:1123–1133CrossRefPubMed Yang S, Yuan W, Jin T (2009) Formulating protein therapeutics into particulate forms. Expert Opin Drug Deliv 6:1123–1133CrossRefPubMed
25.
Zurück zum Zitat Kwak HH, Shim WS, Choi MK, Son MK, Kim YJ, Yang HC, Kim TH, Lee GI, Kim BM, Kang SH, Shim CK (2009) Development of a sustained-release recombinant human growth hormone formulation. J Control Release 137:160–165CrossRefPubMed Kwak HH, Shim WS, Choi MK, Son MK, Kim YJ, Yang HC, Kim TH, Lee GI, Kim BM, Kang SH, Shim CK (2009) Development of a sustained-release recombinant human growth hormone formulation. J Control Release 137:160–165CrossRefPubMed
26.
Zurück zum Zitat Kim SJ, Hahn SK, Kim MJ, Kim DH, Lee YP (2005) Development of a novel sustained release formulation of recombinant human growth hormone using sodium hyaluronate microparticles. J Control Release 104:323–335CrossRefPubMed Kim SJ, Hahn SK, Kim MJ, Kim DH, Lee YP (2005) Development of a novel sustained release formulation of recombinant human growth hormone using sodium hyaluronate microparticles. J Control Release 104:323–335CrossRefPubMed
27.
Zurück zum Zitat Jordan F, Naylor A, Kelly CA, Howdle SM, Lewis A, Illum L (2010) Sustained release hGH microsphere formulation produced by a novel supercritical fluid technology: in vivo studies. J Control Release 141:153–160CrossRefPubMed Jordan F, Naylor A, Kelly CA, Howdle SM, Lewis A, Illum L (2010) Sustained release hGH microsphere formulation produced by a novel supercritical fluid technology: in vivo studies. J Control Release 141:153–160CrossRefPubMed
28.
Zurück zum Zitat Kakizawa Y, Nishio R, Hirano T, Koshi Y, Nukiwa M, Koiwa M, Michizoe J, Ida N (2010) Controlled release of protein drugs from newly developed amphiphilic polymer-based microparticles composed of nanoparticles. J Control Release 142:8–13CrossRefPubMed Kakizawa Y, Nishio R, Hirano T, Koshi Y, Nukiwa M, Koiwa M, Michizoe J, Ida N (2010) Controlled release of protein drugs from newly developed amphiphilic polymer-based microparticles composed of nanoparticles. J Control Release 142:8–13CrossRefPubMed
29.
Zurück zum Zitat Giacca M, Zacchigna S (2012) VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Ther 19:622–629CrossRefPubMed Giacca M, Zacchigna S (2012) VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Ther 19:622–629CrossRefPubMed
30.
Zurück zum Zitat Ouma GO, Zafrir B, Mohler ER, Flugelman MY (2013) Therapeutic angiogenesis in critical limb ischemia. Angiology 64:466–480CrossRefPubMed Ouma GO, Zafrir B, Mohler ER, Flugelman MY (2013) Therapeutic angiogenesis in critical limb ischemia. Angiology 64:466–480CrossRefPubMed
31.
Zurück zum Zitat Marsano A, Maidhof R, Luo J, Fujikara K, Konofagou EE, Banfi A, Vunjak-Novakovic G (2013) The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction. Biomaterials 34:393–401CrossRefPubMed Marsano A, Maidhof R, Luo J, Fujikara K, Konofagou EE, Banfi A, Vunjak-Novakovic G (2013) The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction. Biomaterials 34:393–401CrossRefPubMed
32.
Zurück zum Zitat Jin T, Zhu J, Wu F, Yuan W, Geng LL, Zhu H (2008) Preparing polymer-based sustained-release systems without exposing proteins to water–oil or water–air interfaces and cross-linking reagents. J Control Release 128:50–59CrossRefPubMed Jin T, Zhu J, Wu F, Yuan W, Geng LL, Zhu H (2008) Preparing polymer-based sustained-release systems without exposing proteins to water–oil or water–air interfaces and cross-linking reagents. J Control Release 128:50–59CrossRefPubMed
33.
Zurück zum Zitat Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248CrossRefPubMed Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248CrossRefPubMed
34.
Zurück zum Zitat Dor Y, Djonov V, Abramovitch R, Itin A, Fishman GI, Carmeliet P, Goelman G, Keshet E (2002) Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J 21:1939–1947CrossRefPubMedPubMedCentral Dor Y, Djonov V, Abramovitch R, Itin A, Fishman GI, Carmeliet P, Goelman G, Keshet E (2002) Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J 21:1939–1947CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Ozawa CR, Banfi A, Glazer NL, Thurston G, Springer ML, Kraft PE, McDonald DM, Blau HM (2004) Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest 113:516–527CrossRefPubMedPubMedCentral Ozawa CR, Banfi A, Glazer NL, Thurston G, Springer ML, Kraft PE, McDonald DM, Blau HM (2004) Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest 113:516–527CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Springer ML, Ozawa CR, Banfi A, Kraft PE, Ip TK, Brazelton TR, Blau HM (2003) Localized arteriole formation directly adjacent to the site of VEGF-induced angiogenesis in muscle. Mol Ther 7:441–449CrossRefPubMed Springer ML, Ozawa CR, Banfi A, Kraft PE, Ip TK, Brazelton TR, Blau HM (2003) Localized arteriole formation directly adjacent to the site of VEGF-induced angiogenesis in muscle. Mol Ther 7:441–449CrossRefPubMed
37.
Zurück zum Zitat Kalka C, Masuda H, Takahashi T, Gordon R, Tepper O, Gravereaux E, Pieczek A, Iwaguro H, Hayashi SI, Isner JM, Asahara T (2000) Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res 86:1198–1202CrossRefPubMed Kalka C, Masuda H, Takahashi T, Gordon R, Tepper O, Gravereaux E, Pieczek A, Iwaguro H, Hayashi SI, Isner JM, Asahara T (2000) Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res 86:1198–1202CrossRefPubMed
38.
Zurück zum Zitat Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972CrossRefPubMedPubMedCentral Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Yung S, Chimenti S, Landsman L, Abramovitch R, Keshet E (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124:175–189CrossRefPubMed Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Yung S, Chimenti S, Landsman L, Abramovitch R, Keshet E (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124:175–189CrossRefPubMed
40.
Zurück zum Zitat Li B, Sharpe EE, Maupin AB, Teleron AA, Pyle AL, Carmeliet P, Young PP (2006) VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J 20:1495–1497CrossRefPubMed Li B, Sharpe EE, Maupin AB, Teleron AA, Pyle AL, Carmeliet P, Young PP (2006) VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J 20:1495–1497CrossRefPubMed
41.
Zurück zum Zitat Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M, Hicklin DJ, Zhu Z, Witte L, Crystal RG, Moore MA, Rafii S (2001) Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 193:1005–1014CrossRefPubMedPubMedCentral Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M, Hicklin DJ, Zhu Z, Witte L, Crystal RG, Moore MA, Rafii S (2001) Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 193:1005–1014CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S, Silver M, Li T, Isner JM, Asahara T (2002) Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 105:732–738CrossRefPubMed Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S, Silver M, Li T, Isner JM, Asahara T (2002) Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 105:732–738CrossRefPubMed
43.
Zurück zum Zitat Avraham-Davidi I, Yona S, Grunewald M, Landsman L, Cochain C, Silvestre JS, Mizrahi H, Faroja M, Strauss-Ayali D, Mack M, Jung S, Keshet E (2013) On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells. J Exp Med 210:2611–2625CrossRefPubMedPubMedCentral Avraham-Davidi I, Yona S, Grunewald M, Landsman L, Cochain C, Silvestre JS, Mizrahi H, Faroja M, Strauss-Ayali D, Mack M, Jung S, Keshet E (2013) On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells. J Exp Med 210:2611–2625CrossRefPubMedPubMedCentral
Metadaten
Titel
Sustained delivery of vascular endothelial growth factor using a dextran/poly(lactic-co-glycolic acid)-combined microsphere system for therapeutic neovascularization
verfasst von
Zhen Dong Zhang
Ying Qi Xu
Feng Chen
Jun Fu Luo
Chong Dong Liu
Publikationsdatum
24.07.2018
Verlag
Springer Japan
Erschienen in
Heart and Vessels / Ausgabe 1/2019
Print ISSN: 0910-8327
Elektronische ISSN: 1615-2573
DOI
https://doi.org/10.1007/s00380-018-1230-5

Weitere Artikel der Ausgabe 1/2019

Heart and Vessels 1/2019 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.