Skip to main content
Erschienen in:

27.02.2024 | Pelvis

T2WI-based texture analysis predicts preoperative lymph node metastasis of rectal cancer

verfasst von: Zixuan Zhuang, Yang Zhang, Xuyang Yang, Xiangbing Deng, Ziqiang Wang

Erschienen in: Abdominal Radiology | Ausgabe 6/2024

Einloggen, um Zugang zu erhalten

Abstract

Background

To prospectively develop and validate the T2WI texture analysis model based on a node-by-node comparison for improving the diagnostic accuracy of lymph node metastasis (LNM) in rectal cancer.

Methods

A total of 381 histopathologically confirmed lymph nodes (LNs) were collected. LNs texture features were extracted from MRI-T2WI. Spearman’s rank correlation coefficient and the least absolute shrinkage and selection operator were used for feature selection to construct the LN rad-score. Then the clinical risk factors and LN texture features were combined to establish combined predictive model. Model performance was assessed by the area under the receiver operating characteristic (ROC) curve (AUC). Decision curve analysis (DCA) and nomogram were used to evaluate the clinical application of the model.

Results

A total of 107 texture features were extracted from LN-MRI images. After selection and dimensionality reduction, the radiomics prediction model consisting of 8 texture features showed well-predictive performance in the training and validation cohorts (AUC, 0.676; 95% CI 0.582–0.771) (AUC, 0.774; 95% CI 0.648–0.899). A clinical–radiomics prediction model with the best performance was created by combining clinical and radiomics features, 0.818 (95% CI 0.742–0.893) for the training and 0.922 (95% CI 0.863–0.980) for the validation cohort. The LN Rad-score in clinical–radiomics nomogram obtained the highest classification contribution and was well calibrated. DCA demonstrated the superiority of the clinical–radiomics model.

Conclusion

The lymph node T2WI-based texture features can help to improve the preoperative prediction of LNM.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat SIEGEL R L, MILLER K D, GODING SAUER A, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin, 2020, 70(3): 145-64.CrossRefPubMed SIEGEL R L, MILLER K D, GODING SAUER A, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin, 2020, 70(3): 145-64.CrossRefPubMed
2.
Zurück zum Zitat CERVANTES A, ADAM R, ROSELLó S, et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol, 2023, 34(1): 10-32.CrossRefPubMed CERVANTES A, ADAM R, ROSELLó S, et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol, 2023, 34(1): 10-32.CrossRefPubMed
3.
Zurück zum Zitat BENSON A B, VENOOK A P, AL-HAWARY M M, et al. Rectal Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw, 2022, 20(10): 1139-67.CrossRefPubMed BENSON A B, VENOOK A P, AL-HAWARY M M, et al. Rectal Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw, 2022, 20(10): 1139-67.CrossRefPubMed
4.
Zurück zum Zitat BEETS-TAN R G H, LAMBREGTS D M J, MAAS M, et al. Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. Eur Radiol, 2018, 28(4): 1465-75.CrossRefPubMed BEETS-TAN R G H, LAMBREGTS D M J, MAAS M, et al. Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. Eur Radiol, 2018, 28(4): 1465-75.CrossRefPubMed
5.
Zurück zum Zitat KIM J H, BEETS G L, KIM M J, et al. High-resolution MR imaging for nodal staging in rectal cancer: are there any criteria in addition to the size?. Eur J Radiol, 2004, 52(1): 78-83.CrossRefPubMed KIM J H, BEETS G L, KIM M J, et al. High-resolution MR imaging for nodal staging in rectal cancer: are there any criteria in addition to the size?. Eur J Radiol, 2004, 52(1): 78-83.CrossRefPubMed
6.
Zurück zum Zitat BROWN G, RICHARDS C J, BOURNE M W, et al. Morphologic predictors of lymph node status in rectal cancer with use of high-spatial-resolution MR imaging with histopathologic comparison. Radiology, 2003, 227(2): 371-7.CrossRefPubMed BROWN G, RICHARDS C J, BOURNE M W, et al. Morphologic predictors of lymph node status in rectal cancer with use of high-spatial-resolution MR imaging with histopathologic comparison. Radiology, 2003, 227(2): 371-7.CrossRefPubMed
7.
Zurück zum Zitat GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: Images Are More than Pictures, They Are Data. Radiology, 2016, 278(2): 563-77.CrossRefPubMed GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: Images Are More than Pictures, They Are Data. Radiology, 2016, 278(2): 563-77.CrossRefPubMed
8.
Zurück zum Zitat LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol, 2017, 14(12): 749-62.CrossRefPubMed LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol, 2017, 14(12): 749-62.CrossRefPubMed
9.
Zurück zum Zitat LI J, ZHOU Y, WANG X, et al. An MRI-based multi-objective radiomics model predicts lymph node status in patients with rectal cancer. Abdom Radiol (NY), 2021, 46(5): 1816-24.CrossRef LI J, ZHOU Y, WANG X, et al. An MRI-based multi-objective radiomics model predicts lymph node status in patients with rectal cancer. Abdom Radiol (NY), 2021, 46(5): 1816-24.CrossRef
10.
Zurück zum Zitat ERESEN A, LI Y, YANG J, et al. Preoperative assessment of lymph node metastasis in Colon Cancer patients using machine learning: a pilot study. Cancer Imaging, 2020, 20(1): 30.CrossRefPubMedPubMedCentral ERESEN A, LI Y, YANG J, et al. Preoperative assessment of lymph node metastasis in Colon Cancer patients using machine learning: a pilot study. Cancer Imaging, 2020, 20(1): 30.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat LI M, ZHANG J, DAN Y, et al. A clinical-radiomics nomogram for the preoperative prediction of lymph node metastasis in colorectal cancer. J Transl Med, 2020, 18(1): 46.CrossRefPubMedPubMedCentral LI M, ZHANG J, DAN Y, et al. A clinical-radiomics nomogram for the preoperative prediction of lymph node metastasis in colorectal cancer. J Transl Med, 2020, 18(1): 46.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat YANG Y S, FENG F, QIU Y J, et al. High-resolution MRI-based radiomics analysis to predict lymph node metastasis and tumor deposits respectively in rectal cancer. Abdom Radiol (NY), 2021, 46(3): 873-84.CrossRef YANG Y S, FENG F, QIU Y J, et al. High-resolution MRI-based radiomics analysis to predict lymph node metastasis and tumor deposits respectively in rectal cancer. Abdom Radiol (NY), 2021, 46(3): 873-84.CrossRef
13.
