Skip to main content
Erschienen in: Immunologic Research 1/2018

23.11.2017 | Review

T cell subsets: an integral component in pathogenesis of rheumatic heart disease

verfasst von: Devinder Toor, Neha Sharma

Erschienen in: Immunologic Research | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

Acute rheumatic fever (ARF) is a consequence of pharyngeal infection of group A streptococcal (GAS) infection. Carditis is the most common manifestation of ARF which occurs in 30–45% of the susceptible individuals. Overlooked ARF cases might further progress towards rheumatic heart disease (RHD) in susceptible individuals, which ultimately leads to permanent heart valve damage. Molecular mimicry between streptococcal antigens and human proteins is the most widely accepted theory to describe the pathogenesis of RHD. In the recent past, various subsets of T cells have been reported to play an imperative role in the pathogenesis of RHD. Alterations in various T cell subsets, viz. Th1, Th2, Th17, and Treg cells, and their signature cytokines influence the immune responses and are associated with pathogenesis of RHD. Association of other T cell subsets (Th3, Th9, Th22, and TFH) is not defined in context of RHD. Several investigations have confirmed the up-regulation of adhesion molecules and thus infiltration of T cells into the heart tissues. T cells secrete both Th type 1 and type 2 cytokines and these auto-reactive T cells play a key role in progression of heart valve damage. In this review, we are going to discuss about the role of T cell subsets and their corresponding cytokines in the pathogenesis of RHD.
Literatur
1.
2.
Zurück zum Zitat Carapetis JR. The stark reality of rheumatic heart disease. Eur Heart J. 2015:12–5. Carapetis JR. The stark reality of rheumatic heart disease. Eur Heart J. 2015:12–5.
3.
Zurück zum Zitat Dajani AS, Ayoub E, Bierman FZ, Bisno AL, Denny FW, Durack DT, et al. Guidelines for the diagnosis of rheumatic fever: Jones criteria, updated 1992: special writing group of the committee on rheumatic fever, endocarditis, and Kawasaki disease of the council on cardiovascular disease in the young, American Heart Association. Circulation. 1993;87(1):302. Dajani AS, Ayoub E, Bierman FZ, Bisno AL, Denny FW, Durack DT, et al. Guidelines for the diagnosis of rheumatic fever: Jones criteria, updated 1992: special writing group of the committee on rheumatic fever, endocarditis, and Kawasaki disease of the council on cardiovascular disease in the young, American Heart Association. Circulation. 1993;87(1):302.
4.
Zurück zum Zitat Gewitz MH, Baltimore RS, Tani LY, Sable CA, Shulman ST, Carapetis J, et al. Revision of the Jones criteria for the diagnosis of acute rheumatic fever in the era of Doppler echocardiography a scientific statement from the American Heart Association. Circulation. 2015:1–14. Gewitz MH, Baltimore RS, Tani LY, Sable CA, Shulman ST, Carapetis J, et al. Revision of the Jones criteria for the diagnosis of acute rheumatic fever in the era of Doppler echocardiography a scientific statement from the American Heart Association. Circulation. 2015:1–14.
5.
Zurück zum Zitat Beaton A, Carapetis J. The 2015 revision of the Jones criteria for the diagnosis of acute rheumatic fever: implications for practice in low-income and middle-income countries. Heart Asia. 2015;7(2):7–11.PubMedPubMedCentralCrossRef Beaton A, Carapetis J. The 2015 revision of the Jones criteria for the diagnosis of acute rheumatic fever: implications for practice in low-income and middle-income countries. Heart Asia. 2015;7(2):7–11.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Eroğlu AG. Update on diagnosis of acute rheumatic fever: 2015 Jones criteria. Türk Pediatr arşivi. 2016;51(1):1–7. Eroğlu AG. Update on diagnosis of acute rheumatic fever: 2015 Jones criteria. Türk Pediatr arşivi. 2016;51(1):1–7.
7.
Zurück zum Zitat Kumar D, Bhutia E, Kumar P, Shankar B, Juneja A, Chandelia S. Evaluation of American Heart Association 2015 revised Jones criteria versus existing guidelines. Heart Asia. 2016;8(1):30–5.PubMedPubMedCentralCrossRef Kumar D, Bhutia E, Kumar P, Shankar B, Juneja A, Chandelia S. Evaluation of American Heart Association 2015 revised Jones criteria versus existing guidelines. Heart Asia. 2016;8(1):30–5.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Marijon E, Mirabel M, Celermajer DS, Jouven X. Rheumatic heart disease. Lancet. 2012;379(9819):953–64.PubMedCrossRef Marijon E, Mirabel M, Celermajer DS, Jouven X. Rheumatic heart disease. Lancet. 2012;379(9819):953–64.PubMedCrossRef
9.
Zurück zum Zitat Remenyi B, Wilson N, Steer A, Ferreira B, Kado J, Kumar K, et al. World Heart Federation criteria for echocardiographic diagnosis of rheumatic heart disease—an evidence-based guideline. Nat Rev Cardiol Nature Publishing Group. 2012;9(5):297–309.CrossRef Remenyi B, Wilson N, Steer A, Ferreira B, Kado J, Kumar K, et al. World Heart Federation criteria for echocardiographic diagnosis of rheumatic heart disease—an evidence-based guideline. Nat Rev Cardiol Nature Publishing Group. 2012;9(5):297–309.CrossRef
10.
Zurück zum Zitat Carapetis JR. Rheumatic heart disease in developing countries. N Engl J Med. 2007;357(5):439–41.PubMedCrossRef Carapetis JR. Rheumatic heart disease in developing countries. N Engl J Med. 2007;357(5):439–41.PubMedCrossRef
11.
Zurück zum Zitat Zuhlke LJ, Steer AC. Estimates of the global burden of rheumatic heart disease. Glob Heart. 2013;8(3):189–95.PubMedCrossRef Zuhlke LJ, Steer AC. Estimates of the global burden of rheumatic heart disease. Glob Heart. 2013;8(3):189–95.PubMedCrossRef
12.
Zurück zum Zitat Guilherme L, Kalil J. Rheumatic fever: from sore throat to autoimmune heart lesions. Int Arch Allergy Immunol. 2004;134:56–64.PubMedCrossRef Guilherme L, Kalil J. Rheumatic fever: from sore throat to autoimmune heart lesions. Int Arch Allergy Immunol. 2004;134:56–64.PubMedCrossRef
13.
Zurück zum Zitat Kumar RK, Tandon R. Rheumatic fever & rheumatic heart disease: the last 50 years. Indian J Med Res. 2014:1–23. Kumar RK, Tandon R. Rheumatic fever & rheumatic heart disease: the last 50 years. Indian J Med Res. 2014:1–23.
14.
Zurück zum Zitat Guilherme L, Cury P, Demarchi LMF, Coelho V, Abel L, Lopez AP, et al. Rheumatic heart disease: proinflammatory cytokines play a role in the progression and maintenance of valvular lesions. Am J Pathol. 2004;165(5):1583–91.PubMedPubMedCentralCrossRef Guilherme L, Cury P, Demarchi LMF, Coelho V, Abel L, Lopez AP, et al. Rheumatic heart disease: proinflammatory cytokines play a role in the progression and maintenance of valvular lesions. Am J Pathol. 2004;165(5):1583–91.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Guilherme L, Ramasawmy R, Kalil J. Rheumatic fever and rheumatic heart disease: genetics and pathogenesis. Scand J Immunol. 2007;66(2–3):199–207.PubMedCrossRef Guilherme L, Ramasawmy R, Kalil J. Rheumatic fever and rheumatic heart disease: genetics and pathogenesis. Scand J Immunol. 2007;66(2–3):199–207.PubMedCrossRef
16.
Zurück zum Zitat Guilherme L, Köhler KF, Postol E, Kalil J. Genes, autoimmunity and pathogenesis of rheumatic heart disease. Ann Pediatr Cardiol. 2011;4(1):13–21.PubMedPubMedCentralCrossRef Guilherme L, Köhler KF, Postol E, Kalil J. Genes, autoimmunity and pathogenesis of rheumatic heart disease. Ann Pediatr Cardiol. 2011;4(1):13–21.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Bijjiga E, Martino AT. Interleukin 10 (IL-10) regulatory cytokine and its clinical consequences. J Clin Cell Immunol. 2011:1–6. Bijjiga E, Martino AT. Interleukin 10 (IL-10) regulatory cytokine and its clinical consequences. J Clin Cell Immunol. 2011:1–6.
18.
Zurück zum Zitat Ouyang W, Rutz S, Crellin N, Valdez P, Hymowitz S. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol. 2011;29:71–109.PubMedCrossRef Ouyang W, Rutz S, Crellin N, Valdez P, Hymowitz S. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol. 2011;29:71–109.PubMedCrossRef
19.
Zurück zum Zitat Okello E, Kakande B, Sebatta E, Kayima J, Kuteesa M, Mutatina B, et al. Socioeconomic and environmental risk factors among rheumatic heart disease patients in Uganda. PLoS One. 2012;7(8):3–8.CrossRef Okello E, Kakande B, Sebatta E, Kayima J, Kuteesa M, Mutatina B, et al. Socioeconomic and environmental risk factors among rheumatic heart disease patients in Uganda. PLoS One. 2012;7(8):3–8.CrossRef
20.
Zurück zum Zitat Dobson J, Steer AC, Colquhoun S, Kado J. Environmental factors and rheumatic heart disease in Fiji. Pediatr Cardiol. 2012;33(2):332–6.PubMedCrossRef Dobson J, Steer AC, Colquhoun S, Kado J. Environmental factors and rheumatic heart disease in Fiji. Pediatr Cardiol. 2012;33(2):332–6.PubMedCrossRef
21.
Zurück zum Zitat Riaz BK, Selim S, Karim N, Chowdhury KN, Chowdhury SH, Rahman R. Risk factors of rheumatic heart disease in Bangladesh: a case-control study. J Health Popul Nutr. 2013;31(1):70–7.PubMedPubMedCentralCrossRef Riaz BK, Selim S, Karim N, Chowdhury KN, Chowdhury SH, Rahman R. Risk factors of rheumatic heart disease in Bangladesh: a case-control study. J Health Popul Nutr. 2013;31(1):70–7.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Gray FG, Quinn RW, Quinn JP. A long-term survey of rheumatic and non-rheumatic families. Am J Med. 1952:1947–9. Gray FG, Quinn RW, Quinn JP. A long-term survey of rheumatic and non-rheumatic families. Am J Med. 1952:1947–9.
23.
Zurück zum Zitat Wilson MG, Schweitzer M. Pattern of hereditary susceptibility in rheumatic fever. Circulation. 1954:699–705. Wilson MG, Schweitzer M. Pattern of hereditary susceptibility in rheumatic fever. Circulation. 1954:699–705.
24.
Zurück zum Zitat Spanguolo M, Taranta A. Rheumatic fever in siblings—similarity of its clinical manifestations. N Engl J Med. 1968;278:183–8.CrossRef Spanguolo M, Taranta A. Rheumatic fever in siblings—similarity of its clinical manifestations. N Engl J Med. 1968;278:183–8.CrossRef
25.
Zurück zum Zitat Ayoub EM, Barrett DJ, Maclaren NK, Krischer JP. Association of class II human histocompatibility leukocyte antigens with rheumatic fever. J Clin Invest. 1986;77:2019–26.PubMedPubMedCentralCrossRef Ayoub EM, Barrett DJ, Maclaren NK, Krischer JP. Association of class II human histocompatibility leukocyte antigens with rheumatic fever. J Clin Invest. 1986;77:2019–26.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Maharaj B, Khedun SM, Hammond MG, van der Byl K. HLA-A, B, DR, and DQ antigens in Indian patients with severe chronic rheumatic heart disease. Jpn Heart J. 1997;38(5):663–8.PubMedCrossRef Maharaj B, Khedun SM, Hammond MG, van der Byl K. HLA-A, B, DR, and DQ antigens in Indian patients with severe chronic rheumatic heart disease. Jpn Heart J. 1997;38(5):663–8.PubMedCrossRef
27.
Zurück zum Zitat Guedez Y, Kotby A, El-demellawy M, Galal A, Thomson G, Zaher S, et al. HLA class II associations with rheumatic heart disease. Circulation. 1999;99:2784–90.PubMedCrossRef Guedez Y, Kotby A, El-demellawy M, Galal A, Thomson G, Zaher S, et al. HLA class II associations with rheumatic heart disease. Circulation. 1999;99:2784–90.PubMedCrossRef
28.
Zurück zum Zitat Visentainer JE, Pereira FC, Dalalio MM, Tsuneto LT, Donadio PR, Moliterno RA. Association of HLA-DR7 with rheumatic fever in the Brazilian population. J Rheumatol. 2000;27(6):1518–20.PubMed Visentainer JE, Pereira FC, Dalalio MM, Tsuneto LT, Donadio PR, Moliterno RA. Association of HLA-DR7 with rheumatic fever in the Brazilian population. J Rheumatol. 2000;27(6):1518–20.PubMed
29.
Zurück zum Zitat Stanevicha V, Eglite J, Sochnevs A, Gardovska D, Zavadska D, Shantere R. HLA class II associations with rheumatic heart disease among clinically homogeneous patients in children in Latvia. Arthritis Res Ther. 2003;5(6):R340–6.PubMedPubMedCentralCrossRef Stanevicha V, Eglite J, Sochnevs A, Gardovska D, Zavadska D, Shantere R. HLA class II associations with rheumatic heart disease among clinically homogeneous patients in children in Latvia. Arthritis Res Ther. 2003;5(6):R340–6.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Toor D, Leal K, Kumar R, Sharma YP, Chakraborti A. Association of HLA-DRB1*14 with rheumatic heart disease patients from Chandigarh. North India Biomarkers. 2012;17(2):160–5.PubMedCrossRef Toor D, Leal K, Kumar R, Sharma YP, Chakraborti A. Association of HLA-DRB1*14 with rheumatic heart disease patients from Chandigarh. North India Biomarkers. 2012;17(2):160–5.PubMedCrossRef
31.
Zurück zum Zitat Jin Z, Ji Z, Hu J. Mannose-binding lectin gene site mutations and the susceptibility of rheumatic heart disease. Zhonghua Yi Xue Za Zhi China. 2001;81(21):1284–6. Jin Z, Ji Z, Hu J. Mannose-binding lectin gene site mutations and the susceptibility of rheumatic heart disease. Zhonghua Yi Xue Za Zhi China. 2001;81(21):1284–6.
32.
Zurück zum Zitat Ramasawmy R, Spina GS, Fae KC, Pereira AC, Nisihara R, Reason IJM, et al. Association of mannose-binding lectin gene polymorphism but not of mannose-binding serine protease 2 with chronic severe aortic regurgitation of rheumatic etiology. Clin Vaccine Immunol. 2008;15(6):932–6.PubMedPubMedCentralCrossRef Ramasawmy R, Spina GS, Fae KC, Pereira AC, Nisihara R, Reason IJM, et al. Association of mannose-binding lectin gene polymorphism but not of mannose-binding serine protease 2 with chronic severe aortic regurgitation of rheumatic etiology. Clin Vaccine Immunol. 2008;15(6):932–6.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Saraswathy R, Abilash VG, Manivannan G, George A, Babu KT. Four novel mutations detected in the exon 1 of MBL2 gene associated with rheumatic heart disease in South Indian patients. Int J Genet Mol Biol. 2010;2:165–70. Saraswathy R, Abilash VG, Manivannan G, George A, Babu KT. Four novel mutations detected in the exon 1 of MBL2 gene associated with rheumatic heart disease in South Indian patients. Int J Genet Mol Biol. 2010;2:165–70.
34.
Zurück zum Zitat Messias-Reason IJ, Schafranski MD, Kremsner PG, Kun JFJ. Ficolin 2 ( FCN 2 ) functional polymorphisms and the risk of rheumatic fever and rheumatic heart disease. Clin Exp Immunol. 2009;157:395–9.PubMedPubMedCentralCrossRef Messias-Reason IJ, Schafranski MD, Kremsner PG, Kun JFJ. Ficolin 2 ( FCN 2 ) functional polymorphisms and the risk of rheumatic fever and rheumatic heart disease. Clin Exp Immunol. 2009;157:395–9.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Catarino SJ, Boldt AB, Beltrame MH, Nisihara RM, Schafranski MD, de Messias-Reason IJ. Association of MASP2 polymorphisms and protein levels with rheumatic fever and rheumatic heart disease. Hum Immunol [Internet]. 2014;75(12):1197–202.CrossRef Catarino SJ, Boldt AB, Beltrame MH, Nisihara RM, Schafranski MD, de Messias-Reason IJ. Association of MASP2 polymorphisms and protein levels with rheumatic fever and rheumatic heart disease. Hum Immunol [Internet]. 2014;75(12):1197–202.CrossRef
36.
Zurück zum Zitat Settin A, Abdel-Hady H, El-Baz R, Saber I. Gene polymorphisms of TNF-alpha(-308), IL-10(-1082), IL-6(-174), and IL-1Ra(VNTR) related to susceptibility and severity of rheumatic heart disease. Pediatr Cardiol. 2007;28(5):363–71.PubMedCrossRef Settin A, Abdel-Hady H, El-Baz R, Saber I. Gene polymorphisms of TNF-alpha(-308), IL-10(-1082), IL-6(-174), and IL-1Ra(VNTR) related to susceptibility and severity of rheumatic heart disease. Pediatr Cardiol. 2007;28(5):363–71.PubMedCrossRef
37.
Zurück zum Zitat Guilherme L, Kalil J. Rheumatic heart disease: molecules involved in valve tissue inflammation leading to the autoimmune process and anti-S. pyogenes vaccine. Front Immunol. 2013;4:352.PubMedPubMedCentral Guilherme L, Kalil J. Rheumatic heart disease: molecules involved in valve tissue inflammation leading to the autoimmune process and anti-S. pyogenes vaccine. Front Immunol. 2013;4:352.PubMedPubMedCentral
38.
Zurück zum Zitat Parks T, Mirabel MM, Kado J, Auckland K, Nowak J, Rautanen A, et al. Association between a common immunoglobulin heavy chain allele and rheumatic heart disease risk in Oceania. Nat Commun. 2017;8:14946.PubMedPubMedCentralCrossRef Parks T, Mirabel MM, Kado J, Auckland K, Nowak J, Rautanen A, et al. Association between a common immunoglobulin heavy chain allele and rheumatic heart disease risk in Oceania. Nat Commun. 2017;8:14946.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Gray L, Antoine, HAD, Tong, SYC, Mckinnon M, Bessarab D, Brown N, et al. Genome-wide analysis of genetic risk factors for rheumatic heart disease in Aboriginal Australians provides support for pathogenic molecular mimicry. J Infect Dis. 2017. Gray L, Antoine, HAD, Tong, SYC, Mckinnon M, Bessarab D, Brown N, et al. Genome-wide analysis of genetic risk factors for rheumatic heart disease in Aboriginal Australians provides support for pathogenic molecular mimicry. J Infect Dis. 2017.
41.
Zurück zum Zitat Bisno AL, Read SE, Zabriskie JB. The concept of rheumatogenic and non-rheumatogenic group A streptococci, Streptococcal diseases and the immune response. New YorkAcademic Press; 1980;789–803. Bisno AL, Read SE, Zabriskie JB. The concept of rheumatogenic and non-rheumatogenic group A streptococci, Streptococcal diseases and the immune response. New YorkAcademic Press; 1980;789–803.
42.
Zurück zum Zitat Shulman ST, Stollerman G, Beall B, Dale JB, Tanz RR. Temporal changes in streptococcal M protein types and the near-disappearance of acute rheumatic fever in the United States. Clin Infect Dis. 2006;42(4):441–7.PubMedCrossRef Shulman ST, Stollerman G, Beall B, Dale JB, Tanz RR. Temporal changes in streptococcal M protein types and the near-disappearance of acute rheumatic fever in the United States. Clin Infect Dis. 2006;42(4):441–7.PubMedCrossRef
43.
Zurück zum Zitat Krisher K, Cunningham MW. Myosin: a link between streptococci and heart. Science. 1985;227(4685):413–5.PubMedCrossRef Krisher K, Cunningham MW. Myosin: a link between streptococci and heart. Science. 1985;227(4685):413–5.PubMedCrossRef
44.
Zurück zum Zitat Faé KC, da Silva DD, Oshiro SE, Tanaka AC, Pomerantzeff PM, Douay C, et al. Mimicry in recognition of cardiac myosin peptides by heart-intralesional T cell clones from rheumatic heart disease. J Immunol. 2006;176(9):5662–70.PubMedCrossRef Faé KC, da Silva DD, Oshiro SE, Tanaka AC, Pomerantzeff PM, Douay C, et al. Mimicry in recognition of cardiac myosin peptides by heart-intralesional T cell clones from rheumatic heart disease. J Immunol. 2006;176(9):5662–70.PubMedCrossRef
45.
Zurück zum Zitat Kirvan CA, Swedo SE, Heuser JS, Cunningham MW. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nat Med. 2003;9(7):914–20.PubMedCrossRef Kirvan CA, Swedo SE, Heuser JS, Cunningham MW. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nat Med. 2003;9(7):914–20.PubMedCrossRef
46.
Zurück zum Zitat Kirvan CA, Cox CJ, Swedo SE, Cunningham MW. Tubulin is a neuronal target of autoantibodies in Sydenham’s chorea. J Immunol. 2007;178(11):7412–21.PubMedCrossRef Kirvan CA, Cox CJ, Swedo SE, Cunningham MW. Tubulin is a neuronal target of autoantibodies in Sydenham’s chorea. J Immunol. 2007;178(11):7412–21.PubMedCrossRef
47.
Zurück zum Zitat Cox CJ, Sharma M, Leckman JF, Zuccolo J, Zuccolo A, Kovoor A, et al. Brain human monoclonal autoantibody from sydenham chorea targets dopaminergic neurons in transgenic mice and signals dopamine D2 receptor: implications in human disease. J Immunol. 2013;191(11):5524–41.PubMedCrossRef Cox CJ, Sharma M, Leckman JF, Zuccolo J, Zuccolo A, Kovoor A, et al. Brain human monoclonal autoantibody from sydenham chorea targets dopaminergic neurons in transgenic mice and signals dopamine D2 receptor: implications in human disease. J Immunol. 2013;191(11):5524–41.PubMedCrossRef
48.
Zurück zum Zitat Kaplan MH. The concept of autoantibodies in rheumatic fever and in the postcommissurotomy state. Ann N Y Acad Sci. 1960;86:994–1. Kaplan MH. The concept of autoantibodies in rheumatic fever and in the postcommissurotomy state. Ann N Y Acad Sci. 1960;86:994–1.
49.
Zurück zum Zitat Kodama M, Matsumoto Y, Fujiwara M, Masani F, Izumi T, Shibata A. A novel experimental model of giant cell myocarditis induced in rats by immunization with cardiac myosin fraction. Clin Immunol Immunopathol. 1990;57(2):250–62.PubMedCrossRef Kodama M, Matsumoto Y, Fujiwara M, Masani F, Izumi T, Shibata A. A novel experimental model of giant cell myocarditis induced in rats by immunization with cardiac myosin fraction. Clin Immunol Immunopathol. 1990;57(2):250–62.PubMedCrossRef
50.
Zurück zum Zitat Quinn A, Kosanke S, Fischetti VA, Factor SM, Cunningham MW. Induction of autoimmune valvular heart disease by recombinant streptococcal m protein. Infect Immun. 2001;69(6):4072–8.PubMedPubMedCentralCrossRef Quinn A, Kosanke S, Fischetti VA, Factor SM, Cunningham MW. Induction of autoimmune valvular heart disease by recombinant streptococcal m protein. Infect Immun. 2001;69(6):4072–8.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Li Y, Heuser JS, Kosanke SD, Hemric M, Cunningham MW. Cryptic epitope identified in rat and human cardiac myosin S2 region induces myocarditis in the Lewis rat. J Immunol. 2004;172(5):3225–34.PubMedCrossRef Li Y, Heuser JS, Kosanke SD, Hemric M, Cunningham MW. Cryptic epitope identified in rat and human cardiac myosin S2 region induces myocarditis in the Lewis rat. J Immunol. 2004;172(5):3225–34.PubMedCrossRef
52.
Zurück zum Zitat Rush CM, Govan BL, Sikder S, Williams NL, Ketheesan N. Animal models to investigate the pathogenesis of rheumatic heart disease. Front Pediatr. 2014;2:116.PubMedPubMedCentralCrossRef Rush CM, Govan BL, Sikder S, Williams NL, Ketheesan N. Animal models to investigate the pathogenesis of rheumatic heart disease. Front Pediatr. 2014;2:116.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Galvin JE, Hemric ME, Ward K, Cunningham MW. Cytotoxic mAb from rheumatic carditis recognizes heart valves and laminin. J Clin Invest. 2000;106(2):217–24.PubMedPubMedCentralCrossRef Galvin JE, Hemric ME, Ward K, Cunningham MW. Cytotoxic mAb from rheumatic carditis recognizes heart valves and laminin. J Clin Invest. 2000;106(2):217–24.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Carapetis JR, Beaton A, Cunningham MW, Guilherme L, Karthikeyan G, Mayosi BM, et al. Acute rheumatic fever and rheumatic heart disease. Nat Rev Dis Prim. 2016;15084 Carapetis JR, Beaton A, Cunningham MW, Guilherme L, Karthikeyan G, Mayosi BM, et al. Acute rheumatic fever and rheumatic heart disease. Nat Rev Dis Prim. 2016;15084
55.
Zurück zum Zitat Faé KC, Oshiro SE, Toubert A, Charron D, Kalil J, Guilherme L. How an autoimmune reaction triggered by molecular mimicry between streptococcal M protein and cardiac tissue proteins leads to heart lesions in rheumatic heart disease. J Autoimmun. 2005;24(2):101–9.PubMedCrossRef Faé KC, Oshiro SE, Toubert A, Charron D, Kalil J, Guilherme L. How an autoimmune reaction triggered by molecular mimicry between streptococcal M protein and cardiac tissue proteins leads to heart lesions in rheumatic heart disease. J Autoimmun. 2005;24(2):101–9.PubMedCrossRef
56.
Zurück zum Zitat Toor D, Vohra H. Immune responsiveness during disease progression from acute rheumatic fever to chronic rheumatic heart disease. Microbes Infect. 2012;14(12):1111–7.PubMedCrossRef Toor D, Vohra H. Immune responsiveness during disease progression from acute rheumatic fever to chronic rheumatic heart disease. Microbes Infect. 2012;14(12):1111–7.PubMedCrossRef
57.
Zurück zum Zitat Itoh K, Hirohata S. The role of IL-10 in human B cell activation, proliferation, and differentiation. J Immunol. 1995;154(9):4341–50.PubMed Itoh K, Hirohata S. The role of IL-10 in human B cell activation, proliferation, and differentiation. J Immunol. 1995;154(9):4341–50.PubMed
58.
Zurück zum Zitat Sharma N, Toor D. Interleukin-10: role in increasing susceptibility and pathogenesis of rheumatic fever/rheumatic heart disease. Cytokine. 2016;90:169–76.PubMedCrossRef Sharma N, Toor D. Interleukin-10: role in increasing susceptibility and pathogenesis of rheumatic fever/rheumatic heart disease. Cytokine. 2016;90:169–76.PubMedCrossRef
59.
Zurück zum Zitat Roberts S, Kosanke S, Dunn ST, Jankelow D, Duran CMG, Cunningham MW. Pathogenic mechanisms in rheumatic carditis: focus on valvular endothelium. J Infect Dis. 2001;183(3):507–11.PubMedCrossRef Roberts S, Kosanke S, Dunn ST, Jankelow D, Duran CMG, Cunningham MW. Pathogenic mechanisms in rheumatic carditis: focus on valvular endothelium. J Infect Dis. 2001;183(3):507–11.PubMedCrossRef
60.
Zurück zum Zitat Tandon R, Sharma M, Chandrashekhar Y, Kotb M, Yacoub MH, Narula J. Revisiting the pathogenesis of rheumatic fever and carditis. Nat Rev Cardiol. 2013;10(3):171–7.PubMedCrossRef Tandon R, Sharma M, Chandrashekhar Y, Kotb M, Yacoub MH, Narula J. Revisiting the pathogenesis of rheumatic fever and carditis. Nat Rev Cardiol. 2013;10(3):171–7.PubMedCrossRef
61.
Zurück zum Zitat Cunningham MW. Rheumatic fever, autoimmunity and molecular mimicry: the streptococcal connection. Int Rev Immunol. 2014;33:314–29. Cunningham MW. Rheumatic fever, autoimmunity and molecular mimicry: the streptococcal connection. Int Rev Immunol. 2014;33:314–29.
62.
Zurück zum Zitat Root-bernstein R. Rethinking molecular mimicry in rheumatic heart disease and autoimmune myocarditis: laminin, collagen IV, CAR, and B1AR as initial targets of disease. Front Pediatr. 2014;2(August):1–17. Root-bernstein R. Rethinking molecular mimicry in rheumatic heart disease and autoimmune myocarditis: laminin, collagen IV, CAR, and B1AR as initial targets of disease. Front Pediatr. 2014;2(August):1–17.
63.
Zurück zum Zitat Dinkla K, Rohde M, Jansen WTM, Kaplan EL, Chhatwal GS, Talay SR. Rheumatic fever-associated Streptococcus pyogenes isolates aggregate collagen. J Clin Invest. 2003 Jun;111(12):1905–12.PubMedPubMedCentralCrossRef Dinkla K, Rohde M, Jansen WTM, Kaplan EL, Chhatwal GS, Talay SR. Rheumatic fever-associated Streptococcus pyogenes isolates aggregate collagen. J Clin Invest. 2003 Jun;111(12):1905–12.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Dinkla K, Nitsche-Schmitz DP, Barroso V, Reissmann S, Johansson HM, Frick I-M, et al. Identification of a streptococcal octapeptide motif involved in acute rheumatic fever. J Biol Chem. 2007;282(26):18686–93.PubMedCrossRef Dinkla K, Nitsche-Schmitz DP, Barroso V, Reissmann S, Johansson HM, Frick I-M, et al. Identification of a streptococcal octapeptide motif involved in acute rheumatic fever. J Biol Chem. 2007;282(26):18686–93.PubMedCrossRef
65.
Zurück zum Zitat Dinkla K, Talay SR, Morgelin M, Graham RMA, Rohde M, Nitsche-Schmitz DP, et al. Crucial role of the CB3-region of collagen IV in PARF-induced acute rheumatic fever. PLoS One. 2009;4(3):e4666.PubMedPubMedCentralCrossRef Dinkla K, Talay SR, Morgelin M, Graham RMA, Rohde M, Nitsche-Schmitz DP, et al. Crucial role of the CB3-region of collagen IV in PARF-induced acute rheumatic fever. PLoS One. 2009;4(3):e4666.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Chhatwal GS. Host-pathogen interactions in streptococcal diseases [Internet]. Springer Berlin Heidelberg; 2014. (Current Topics in Microbiology and Immunology). Chhatwal GS. Host-pathogen interactions in streptococcal diseases [Internet]. Springer Berlin Heidelberg; 2014. (Current Topics in Microbiology and Immunology).
67.
Zurück zum Zitat De Oliveira Martins C, Demarchi L, Ferreira FM, Pomerantzeff PMA, Brandao C, Sampaio RO, et al. Rheumatic heart disease and myxomatous degeneration: differences and similarities of valve damage resulting from autoimmune reactions and matrix disorganization. PLoS One. 2017;12(1):1–12. De Oliveira Martins C, Demarchi L, Ferreira FM, Pomerantzeff PMA, Brandao C, Sampaio RO, et al. Rheumatic heart disease and myxomatous degeneration: differences and similarities of valve damage resulting from autoimmune reactions and matrix disorganization. PLoS One. 2017;12(1):1–12.
68.
Zurück zum Zitat Guilherme L, Köhler KF, Kalil J. Rheumatic heart disease. Mediation by complex immune events. Adv Clin Chem. 2011;53(C):31–50.PubMedCrossRef Guilherme L, Köhler KF, Kalil J. Rheumatic heart disease. Mediation by complex immune events. Adv Clin Chem. 2011;53(C):31–50.PubMedCrossRef
69.
Zurück zum Zitat Sercarz EE, Lehmann PV, Ametani A, Benichou G, Miller A, Moudgil K. Dominance and crypticity of T cell antigenic determinants. Annu Rev Immunol. 1993;11:729–66.PubMedCrossRef Sercarz EE, Lehmann PV, Ametani A, Benichou G, Miller A, Moudgil K. Dominance and crypticity of T cell antigenic determinants. Annu Rev Immunol. 1993;11:729–66.PubMedCrossRef
70.
Zurück zum Zitat Lehmann P V, Forsthuber T, Miller A, Sercarz EE. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen 1992;358(6382):155–157. Lehmann P V, Forsthuber T, Miller A, Sercarz EE. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen 1992;358(6382):155–157.
71.
Zurück zum Zitat Ellis NMJ, Li Y, Hildebrand W, Fischetti VA, Cunningham MW. T cell mimicry and epitope specificity of cross-reactive T cell clones from rheumatic heart disease. J Immunol. 2005;175(8):5448–56.PubMedCrossRef Ellis NMJ, Li Y, Hildebrand W, Fischetti VA, Cunningham MW. T cell mimicry and epitope specificity of cross-reactive T cell clones from rheumatic heart disease. J Immunol. 2005;175(8):5448–56.PubMedCrossRef
72.
Zurück zum Zitat Guilherme L, Kalil J. Role of autoimmunity in rheumatic fever. Fut Rheumatol Future Medicine. 2008;3(2):161–7.CrossRef Guilherme L, Kalil J. Role of autoimmunity in rheumatic fever. Fut Rheumatol Future Medicine. 2008;3(2):161–7.CrossRef
73.
Zurück zum Zitat Guilherme L, Kalil J. Rheumatic fever and rheumatic heart disease: cellular mechanisms leading autoimmune reactivity and disease. J Clin Immunol. 2009;30(1):17–23.PubMedCrossRef Guilherme L, Kalil J. Rheumatic fever and rheumatic heart disease: cellular mechanisms leading autoimmune reactivity and disease. J Clin Immunol. 2009;30(1):17–23.PubMedCrossRef
74.
Zurück zum Zitat Guilherme L, Dulphy N, Douay C, Coelho V, Cunha-Neto E, Oshiro SE, et al. Molecular evidence for antigen-driven immune responses in cardiac lesions of rheumatic heart disease patients. Int Immunol. 2000;12(7):1063–74.PubMedCrossRef Guilherme L, Dulphy N, Douay C, Coelho V, Cunha-Neto E, Oshiro SE, et al. Molecular evidence for antigen-driven immune responses in cardiac lesions of rheumatic heart disease patients. Int Immunol. 2000;12(7):1063–74.PubMedCrossRef
75.
Zurück zum Zitat Cunningham MW. Autoimmunity and molecular mimicry in the pathogenesis of post-streptococcal heart disease. Front Biosci. 2003;8:s533–43.PubMedCrossRef Cunningham MW. Autoimmunity and molecular mimicry in the pathogenesis of post-streptococcal heart disease. Front Biosci. 2003;8:s533–43.PubMedCrossRef
76.
Zurück zum Zitat Guilherme L, Kalil J, Cunningham M. Molecular mimicry in the autoimmune pathogenesis of rheumatic heart disease. Autoimmunity. 2006;39(1):31–9. Guilherme L, Kalil J, Cunningham M. Molecular mimicry in the autoimmune pathogenesis of rheumatic heart disease. Autoimmunity. 2006;39(1):31–9.
77.
Zurück zum Zitat Martin WJ, Steer AC, Smeesters PR, Keeble J, Inouye M, Carapetis J, et al. Post-infectious group A streptococcal autoimmune syndromes and the heart. Autoimmun Rev. 2015;14(8):710–25.PubMedCrossRef Martin WJ, Steer AC, Smeesters PR, Keeble J, Inouye M, Carapetis J, et al. Post-infectious group A streptococcal autoimmune syndromes and the heart. Autoimmun Rev. 2015;14(8):710–25.PubMedCrossRef
78.
Zurück zum Zitat Wekerle H, Kojima K, Lannes-Vieira J, Lassmann H, Linington C. Animal models. Ann Neurol. 1994;36:S47–53.PubMedCrossRef Wekerle H, Kojima K, Lannes-Vieira J, Lassmann H, Linington C. Animal models. Ann Neurol. 1994;36:S47–53.PubMedCrossRef
79.
Zurück zum Zitat Brimberg L, Benhar I, Mascaro-Blanco A, Alvarez K, Lotan D, Winter C, et al. Behavioral, pharmacological, and immunological abnormalities after streptococcal exposure: a novel rat model of Sydenham chorea and related neuropsychiatric disorders. Neuropsychopharmacology. 2012;37(9):2076–87.PubMedPubMedCentralCrossRef Brimberg L, Benhar I, Mascaro-Blanco A, Alvarez K, Lotan D, Winter C, et al. Behavioral, pharmacological, and immunological abnormalities after streptococcal exposure: a novel rat model of Sydenham chorea and related neuropsychiatric disorders. Neuropsychopharmacology. 2012;37(9):2076–87.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Kaplan MH. Rheumatic fever, rheumatic heart disease, and the streptococcal connection: the role of streptococcal antigens cross-reactive with heart tissue. Rev Infect Dis. 1979;1(6):986–8.CrossRef Kaplan MH. Rheumatic fever, rheumatic heart disease, and the streptococcal connection: the role of streptococcal antigens cross-reactive with heart tissue. Rev Infect Dis. 1979;1(6):986–8.CrossRef
81.
Zurück zum Zitat Zabriskie JB. Rheumatic fever: a streptococcal-induced autoimmune disease? Pediatr Ann. 1982;11(4):383–96.PubMedCrossRef Zabriskie JB. Rheumatic fever: a streptococcal-induced autoimmune disease? Pediatr Ann. 1982;11(4):383–96.PubMedCrossRef
82.
Zurück zum Zitat Senitzer D, Freimer EH. Autoimmune mechanisms in the pathogenesis of rheumatic fever. Rev Infect Dis. 1984;6 Senitzer D, Freimer EH. Autoimmune mechanisms in the pathogenesis of rheumatic fever. Rev Infect Dis. 1984;6
83.
Zurück zum Zitat Stollerman GH. Rheumatogenic streptococci and autoimmunity. Clin Immunol Immunopathol. 1991;61(2 Pt 1):131–42.PubMedCrossRef Stollerman GH. Rheumatogenic streptococci and autoimmunity. Clin Immunol Immunopathol. 1991;61(2 Pt 1):131–42.PubMedCrossRef
84.
Zurück zum Zitat Williams RC, Prakash K, Van de Rijn I, Zabriskie JB. Changes in T-lymphocyte subsets during acute rheumatic fever. J Clin Immunol. 1982;2(3):166–72.PubMedCrossRef Williams RC, Prakash K, Van de Rijn I, Zabriskie JB. Changes in T-lymphocyte subsets during acute rheumatic fever. J Clin Immunol. 1982;2(3):166–72.PubMedCrossRef
85.
Zurück zum Zitat Raizada V, Williams RC, Chopra P, Gopinath N, Prakash K, Sharma KB, et al. Tissue distribution of lymphocytes in rheumatic heart valves as defined by monoclonal anti-T cell antibodies. Am J Med. 1983;74(1):90–6.PubMedCrossRef Raizada V, Williams RC, Chopra P, Gopinath N, Prakash K, Sharma KB, et al. Tissue distribution of lymphocytes in rheumatic heart valves as defined by monoclonal anti-T cell antibodies. Am J Med. 1983;74(1):90–6.PubMedCrossRef
86.
Zurück zum Zitat Kemeny E, Grieve T, Marcus R, Sareli P, Zabriskie JB. Identification of mononuclear cells and T cell subsets in rheumatic valvulitis. Clin Immunol Immunopathol. 1989;52(2):225–37.PubMedCrossRef Kemeny E, Grieve T, Marcus R, Sareli P, Zabriskie JB. Identification of mononuclear cells and T cell subsets in rheumatic valvulitis. Clin Immunol Immunopathol. 1989;52(2):225–37.PubMedCrossRef
87.
Zurück zum Zitat Reddy KS, Narula J, Bhatia R, Shailendri K, Koicha M, Taneja V, et al. Immunologic and immunogenetic studies in rheumatic fever and rheumatic heart disease. Indian J Pediatr. 1990;57(5):693–700.PubMedCrossRef Reddy KS, Narula J, Bhatia R, Shailendri K, Koicha M, Taneja V, et al. Immunologic and immunogenetic studies in rheumatic fever and rheumatic heart disease. Indian J Pediatr. 1990;57(5):693–700.PubMedCrossRef
88.
Zurück zum Zitat Morris K, Mohan C, Wahi PL, Anand IS, Ganguly NK. Increase in activated T cells and reduction in suppressor/cytotoxic T cells in acute rheumatic fever and active rheumatic heart disease: a longitudinal study. J Infect Dis. 1993;167(4):979–83.PubMedCrossRef Morris K, Mohan C, Wahi PL, Anand IS, Ganguly NK. Increase in activated T cells and reduction in suppressor/cytotoxic T cells in acute rheumatic fever and active rheumatic heart disease: a longitudinal study. J Infect Dis. 1993;167(4):979–83.PubMedCrossRef
89.
Zurück zum Zitat Guilherme L, Cunha-Neto E, Coelho V, Snitcowsky R, Pomerantzeff PMA, Assis RV, et al. Human heart–infiltrating T-cell clones from rheumatic heart disease patients recognize both streptococcal and cardiac proteins. Circulation. 1995;92:415–20.PubMedCrossRef Guilherme L, Cunha-Neto E, Coelho V, Snitcowsky R, Pomerantzeff PMA, Assis RV, et al. Human heart–infiltrating T-cell clones from rheumatic heart disease patients recognize both streptococcal and cardiac proteins. Circulation. 1995;92:415–20.PubMedCrossRef
90.
Zurück zum Zitat Bhatnagar A, Grover A, Ganguly NK. Superantigen-induced T cell responses in acute rheumatic fever and chronic: rheumatic heart disease patients. Clin Exp Immunol. 1999;116(1):100–6.PubMedPubMedCentralCrossRef Bhatnagar A, Grover A, Ganguly NK. Superantigen-induced T cell responses in acute rheumatic fever and chronic: rheumatic heart disease patients. Clin Exp Immunol. 1999;116(1):100–6.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Kirvan CA, Galvin JE, Hilt S, Kosanke S, Cunningham MW. Identification of streptococcal M-protein cardiopathogenic epitopes in experimental autoimmune valvulitis. J Cardiovasc Transl Res. 2014;7(2):172–81.PubMedCrossRef Kirvan CA, Galvin JE, Hilt S, Kosanke S, Cunningham MW. Identification of streptococcal M-protein cardiopathogenic epitopes in experimental autoimmune valvulitis. J Cardiovasc Transl Res. 2014;7(2):172–81.PubMedCrossRef
92.
Zurück zum Zitat Gorton D, Sikder S, Williams NL, Chilton L, Rush CM, Govan BL, et al. Repeat exposure to group A streptococcal M protein exacerbates cardiac damage in a rat model of rheumatic heart disease. Autoimmunity. 2016;49(8):563–70.PubMedPubMedCentralCrossRef Gorton D, Sikder S, Williams NL, Chilton L, Rush CM, Govan BL, et al. Repeat exposure to group A streptococcal M protein exacerbates cardiac damage in a rat model of rheumatic heart disease. Autoimmunity. 2016;49(8):563–70.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Miller LC, Gray ED, Mansour M, Abdin ZH, Kamel R, Zaher S, et al. Cytokines and immunoglobulin in rheumatic heart disease: production by blood and tonsillar mononuclear cells. J Rheumatol. 1989;16(11):1436–42.PubMed Miller LC, Gray ED, Mansour M, Abdin ZH, Kamel R, Zaher S, et al. Cytokines and immunoglobulin in rheumatic heart disease: production by blood and tonsillar mononuclear cells. J Rheumatol. 1989;16(11):1436–42.PubMed
95.
Zurück zum Zitat Lane JR, Neumann DA, Lafond-walker A, Herskowitz A, Rose NR. Interleukin 1 or tumor necrosis factor can promote Coxsackie B3-induced myocarditis in resistant B10.A mice. J Exp Med. 1992;175:1123–9.PubMedCrossRef Lane JR, Neumann DA, Lafond-walker A, Herskowitz A, Rose NR. Interleukin 1 or tumor necrosis factor can promote Coxsackie B3-induced myocarditis in resistant B10.A mice. J Exp Med. 1992;175:1123–9.PubMedCrossRef
96.
Zurück zum Zitat Yeǧin O, Coşkun M, Ertuǧ H. Cytokines in acute rheumatic fever. Eur J Pediatr. 1997;156(1):25–9.PubMedCrossRef Yeǧin O, Coşkun M, Ertuǧ H. Cytokines in acute rheumatic fever. Eur J Pediatr. 1997;156(1):25–9.PubMedCrossRef
97.
Zurück zum Zitat Fraser WJ, Haffejee Z, Jankelow D, Wadee A, Cooper K. Rheumatic Aschoff nodules revisited. II: cytokine expression corroborates recently proposed sequential stages. Histopathology. 1997;31(5):460–4.PubMedCrossRef Fraser WJ, Haffejee Z, Jankelow D, Wadee A, Cooper K. Rheumatic Aschoff nodules revisited. II: cytokine expression corroborates recently proposed sequential stages. Histopathology. 1997;31(5):460–4.PubMedCrossRef
98.
Zurück zum Zitat Hafez M, EL-Morsy Z, EL-Shennawy F, Hawas S, Sheishaa A, Abo-EL-Kheir M, et al. Susceptibility to over production of cytokines in acute rheumatic carditis and their role in the pathogenesis. J Med Sci. 2002;2(2):65–73.CrossRef Hafez M, EL-Morsy Z, EL-Shennawy F, Hawas S, Sheishaa A, Abo-EL-Kheir M, et al. Susceptibility to over production of cytokines in acute rheumatic carditis and their role in the pathogenesis. J Med Sci. 2002;2(2):65–73.CrossRef
99.
Zurück zum Zitat Mills KHG, Dunne A. Immune modulation: IL-1, master mediator or initiator of inflammation. Nat Med. 2009;15(12):1363–4.PubMedCrossRef Mills KHG, Dunne A. Immune modulation: IL-1, master mediator or initiator of inflammation. Nat Med. 2009;15(12):1363–4.PubMedCrossRef
101.
Zurück zum Zitat Schiff MH. Role of interleukin 1 and interleukin 1 receptor antagonist in the mediation of rheumatoid arthritis. Ann Rheum Dis [Internet]. 2000;59:i103–8.CrossRef Schiff MH. Role of interleukin 1 and interleukin 1 receptor antagonist in the mediation of rheumatoid arthritis. Ann Rheum Dis [Internet]. 2000;59:i103–8.CrossRef
102.
Zurück zum Zitat Azevedo PM, Bauer R, Vde Caparbo F, Silva CAA, Bonfa E, Pereira RMR. Interleukin-1 receptor antagonist gene (IL1RN) polymorphism possibly associated to severity of rheumatic carditis in a Brazilian cohort. Cytokine. 2010;49(1):109–13.PubMedCrossRef Azevedo PM, Bauer R, Vde Caparbo F, Silva CAA, Bonfa E, Pereira RMR. Interleukin-1 receptor antagonist gene (IL1RN) polymorphism possibly associated to severity of rheumatic carditis in a Brazilian cohort. Cytokine. 2010;49(1):109–13.PubMedCrossRef
103.
Zurück zum Zitat Chou H-T, Tsai C-H, Chen W-C, Tsai F-J. Lack of association of genetic polymorphisms in the interleukin-1beta, interleukin-1 receptor antagonist, interleukin-4, and interleukin-10 genes with risk of rheumatic heart disease in Taiwan Chinese. Int Heart J. 2005;46(3):397–406.PubMedCrossRef Chou H-T, Tsai C-H, Chen W-C, Tsai F-J. Lack of association of genetic polymorphisms in the interleukin-1beta, interleukin-1 receptor antagonist, interleukin-4, and interleukin-10 genes with risk of rheumatic heart disease in Taiwan Chinese. Int Heart J. 2005;46(3):397–406.PubMedCrossRef
104.
Zurück zum Zitat Zheng L, Sharma R, Gaskin F, Fu SM, Ju S-T. A novel role of IL-2 in organ-specific autoimmune inflammation beyond regulatory T cell checkpoint: both IL-2 knockout and Fas mutation prolong lifespan of Scurfy mice but by different mechanisms. J Immunol. 2007;179(12):8035–41.PubMedPubMedCentralCrossRef Zheng L, Sharma R, Gaskin F, Fu SM, Ju S-T. A novel role of IL-2 in organ-specific autoimmune inflammation beyond regulatory T cell checkpoint: both IL-2 knockout and Fas mutation prolong lifespan of Scurfy mice but by different mechanisms. J Immunol. 2007;179(12):8035–41.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Sharma R, Sharma PR, Kim Y, Leitinger N, Lee JK, Fu SM, et al. IL-2–controlled expression of multiple T cell trafficking genes and Th2 cytokines in the regulatory T cell-deficient scurfy mice: implication to multiorgan inflammation and control of skin and lung inflammation. J Immunol. 2011;186(2):1268–78.PubMedCrossRef Sharma R, Sharma PR, Kim Y, Leitinger N, Lee JK, Fu SM, et al. IL-2–controlled expression of multiple T cell trafficking genes and Th2 cytokines in the regulatory T cell-deficient scurfy mice: implication to multiorgan inflammation and control of skin and lung inflammation. J Immunol. 2011;186(2):1268–78.PubMedCrossRef
107.
Zurück zum Zitat Moon BI, Kim TH, Seoh JY. Functional modulation of regulatory T cells by IL-2. PLoS One. 2015;10(11):1–13.CrossRef Moon BI, Kim TH, Seoh JY. Functional modulation of regulatory T cells by IL-2. PLoS One. 2015;10(11):1–13.CrossRef
108.
Zurück zum Zitat Zedan MM, El-Shennawy FA, Abou-Bakr HM, Al-Basousy AM. Interleukin-2 in relation to T cell subpopulations in rheumatic heart disease. Arch Dis Child. 1992;67(11):1373–5.PubMedPubMedCentralCrossRef Zedan MM, El-Shennawy FA, Abou-Bakr HM, Al-Basousy AM. Interleukin-2 in relation to T cell subpopulations in rheumatic heart disease. Arch Dis Child. 1992;67(11):1373–5.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Narin N, Kutukculer N, Ozyurek R, Bakiler AR, Parlar A, Arcasoy M. Lymphocyte subsets and plasma IL-1 alpha, IL-2, and TNF-alpha concentrations in acute rheumatic fever and chronic rheumatic heart disease. Clin Immunol Immunopathol. 1995;77(2):172–6.PubMedCrossRef Narin N, Kutukculer N, Ozyurek R, Bakiler AR, Parlar A, Arcasoy M. Lymphocyte subsets and plasma IL-1 alpha, IL-2, and TNF-alpha concentrations in acute rheumatic fever and chronic rheumatic heart disease. Clin Immunol Immunopathol. 1995;77(2):172–6.PubMedCrossRef
110.
Zurück zum Zitat Setoguchi R, Hori S, Takahashi T, Sakaguchi S. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med. 2005;201(5):723–35.PubMedPubMedCentralCrossRef Setoguchi R, Hori S, Takahashi T, Sakaguchi S. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med. 2005;201(5):723–35.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Zorn E, Nelson EA, Mohseni M, Porcheray F, Kim H, Litsa D, et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood. 2006;108(5):1571–9.PubMedPubMedCentralCrossRef Zorn E, Nelson EA, Mohseni M, Porcheray F, Kim H, Litsa D, et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood. 2006;108(5):1571–9.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA. IL-2 is essential for TGF-beta to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J Immunol. 2007;178(4):2018–27.PubMedCrossRef Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA. IL-2 is essential for TGF-beta to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J Immunol. 2007;178(4):2018–27.PubMedCrossRef
113.
Zurück zum Zitat Mukhopadhyay S, Varma S, Gade S, Yusuf J, Trehan V, Tyagi S. Regulatory T-cell deficiency in rheumatic heart disease: a preliminary observational study. J Heart Valve Dis. 2013;22(1):118–25.PubMed Mukhopadhyay S, Varma S, Gade S, Yusuf J, Trehan V, Tyagi S. Regulatory T-cell deficiency in rheumatic heart disease: a preliminary observational study. J Heart Valve Dis. 2013;22(1):118–25.PubMed
114.
Zurück zum Zitat Mukhopadhyay S, Varma S, Mohan Kumar HN, Yusaf J, Goyal M, Mehta V, et al. Circulating level of regulatory T cells in rheumatic heart disease: an observational study. Indian Heart J. 2016;68(3):342–8.PubMedPubMedCentralCrossRef Mukhopadhyay S, Varma S, Mohan Kumar HN, Yusaf J, Goyal M, Mehta V, et al. Circulating level of regulatory T cells in rheumatic heart disease: an observational study. Indian Heart J. 2016;68(3):342–8.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Mohamed AA, Rashed LA, Shaker SM, Ammar RI. Association of tumor necrosis factor-alpha polymorphisms with susceptibility and clinical outcomes of rheumatic heart disease. Saudi Med J. 2010;31(6):644–9.PubMed Mohamed AA, Rashed LA, Shaker SM, Ammar RI. Association of tumor necrosis factor-alpha polymorphisms with susceptibility and clinical outcomes of rheumatic heart disease. Saudi Med J. 2010;31(6):644–9.PubMed
116.
Zurück zum Zitat Sedgwick JD, Riminton DS, Cyster JG, Korner H. Tumor necrosis factor: a master-regulator of leukocyte movement. Immunol Today. 2000;21(3):110–3.PubMedCrossRef Sedgwick JD, Riminton DS, Cyster JG, Korner H. Tumor necrosis factor: a master-regulator of leukocyte movement. Immunol Today. 2000;21(3):110–3.PubMedCrossRef
117.
Zurück zum Zitat Campbell IL, Oxbrow L, Koulmanda M, Harrison LC. IFN-gamma induces islet cell MHC antigens and enhances autoimmune, streptozotocin-induced diabetes in the mouse. J Immunol. 1988;140(4):1111–6.PubMed Campbell IL, Oxbrow L, Koulmanda M, Harrison LC. IFN-gamma induces islet cell MHC antigens and enhances autoimmune, streptozotocin-induced diabetes in the mouse. J Immunol. 1988;140(4):1111–6.PubMed
118.
Zurück zum Zitat Benzabya W. Interleukin 8 and tumor necrosis factor- α level in acute rheumatic fever and chronic rheumatic heart disease. Libyan J Med Res. 2014;8(1):4–7. Benzabya W. Interleukin 8 and tumor necrosis factor- α level in acute rheumatic fever and chronic rheumatic heart disease. Libyan J Med Res. 2014;8(1):4–7.
