Skip to main content
main-content

05.08.2019 | Original Article | Ausgabe 10/2019

International Journal of Computer Assisted Radiology and Surgery 10/2019

Synthesis of CT images from digital body phantoms using CycleGAN

Zeitschrift:
International Journal of Computer Assisted Radiology and Surgery > Ausgabe 10/2019
Autoren:
Tom Russ, Stephan Goerttler, Alena-Kathrin Schnurr, Dominik F. Bauer, Sepideh Hatamikia, Lothar R. Schad, Frank G. Zöllner, Khanlian Chung
Wichtige Hinweise
Tom Russ and Stephan Goerttler have contributed equally.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Purpose

The potential of medical image analysis with neural networks is limited by the restricted availability of extensive data sets. The incorporation of synthetic training data is one approach to bypass this shortcoming, as synthetic data offer accurate annotations and unlimited data size.

Methods

We evaluated eleven CycleGAN for the synthesis of computed tomography (CT) images based on XCAT body phantoms. The image quality was assessed in terms of anatomical accuracy and realistic noise properties. We performed two studies exploring various network and training configurations as well as a task-based adaption of the corresponding loss function.

Results

The CycleGAN using the Res-Net architecture and three XCAT input slices achieved the best overall performance in the configuration study. In the task-based study, the anatomical accuracy of the generated synthetic CTs remained high (\(\mathrm{SSIM} = 0.64\) and \(\mathrm{FSIM} = 0.76\)). At the same time, the generated noise texture was close to real data with a noise power spectrum correlation coefficient of \(\mathrm{NCC} = 0.92\). Simultaneously, we observed an improvement in annotation accuracy of 65% when using the dedicated loss function. The feasibility of a combined training on both real and synthetic data was demonstrated in a blood vessel segmentation task (dice similarity coefficient \(\mathrm {DSC}=0.83\pm 0.05\)).

Conclusion

CT synthesis using CycleGAN is a feasible approach to generate realistic images from simulated XCAT phantoms. Synthetic CTs generated with a task-based loss function can be used in addition to real data to improve the performance of segmentation networks.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 10/2019

International Journal of Computer Assisted Radiology and Surgery 10/2019 Zur Ausgabe
  1. Sie können e.Med Chirurgie 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.

  2. Sie können e.Med Radiologie 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.

Neu im Fachgebiet Radiologie

Meistgelesene Bücher aus der Radiologie

2016 | Buch

Medizinische Fremdkörper in der Bildgebung

Thorax, Abdomen, Gefäße und Kinder

Dieses einzigartige Buch enthält ca. 1.600 hochwertige radiologische Abbildungen und Fotos iatrogen eingebrachter Fremdmaterialien im Röntgenbild und CT.

Herausgeber:
Dr. med. Daniela Kildal

2011 | Buch

Atlas Klinische Neuroradiologie des Gehirns

Radiologie lebt von Bildern! Der vorliegende Atlas trägt dieser Tatsache Rechnung. Sie finden zu jedem Krankheitsbild des Gehirns Referenzbilder zum Abgleichen mit eigenen Befunden.

Autoren:
Priv.-Doz. Dr. med. Jennifer Linn, Prof. Dr. med. Martin Wiesmann, Prof. Dr. med. Hartmut Brückmann

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Radiologie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise