Skip to main content
main-content

01.11.2018 | Systems-Level Quality Improvement | Ausgabe 11/2018

Journal of Medical Systems 11/2018

Systematic Review of an Automated Multiclass Detection and Classification System for Acute Leukaemia in Terms of Evaluation and Benchmarking, Open Challenges, Issues and Methodological Aspects

Zeitschrift:
Journal of Medical Systems > Ausgabe 11/2018
Autoren:
M. A. Alsalem, A. A. Zaidan, B. B. Zaidan, M. Hashim, O. S. Albahri, A. S. Albahri, Ali Hadi, K. I. Mohammed
Wichtige Hinweise
This article is part of the Topical Collection on Systems-Level Quality Improvement

Abstract

This study aims to systematically review prior research on the evaluation and benchmarking of automated acute leukaemia classification tasks. The review depends on three reliable search engines: ScienceDirect, Web of Science and IEEE Xplore. A research taxonomy developed for the review considers a wide perspective for automated detection and classification of acute leukaemia research and reflects the usage trends in the evaluation criteria in this field. The developed taxonomy consists of three main research directions in this domain. The taxonomy involves two phases. The first phase includes all three research directions. The second one demonstrates all the criteria used for evaluating acute leukaemia classification. The final set of studies includes 83 investigations, most of which focused on enhancing the accuracy and performance of detection and classification through proposed methods or systems. Few efforts were made to undertake the evaluation issues. According to the final set of articles, three groups of articles represented the main research directions in this domain: 56 articles highlighted the proposed methods, 22 articles involved proposals for system development and 5 papers centred on evaluation and comparison. The other taxonomy side included 16 main and sub-evaluation and benchmarking criteria. This review highlights three serious issues in the evaluation and benchmarking of multiclass classification of acute leukaemia, namely, conflicting criteria, evaluation criteria and criteria importance. It also determines the weakness of benchmarking tools. To solve these issues, multicriteria decision-making (MCDM) analysis techniques were proposed as effective recommended solutions in the methodological aspect. This methodological aspect involves a proposed decision support system based on MCDM for evaluation and benchmarking to select suitable multiclass classification models for acute leukaemia. The said support system is examined and has three sequential phases. Phase One presents the identification procedure and process for establishing a decision matrix based on a crossover of evaluation criteria and acute leukaemia multiclass classification models. Phase Two describes the decision matrix development for the selection of acute leukaemia classification models based on the integrated Best and worst method (BWM) and VIKOR. Phase Three entails the validation of the proposed system.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Nicht verpassen: e.Med bis 13. März 2019 100€ günstiger im ersten Jahr!

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 11/2018

Journal of Medical Systems 11/2018 Zur Ausgabe