119.
Zurück zum Zitat Arya DK, Sharma A, Mehta G, Dua M, Johri AK. Molecular epidemiology and virulence characteristics of prevalent group A streptococci recovered from patients in northern India. J Infect Dev Ctries. 2014;8(3):271–81.PubMedCrossRef Arya DK, Sharma A, Mehta G, Dua M, Johri AK. Molecular epidemiology and virulence characteristics of prevalent group A streptococci recovered from patients in northern India. J Infect Dev Ctries. 2014;8(3):271–81.PubMedCrossRef
120.
Zurück zum Zitat Ishihara K, Hirano T. IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev. 2002;13(4–5):357–68.PubMedCrossRef Ishihara K, Hirano T. IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev. 2002;13(4–5):357–68.PubMedCrossRef
121.
122.
123.
Zurück zum Zitat Md Yusof MY, Emery P. Targeting interleukin-6 in rheumatoid arthritis. Drugs. 2013;73(4):341–56.PubMedCrossRef Md Yusof MY, Emery P. Targeting interleukin-6 in rheumatoid arthritis. Drugs. 2013;73(4):341–56.PubMedCrossRef
124.
Zurück zum Zitat Dienz O, Eaton SM, Bond JP, Neveu W, Moquin D, Noubade R, et al. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J Exp Med. 2009;206(1):69–78.PubMedPubMedCentralCrossRef Dienz O, Eaton SM, Bond JP, Neveu W, Moquin D, Noubade R, et al. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J Exp Med. 2009;206(1):69–78.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Azevedo PM, Merriman TR, Topless RK, Wilson NJ, Crengle S, Lennon DR. Association study involving polymorphisms in IL-6, IL-1RA, and CTLA4 genes and rheumatic heart disease in New Zealand population of Maori and Pacific ancestry. Cytokine. 2016;85:201–6.PubMedCrossRef Azevedo PM, Merriman TR, Topless RK, Wilson NJ, Crengle S, Lennon DR. Association study involving polymorphisms in IL-6, IL-1RA, and CTLA4 genes and rheumatic heart disease in New Zealand population of Maori and Pacific ancestry. Cytokine. 2016;85:201–6.PubMedCrossRef
126.
Zurück zum Zitat Endo H, Akahoshi T, Takagishi K, Kashiwazaki S, Matsushima K. Elevation of interleukin-8 (IL-8) levels in joint fluids of patients with rheumatoid arthritis and the induction by IL-8 of leukocyte infiltration and synovitis in rabbit joints. Lymphokine Cytokine Res. 1991;10(4):245–52.PubMed Endo H, Akahoshi T, Takagishi K, Kashiwazaki S, Matsushima K. Elevation of interleukin-8 (IL-8) levels in joint fluids of patients with rheumatoid arthritis and the induction by IL-8 of leukocyte infiltration and synovitis in rabbit joints. Lymphokine Cytokine Res. 1991;10(4):245–52.PubMed
127.
Zurück zum Zitat Berger A. Th1 and Th2 responses: what are they? BMJ. 2000;321(7258):424. Berger A. Th1 and Th2 responses: what are they? BMJ. 2000;321(7258):424.
128.
Zurück zum Zitat Kouro T, Takatsu K. IL-5- and eosinophil-mediated inflammation: from discovery to therapy. Int Immunol. 2009;21(12):1303.PubMedCrossRef Kouro T, Takatsu K. IL-5- and eosinophil-mediated inflammation: from discovery to therapy. Int Immunol. 2009;21(12):1303.PubMedCrossRef
129.
Zurück zum Zitat Leão SC, Lima MR, Nascimento HM, Octacilio-Silva S, TM R. IL-10 and ET-1 as biomarkers of rheumatic valve disease. Rev Bras Cir Cardiovasc. 2014;29(1):25–30.PubMedPubMedCentralCrossRef Leão SC, Lima MR, Nascimento HM, Octacilio-Silva S, TM R. IL-10 and ET-1 as biomarkers of rheumatic valve disease. Rev Bras Cir Cardiovasc. 2014;29(1):25–30.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Koppelman B, Neefjes JJ, De Vries JE. Interleukin-10 down-regulates MHC class II αβ peptide complexes at the plasma membrane of monocytes by affecting arrival and recycling. Immunity. 1997;7:861–71.PubMedCrossRef Koppelman B, Neefjes JJ, De Vries JE. Interleukin-10 down-regulates MHC class II αβ peptide complexes at the plasma membrane of monocytes by affecting arrival and recycling. Immunity. 1997;7:861–71.PubMedCrossRef
132.
Zurück zum Zitat Llorente BL, Zou W, Levy Y, Richaud-patin Y, Wijdenes J, Alcocer-varela IIJ, et al. Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic luppus erythematosus. J Exp Med. 1995;181:839–44.PubMedCrossRef Llorente BL, Zou W, Levy Y, Richaud-patin Y, Wijdenes J, Alcocer-varela IIJ, et al. Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic luppus erythematosus. J Exp Med. 1995;181:839–44.PubMedCrossRef
133.
Zurück zum Zitat Ravirajan CT, Wang Y, Matis LA, Papadaki L, Griffiths MH, Latchman DS, et al. Effect of neutralizing antibodies to IL-10 and C5 on the renal damage caused by a pathogenic human anti-dsDNA antibody. Rheumatology. 2004;43(4):442–7.PubMedCrossRef Ravirajan CT, Wang Y, Matis LA, Papadaki L, Griffiths MH, Latchman DS, et al. Effect of neutralizing antibodies to IL-10 and C5 on the renal damage caused by a pathogenic human anti-dsDNA antibody. Rheumatology. 2004;43(4):442–7.PubMedCrossRef
134.
Zurück zum Zitat Rahim SS, Khan N, Boddupalli CS, Hasnain SE, Mukhopadhyay S. Interleukin-10 (IL-10) mediated suppression of IL-12 production in RAW 264.7 cells involves c-rel transcription factor. Immunology. 2005;114:313–21.PubMedPubMedCentralCrossRef Rahim SS, Khan N, Boddupalli CS, Hasnain SE, Mukhopadhyay S. Interleukin-10 (IL-10) mediated suppression of IL-12 production in RAW 264.7 cells involves c-rel transcription factor. Immunology. 2005;114:313–21.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat D’Andrea A, Aste-Amezaga M, Valiante NM, Ma X, Kubin M, Trinchieri G. Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. J Exp Med. 1993;178(3):1041–8.PubMedCrossRef D’Andrea A, Aste-Amezaga M, Valiante NM, Ma X, Kubin M, Trinchieri G. Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. J Exp Med. 1993;178(3):1041–8.PubMedCrossRef
136.
Zurück zum Zitat Ito S, Ansari P, Sakatsume M, Dickensheets H, Vazquez N, Donnelly RP, et al. Interleukin-10 inhibits expression of both interferon alpha- and interferon gamma- induced genes by suppressing tyrosine phosphorylation of STAT1. Blood. 1999;93(5):1456–63.PubMed Ito S, Ansari P, Sakatsume M, Dickensheets H, Vazquez N, Donnelly RP, et al. Interleukin-10 inhibits expression of both interferon alpha- and interferon gamma- induced genes by suppressing tyrosine phosphorylation of STAT1. Blood. 1999;93(5):1456–63.PubMed
137.
Zurück zum Zitat Kim L, Kim DK, Yang WI, Shin DH, Jung IM, Park HK, et al. Overexpression of transforming growth factor-beta 1 in the valvular fibrosis of chronic rheumatic heart disease. J Korean Med Sci. 2008;23(1):41–8.PubMedPubMedCentralCrossRef Kim L, Kim DK, Yang WI, Shin DH, Jung IM, Park HK, et al. Overexpression of transforming growth factor-beta 1 in the valvular fibrosis of chronic rheumatic heart disease. J Korean Med Sci. 2008;23(1):41–8.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Xiao H, Lei H, Qin S, Ma K, Wang X. TGF-beta1 expression and atrial myocardium fibrosis increase in atrial fibrillation secondary to rheumatic heart disease. Clin Cardiol. 2010;33(3):149–56.PubMedCrossRef Xiao H, Lei H, Qin S, Ma K, Wang X. TGF-beta1 expression and atrial myocardium fibrosis increase in atrial fibrillation secondary to rheumatic heart disease. Clin Cardiol. 2010;33(3):149–56.PubMedCrossRef
139.
Zurück zum Zitat El-Din SS, Senna WGA. The role of transforming growth factor beta 1 in rheumatic mitral valve disease. Histological and immunohistochemical study. J Egypt Soc Cardio-Thoracic Surg. 2011;19:45–51. El-Din SS, Senna WGA. The role of transforming growth factor beta 1 in rheumatic mitral valve disease. Histological and immunohistochemical study. J Egypt Soc Cardio-Thoracic Surg. 2011;19:45–51.
140.
Zurück zum Zitat Bujak M, Frangogiannis NG. The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res. 2007;74:184–95.PubMedCrossRef Bujak M, Frangogiannis NG. The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res. 2007;74:184–95.PubMedCrossRef
141.
Zurück zum Zitat Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol. 2011;51:600–6. Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol. 2011;51:600–6.
142.
Zurück zum Zitat Frangogiannis NG. The role of transforming growth factor (TGF)-β in the infarcted myocardium. J Thorac Dis. 2017;9:S52–63. Frangogiannis NG. The role of transforming growth factor (TGF)-β in the infarcted myocardium. J Thorac Dis. 2017;9:S52–63.
143.
Zurück zum Zitat Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol. 2009;27:485–517.PubMedCrossRef Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol. 2009;27:485–517.PubMedCrossRef
144.
Zurück zum Zitat Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang Y-H, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6:1133–41.PubMedPubMedCentralCrossRef Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang Y-H, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6:1133–41.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Wen Y, Zeng Z, Gui C, Li L, Li W. Changes in the expression of Th17 cell-associated cytokines in the development of rheumatic heart disease. Cardiovasc Pathol. 2015;24(6):382–7.PubMedCrossRef Wen Y, Zeng Z, Gui C, Li L, Li W. Changes in the expression of Th17 cell-associated cytokines in the development of rheumatic heart disease. Cardiovasc Pathol. 2015;24(6):382–7.PubMedCrossRef
146.
Zurück zum Zitat Dileepan T, Linehan JL, Moon JJ, Pepper M, Jenkins MK, Cleary PP. Robust antigen specific th17 t cell response to group a streptococcus is dependent on il-6 and intranasal route of infection. PLoS Pathog. 2011;7(9):e1002252.PubMedPubMedCentralCrossRef Dileepan T, Linehan JL, Moon JJ, Pepper M, Jenkins MK, Cleary PP. Robust antigen specific th17 t cell response to group a streptococcus is dependent on il-6 and intranasal route of infection. PLoS Pathog. 2011;7(9):e1002252.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Qin H, Wang L, Feng T, Elson CO, Niyongere SA, Lee SJ, et al. TGF-β promotes Th17 cell development through inhibition of SOCS3. J Immunol. 2009;183:97–105.PubMedPubMedCentralCrossRef Qin H, Wang L, Feng T, Elson CO, Niyongere SA, Lee SJ, et al. TGF-β promotes Th17 cell development through inhibition of SOCS3. J Immunol. 2009;183:97–105.PubMedPubMedCentralCrossRef
149.
Zurück zum Zitat Wynn TA. Mechanism of fibrosis: therapeutic transplation for fibrotic disease. Nat Med. 2013;18(7):1028–40.CrossRef Wynn TA. Mechanism of fibrosis: therapeutic transplation for fibrotic disease. Nat Med. 2013;18(7):1028–40.CrossRef
150.
Zurück zum Zitat Borthwick LA, Wynn TA, Fisher AJ. Cytokine mediated tissue fibrosis. Biochim Biophys Acta - Mol Basis Dis. 2013;1832(7):1049–60.CrossRef Borthwick LA, Wynn TA, Fisher AJ. Cytokine mediated tissue fibrosis. Biochim Biophys Acta - Mol Basis Dis. 2013;1832(7):1049–60.CrossRef
151.
Zurück zum Zitat Mi S, Li Z, Yang H-Z, Liu H, Wang J-P, Ma Y-G, et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. J Immunol. 2011;187(6):3003–14.PubMedCrossRef Mi S, Li Z, Yang H-Z, Liu H, Wang J-P, Ma Y-G, et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. J Immunol. 2011;187(6):3003–14.PubMedCrossRef
152.
Zurück zum Zitat Bas HD, Baser K, Yavuz E, Bolayir HA, Yaman B, Unlu S, et al. A shift in the balance of regulatory T and T helper 17 cells in rheumatic heart disease. J Investig Med. 2014;62(1):78–83.PubMedCrossRef Bas HD, Baser K, Yavuz E, Bolayir HA, Yaman B, Unlu S, et al. A shift in the balance of regulatory T and T helper 17 cells in rheumatic heart disease. J Investig Med. 2014;62(1):78–83.PubMedCrossRef
153.
Zurück zum Zitat Chong DLW, Ingram RJ, Lowther DE, Muir R, Sriskandan S, Altmann DM. The nature of innate and adaptive interleukin-17A responses in sham or bacterial inoculation. Immunology. 2012;136(3):325–33.PubMedPubMedCentralCrossRef Chong DLW, Ingram RJ, Lowther DE, Muir R, Sriskandan S, Altmann DM. The nature of innate and adaptive interleukin-17A responses in sham or bacterial inoculation. Immunology. 2012;136(3):325–33.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Bryant PA, Smyth GK, Gooding T, Oshlack A, Harrington Z, Currie B, et al. Susceptibility to acute rheumatic fever based on differential expression of genes involved in cytotoxicity, chemotaxis, and apoptosis. Infect Immun. 2014;82(2):753–61.PubMedPubMedCentralCrossRef Bryant PA, Smyth GK, Gooding T, Oshlack A, Harrington Z, Currie B, et al. Susceptibility to acute rheumatic fever based on differential expression of genes involved in cytotoxicity, chemotaxis, and apoptosis. Infect Immun. 2014;82(2):753–61.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Dileepan T, Smith ED, Knowland D, Hsu M, Platt M, Bittner-Eddy P, et al. Group A Streptococcus intranasal infection promotes CNS infiltration by streptococcal-specific Th17 cells. J Clin Invest. 2016;126(1):303–17.PubMedCrossRef Dileepan T, Smith ED, Knowland D, Hsu M, Platt M, Bittner-Eddy P, et al. Group A Streptococcus intranasal infection promotes CNS infiltration by streptococcal-specific Th17 cells. J Clin Invest. 2016;126(1):303–17.PubMedCrossRef
156.
Zurück zum Zitat Huppert J, Closhen D, Croxford A, White R, Kulig P, Pietrowski E, et al. Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J Off Publ Fed Am Soc Exp Biol. 2010;24(4):1023–34. Huppert J, Closhen D, Croxford A, White R, Kulig P, Pietrowski E, et al. Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J Off Publ Fed Am Soc Exp Biol. 2010;24(4):1023–34.
157.
Zurück zum Zitat Wang B, Dileepan T, Briscoe S, Hyland KA, Kang J, Khoruts A, et al. Induction of TGF- 1 and TGF- 1-dependent predominant Th17 differentiation by group A streptococcal infection. Proc Natl Acad Sci. 2010;107(13):5937–42.PubMedPubMedCentralCrossRef Wang B, Dileepan T, Briscoe S, Hyland KA, Kang J, Khoruts A, et al. Induction of TGF- 1 and TGF- 1-dependent predominant Th17 differentiation by group A streptococcal infection. Proc Natl Acad Sci. 2010;107(13):5937–42.PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Kuwabara T, Ishikawa F, Kondo M, Kakiuchi T. The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediat Inflamm. 2017;2017:1–11.CrossRef Kuwabara T, Ishikawa F, Kondo M, Kakiuchi T. The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediat Inflamm. 2017;2017:1–11.CrossRef
159.
Zurück zum Zitat Zhu S, Qian Y. IL-17/IL-17 receptor system in autoimmune disease: mechanisms and therapeutic potential. Clin Sci. 2012;122(11):487–511.PubMedCrossRef Zhu S, Qian Y. IL-17/IL-17 receptor system in autoimmune disease: mechanisms and therapeutic potential. Clin Sci. 2012;122(11):487–511.PubMedCrossRef
160.
Zurück zum Zitat Zambrano-Zaragoza JF, Romo-Martínez EJ, Durán-Avelar MDJ, García-Magallanes N, Vibanco-Pérez N. Th17 cells in autoimmune and infectious diseases. Int J Inflam. 2014;2014(Il). Zambrano-Zaragoza JF, Romo-Martínez EJ, Durán-Avelar MDJ, García-Magallanes N, Vibanco-Pérez N. Th17 cells in autoimmune and infectious diseases. Int J Inflam. 2014;2014(Il).
161.
Zurück zum Zitat Tabarkiewicz J, Pogoda K, Karczmarczyk A, Pozarowski P, Giannopoulos K. The role of IL-17 and Th17 lymphocytes in autoimmune diseases. Arch Immunol Ther Exp. 2015;63(6):435–49.CrossRef Tabarkiewicz J, Pogoda K, Karczmarczyk A, Pozarowski P, Giannopoulos K. The role of IL-17 and Th17 lymphocytes in autoimmune diseases. Arch Immunol Ther Exp. 2015;63(6):435–49.CrossRef
162.
Zurück zum Zitat Grant CR, Liberal R, Mieli-Vergani G, Vergani D, Longhi MS. Regulatory T-cells in autoimmune diseases: challenges, controversies and—yet—unanswered questions. Autoimmun Rev. 2015;14(2):105–16.PubMedCrossRef Grant CR, Liberal R, Mieli-Vergani G, Vergani D, Longhi MS. Regulatory T-cells in autoimmune diseases: challenges, controversies and—yet—unanswered questions. Autoimmun Rev. 2015;14(2):105–16.PubMedCrossRef
163.
Zurück zum Zitat Abdul-Auhaimena N, Al-Kaabi ZIL. Functional and developmental analysis of CD4(+)CD25(+) regulatory T cells under the influence of streptococcal M protein in rheumatic heart disease. Iran J Med Sci. 2011;36:122–7.PubMedPubMedCentral Abdul-Auhaimena N, Al-Kaabi ZIL. Functional and developmental analysis of CD4(+)CD25(+) regulatory T cells under the influence of streptococcal M protein in rheumatic heart disease. Iran J Med Sci. 2011;36:122–7.PubMedPubMedCentral
164.
Zurück zum Zitat Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE. TNF downmodulates the function of human CD4(+)CD25(hi) T-regulatory cells. Blood. 2006;108:253–61.PubMedPubMedCentralCrossRef Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE. TNF downmodulates the function of human CD4(+)CD25(hi) T-regulatory cells. Blood. 2006;108:253–61.PubMedPubMedCentralCrossRef
165.
Zurück zum Zitat Fujimoto M, Nakano M, Terabe F, Kawahata H, Ohkawara T, Han Y, et al. The influence of excessive IL-6 production in vivo on the development and function of Foxp3+ regulatory T cells. J Immunol. 2011;186(1):32–40.PubMedCrossRef Fujimoto M, Nakano M, Terabe F, Kawahata H, Ohkawara T, Han Y, et al. The influence of excessive IL-6 production in vivo on the development and function of Foxp3+ regulatory T cells. J Immunol. 2011;186(1):32–40.PubMedCrossRef
166.
Zurück zum Zitat Lin G, Wang J, Lao X, Wang J, Li L, Li S, et al. Interleukin-6 inhibits regulatory T cells and improves the proliferation and cytotoxic activity of cytokine-induced killer cells. J Immunother. 2012;35(4):337–43.PubMedCrossRef Lin G, Wang J, Lao X, Wang J, Li L, Li S, et al. Interleukin-6 inhibits regulatory T cells and improves the proliferation and cytotoxic activity of cytokine-induced killer cells. J Immunother. 2012;35(4):337–43.PubMedCrossRef
167.
Zurück zum Zitat Dale JB, Beachey EH. Human cytotoxic T lymphocytes evoked by group A streptococcal M proteins. J Exp Med. 1987;166(6):1825–35.PubMedCrossRef Dale JB, Beachey EH. Human cytotoxic T lymphocytes evoked by group A streptococcal M proteins. J Exp Med. 1987;166(6):1825–35.PubMedCrossRef
168.
Zurück zum Zitat Ganguly NK, Anand IS, Khanna AK, Kohli RS, Wahi PL. T cells and T cell subsets in rheumatic heart disease. Indian J Med Res. 1982;76:854–8.PubMed Ganguly NK, Anand IS, Khanna AK, Kohli RS, Wahi PL. T cells and T cell subsets in rheumatic heart disease. Indian J Med Res. 1982;76:854–8.PubMed
169.
Zurück zum Zitat Lue HC, Tseng WP, Lin GJ, Hsieh KH, Hsieh RP, Chiou JF. Clinical and epidemiological features of rheumatic fever and rheumatic heart disease in Taiwan and the Far East. Indian Heart J India. 1983;35(3):139–46. Lue HC, Tseng WP, Lin GJ, Hsieh KH, Hsieh RP, Chiou JF. Clinical and epidemiological features of rheumatic fever and rheumatic heart disease in Taiwan and the Far East. Indian Heart J India. 1983;35(3):139–46.
170.
Zurück zum Zitat Jinquan T, Larsen CG, Gesser B, Matsushima K, Thestrup-Pedersen K. Human IL-10 is a chemoattractant for CD8+ T lymphocytes and an inhibitor of IL-8-induced CD4+ T lymphocyte migration. J Immunol. 1993;151(9):4545–51.PubMed Jinquan T, Larsen CG, Gesser B, Matsushima K, Thestrup-Pedersen K. Human IL-10 is a chemoattractant for CD8+ T lymphocytes and an inhibitor of IL-8-induced CD4+ T lymphocyte migration. J Immunol. 1993;151(9):4545–51.PubMed
171.
Zurück zum Zitat Santin AD, Hermonat PL, Ravaggi A, Bellone S, Pecorelli S, Roman JJ, et al. Interleukin-10 increases Th1 cytokine production and cytotoxic potential in human papillomavirus-specific CD8 ϩ cytotoxic T lymphocytes. J Virol. 2000;74(10):4729–37.PubMedPubMedCentralCrossRef Santin AD, Hermonat PL, Ravaggi A, Bellone S, Pecorelli S, Roman JJ, et al. Interleukin-10 increases Th1 cytokine production and cytotoxic potential in human papillomavirus-specific CD8 ϩ cytotoxic T lymphocytes. J Virol. 2000;74(10):4729–37.PubMedPubMedCentralCrossRef
172.
Zurück zum Zitat Groux H, Bigler M, de Vries JE, Roncarolo MG. Inhibitory and stimulatory effects of IL-10 on human CD8+ T cells. J Immunol. 1998;160(7):3188–93.PubMed Groux H, Bigler M, de Vries JE, Roncarolo MG. Inhibitory and stimulatory effects of IL-10 on human CD8+ T cells. J Immunol. 1998;160(7):3188–93.PubMed
173.
Zurück zum Zitat Rowbottom AW, Lepper MW, Garland RJ, Cox CV, Corley EG, Oakhill A, et al. Interleukin-10-induced CD8 cell proliferation. Immunology. 1999;98:80–9.PubMedPubMedCentralCrossRef Rowbottom AW, Lepper MW, Garland RJ, Cox CV, Corley EG, Oakhill A, et al. Interleukin-10-induced CD8 cell proliferation. Immunology. 1999;98:80–9.PubMedPubMedCentralCrossRef
174.
Zurück zum Zitat MacNeil IA, Suda T, Moore KW, Mosmann TR, Zlotnik A. IL-10, a novel growth cofactor for mature and immature T cells. J Immunol. 1990;145(12):4167–73.PubMed MacNeil IA, Suda T, Moore KW, Mosmann TR, Zlotnik A. IL-10, a novel growth cofactor for mature and immature T cells. J Immunol. 1990;145(12):4167–73.PubMed
176.
Zurück zum Zitat Wong MT, Ye JJ, Alonso MN, Landrigan A, Cheung RK, Engleman E, et al. Regulation of human Th9 differentiation by type I interferons and IL-21. Immunol Cell Biol. 2010;88(6):624–31.PubMedPubMedCentralCrossRef Wong MT, Ye JJ, Alonso MN, Landrigan A, Cheung RK, Engleman E, et al. Regulation of human Th9 differentiation by type I interferons and IL-21. Immunol Cell Biol. 2010;88(6):624–31.PubMedPubMedCentralCrossRef
177.
Zurück zum Zitat Singh TP, Schön MP, Wallbrecht K, Gruber-Wackernagel A, Wang XJ, Wolf P. Involvement of IL-9 in Th17-associated inflammation and angiogenesis of psoriasis. PLoS One. 2013;8(1):1–11. Singh TP, Schön MP, Wallbrecht K, Gruber-Wackernagel A, Wang XJ, Wolf P. Involvement of IL-9 in Th17-associated inflammation and angiogenesis of psoriasis. PLoS One. 2013;8(1):1–11.
178.
Zurück zum Zitat Hughes-austin JM, Deane KD, Derber LA, Kolfenbach JR, Gary O, Sokolove J, et al. Multiple cytokines and chemokines are associated with rheumatoid arthritis-related autoimmunity in first-degree relatives without rheumatoid arthritis: studies of the aetiology of rheumatoid arthritis (SERA). Ann Rheum Dis. 2013;72(6):901–7.PubMedCrossRef Hughes-austin JM, Deane KD, Derber LA, Kolfenbach JR, Gary O, Sokolove J, et al. Multiple cytokines and chemokines are associated with rheumatoid arthritis-related autoimmunity in first-degree relatives without rheumatoid arthritis: studies of the aetiology of rheumatoid arthritis (SERA). Ann Rheum Dis. 2013;72(6):901–7.PubMedCrossRef
179.
Zurück zum Zitat Deng Y, Wang Z, Chang C, Lu L, Lau CS, Lu Q. Th9 cells and IL-9 in autoimmune disorders: pathogenesis and therapeutic potentials. Hum Immunol. 2017;78(2):120–8.PubMedCrossRef Deng Y, Wang Z, Chang C, Lu L, Lau CS, Lu Q. Th9 cells and IL-9 in autoimmune disorders: pathogenesis and therapeutic potentials. Hum Immunol. 2017;78(2):120–8.PubMedCrossRef
180.
Zurück zum Zitat Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, et al. Transforming growth factor-beta “reprograms” the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol. 2008;9(12):1341–6.PubMedCrossRef Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, et al. Transforming growth factor-beta “reprograms” the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol. 2008;9(12):1341–6.PubMedCrossRef
181.
Zurück zum Zitat Li Y, Yu Q, Zhang Z, Wang J, Li S, Zhang J, et al. T(H)9 cell differentiation, transcriptional control and function in inflammation, autoimmune diseases and cancer. Oncotarget. 2016;7:71001–12.PubMedPubMedCentral Li Y, Yu Q, Zhang Z, Wang J, Li S, Zhang J, et al. T(H)9 cell differentiation, transcriptional control and function in inflammation, autoimmune diseases and cancer. Oncotarget. 2016;7:71001–12.PubMedPubMedCentral
182.
Zurück zum Zitat Elyaman W, Bradshaw EM, Uyttenhove C, Dardalhon V, Awasthi A, Imitola J, et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc Natl Acad Sci. 2009;106(31):12885–90.PubMedPubMedCentralCrossRef Elyaman W, Bradshaw EM, Uyttenhove C, Dardalhon V, Awasthi A, Imitola J, et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc Natl Acad Sci. 2009;106(31):12885–90.PubMedPubMedCentralCrossRef
183.
184.
Zurück zum Zitat Rutz S, Eidenschenk C, Ouyang W. IL-22, not simply a Th17 cytokine. Immunol Rev. 2013;252(1):116–32.PubMedCrossRef Rutz S, Eidenschenk C, Ouyang W. IL-22, not simply a Th17 cytokine. Immunol Rev. 2013;252(1):116–32.PubMedCrossRef
185.
186.
Zurück zum Zitat Cho KA, Suh JW, Ho Lee K, Kang JL, Woo SY. IL-17 and IL-22 enhance skin inflammation by stimulating the secretion of il-1β by keratinocytes via the ROS-NLRP3-caspase-1 pathway. Int Immunol. 2012;24(3):147–58.PubMedCrossRef Cho KA, Suh JW, Ho Lee K, Kang JL, Woo SY. IL-17 and IL-22 enhance skin inflammation by stimulating the secretion of il-1β by keratinocytes via the ROS-NLRP3-caspase-1 pathway. Int Immunol. 2012;24(3):147–58.PubMedCrossRef
187.
Zurück zum Zitat Sabat R, Witte E, Witte K, Wolk K. IL-17, IL-22 and their producing cells: role in inflammation and autoimmunity. Prog Inflamm Res 2013;11–36. Sabat R, Witte E, Witte K, Wolk K. IL-17, IL-22 and their producing cells: role in inflammation and autoimmunity. Prog Inflamm Res 2013;11–36.
188.
Zurück zum Zitat Sugita S, Kawazoe Y, Imai A, Kawaguchi T, Horie S, Keino H, et al. Role of IL-22- and TNF-alpha-producing Th22 cells in uveitis patients with Behcet’s disease. J Immunol. 2013;190(11):5799–808.PubMedPubMedCentralCrossRef Sugita S, Kawazoe Y, Imai A, Kawaguchi T, Horie S, Keino H, et al. Role of IL-22- and TNF-alpha-producing Th22 cells in uveitis patients with Behcet’s disease. J Immunol. 2013;190(11):5799–808.PubMedPubMedCentralCrossRef
189.
Zurück zum Zitat Azizi G, Yazdani R, Mirshafiey A. Th22 cells in autoimmunity: a review of current knowledge. Eur Ann Allergy Clin Immunol. 2015;47(4):108–17.PubMed Azizi G, Yazdani R, Mirshafiey A. Th22 cells in autoimmunity: a review of current knowledge. Eur Ann Allergy Clin Immunol. 2015;47(4):108–17.PubMed
190.
Zurück zum Zitat Weiner HL. Oral tolerance: immune mechanisms and the generation of Th3-type TGF-beta-secreting regulatory cells. Microbes Infect. 2001;3(11):947–54.PubMedCrossRef Weiner HL. Oral tolerance: immune mechanisms and the generation of Th3-type TGF-beta-secreting regulatory cells. Microbes Infect. 2001;3(11):947–54.PubMedCrossRef
191.
Zurück zum Zitat Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science. 1994;265(5176):1237–40.PubMedCrossRef Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science. 1994;265(5176):1237–40.PubMedCrossRef
192.
Zurück zum Zitat Peterson RA. Regulatory T-cells: diverse phenotypes integral to immune homeostasis and suppression. Toxicol Pathol. 2012;40(2):186–204.PubMedCrossRef Peterson RA. Regulatory T-cells: diverse phenotypes integral to immune homeostasis and suppression. Toxicol Pathol. 2012;40(2):186–204.PubMedCrossRef
193.
Zurück zum Zitat Jonuleit H, Schmitt E. The regulatory T cell family: distinct subsets and their interrelations. J Immunol. 2003;171(12):6323–7.PubMedCrossRef Jonuleit H, Schmitt E. The regulatory T cell family: distinct subsets and their interrelations. J Immunol. 2003;171(12):6323–7.PubMedCrossRef
194.
Zurück zum Zitat Gol-Ara M, Jadidi-Niaragh F, Sadria R, Azizi G, Mirshafiey A. The role of different subsets of regulatory T cells in immunopathogenesis of rheumatoid arthritis. Arthritis. 2012;2012:805875.PubMedPubMedCentralCrossRef Gol-Ara M, Jadidi-Niaragh F, Sadria R, Azizi G, Mirshafiey A. The role of different subsets of regulatory T cells in immunopathogenesis of rheumatoid arthritis. Arthritis. 2012;2012:805875.PubMedPubMedCentralCrossRef
195.
Zurück zum Zitat Chou H-T, Chen C-H, Tsai C-H, Tsai F-J. Association between transforming growth factor-beta1 gene C-509T and T869C polymorphisms and rheumatic heart disease. Am Heart J. 2004 Jul;148(1):181–6.PubMedCrossRef Chou H-T, Chen C-H, Tsai C-H, Tsai F-J. Association between transforming growth factor-beta1 gene C-509T and T869C polymorphisms and rheumatic heart disease. Am Heart J. 2004 Jul;148(1):181–6.PubMedCrossRef
196.
Metadaten
Titel
T cell subsets: an integral component in pathogenesis of rheumatic heart disease
verfasst von
Devinder Toor
Neha Sharma
Publikationsdatum
23.11.2017
Verlag
Springer US
Erschienen in
Immunologic Research / Ausgabe 1/2018
Print ISSN: 0257-277X
Elektronische ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-017-8978-z

Weitere Artikel der Ausgabe 1/2018

Immunologic Research 1/2018 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.