Zurück zum Zitat ZHOU X, YI Y, LIU Z, et al. Radiomics-Based Preoperative Prediction of Lymph Node Status Following Neoadjuvant Therapy in Locally Advanced Rectal Cancer. Front Oncol, 2020, 10(604.CrossRefPubMedPubMedCentral ZHOU X, YI Y, LIU Z, et al. Radiomics-Based Preoperative Prediction of Lymph Node Status Following Neoadjuvant Therapy in Locally Advanced Rectal Cancer. Front Oncol, 2020, 10(604.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat SONG L, YIN J. Application of Texture Analysis Based on Sagittal Fat-Suppression and Oblique Axial T2-Weighted Magnetic Resonance Imaging to Identify Lymph Node Invasion Status of Rectal Cancer. Front Oncol, 2020, 10(1364.CrossRefPubMedPubMedCentral SONG L, YIN J. Application of Texture Analysis Based on Sagittal Fat-Suppression and Oblique Axial T2-Weighted Magnetic Resonance Imaging to Identify Lymph Node Invasion Status of Rectal Cancer. Front Oncol, 2020, 10(1364.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat ZHUANG Z, MA X, ZHANG Y, et al. Technique to match mesorectal lymph nodes imaging findings to histopathology: node-by-node comparison. J Cancer Res Clin Oncol, 2022,CrossRefPubMed ZHUANG Z, MA X, ZHANG Y, et al. Technique to match mesorectal lymph nodes imaging findings to histopathology: node-by-node comparison. J Cancer Res Clin Oncol, 2022,CrossRefPubMed
16.
Zurück zum Zitat LIU X, YANG Q, ZHANG C, et al. Multiregional-Based Magnetic Resonance Imaging Radiomics Combined With Clinical Data Improves Efficacy in Predicting Lymph Node Metastasis of Rectal Cancer. Front Oncol, 2020, 10(585767.CrossRefPubMed LIU X, YANG Q, ZHANG C, et al. Multiregional-Based Magnetic Resonance Imaging Radiomics Combined With Clinical Data Improves Efficacy in Predicting Lymph Node Metastasis of Rectal Cancer. Front Oncol, 2020, 10(585767.CrossRefPubMed
17.
Zurück zum Zitat HUANG Y Q, LIANG C H, HE L, et al. Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer. J Clin Oncol, 2016, 34(18): 2157-64.CrossRefPubMed HUANG Y Q, LIANG C H, HE L, et al. Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer. J Clin Oncol, 2016, 34(18): 2157-64.CrossRefPubMed
18.
Zurück zum Zitat CHEN L D, LIANG J Y, WU H, et al. Multiparametric radiomics improve prediction of lymph node metastasis of rectal cancer compared with conventional radiomics. Life Sci, 2018, 208(55-63.CrossRefPubMed CHEN L D, LIANG J Y, WU H, et al. Multiparametric radiomics improve prediction of lymph node metastasis of rectal cancer compared with conventional radiomics. Life Sci, 2018, 208(55-63.CrossRefPubMed
19.
Zurück zum Zitat NOZOE T, RIKIMARU T, MORI E, et al. Increase in both CEA and CA19-9 in sera is an independent prognostic indicator in colorectal carcinoma. J Surg Oncol, 2006, 94(2): 132-7.CrossRefPubMed NOZOE T, RIKIMARU T, MORI E, et al. Increase in both CEA and CA19-9 in sera is an independent prognostic indicator in colorectal carcinoma. J Surg Oncol, 2006, 94(2): 132-7.CrossRefPubMed
20.
Zurück zum Zitat LIU L, LIU M, YANG Z, et al. Correlation of MRI-detected extramural vascular invasion with regional lymph node metastasis in rectal cancer. Clin Imaging, 2016, 40(3): 456-60.CrossRefPubMed LIU L, LIU M, YANG Z, et al. Correlation of MRI-detected extramural vascular invasion with regional lymph node metastasis in rectal cancer. Clin Imaging, 2016, 40(3): 456-60.CrossRefPubMed
21.
Zurück zum Zitat LIU L, LIU Y, XU L, et al. Application of texture analysis based on apparent diffusion coefficient maps in discriminating different stages of rectal cancer. J Magn Reson Imaging, 2017, 45(6): 1798-808.CrossRefPubMed LIU L, LIU Y, XU L, et al. Application of texture analysis based on apparent diffusion coefficient maps in discriminating different stages of rectal cancer. J Magn Reson Imaging, 2017, 45(6): 1798-808.CrossRefPubMed
22.
Zurück zum Zitat YANG L, LIU D, FANG X, et al. Rectal cancer: can T2WI histogram of the primary tumor help predict the existence of lymph node metastasis?. Eur Radiol, 2019, 29(12): 6469-76.CrossRefPubMed YANG L, LIU D, FANG X, et al. Rectal cancer: can T2WI histogram of the primary tumor help predict the existence of lymph node metastasis?. Eur Radiol, 2019, 29(12): 6469-76.CrossRefPubMed
23.
Zurück zum Zitat ZHUANG Z, ZHANG Y, WEI M, et al. Magnetic Resonance Imaging Evaluation of the Accuracy of Various Lymph Node Staging Criteria in Rectal Cancer: A Systematic Review and Meta-Analysis. Front Oncol, 2021, 11(709070.CrossRefPubMedPubMedCentral ZHUANG Z, ZHANG Y, WEI M, et al. Magnetic Resonance Imaging Evaluation of the Accuracy of Various Lymph Node Staging Criteria in Rectal Cancer: A Systematic Review and Meta-Analysis. Front Oncol, 2021, 11(709070.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat NAKANISHI R, AKIYOSHI T, TODA S, et al. Radiomics Approach Outperforms Diameter Criteria for Predicting Pathological Lateral Lymph Node Metastasis After Neoadjuvant (Chemo)Radiotherapy in Advanced Low Rectal Cancer. Ann Surg Oncol, 2020, 27(11): 4273-83.CrossRefPubMed NAKANISHI R, AKIYOSHI T, TODA S, et al. Radiomics Approach Outperforms Diameter Criteria for Predicting Pathological Lateral Lymph Node Metastasis After Neoadjuvant (Chemo)Radiotherapy in Advanced Low Rectal Cancer. Ann Surg Oncol, 2020, 27(11): 4273-83.CrossRefPubMed
25.
Zurück zum Zitat HUNG KF, Ai QYH, WONG LM, et al. Current Applications of Deep Learning and Radiomics on CT and CBCT for Maxillofacial Diseases. Diagnostics (Basel), 2022, 29;13(1):110.CrossRefPubMedPubMedCentral HUNG KF, Ai QYH, WONG LM, et al. Current Applications of Deep Learning and Radiomics on CT and CBCT for Maxillofacial Diseases. Diagnostics (Basel), 2022, 29;13(1):110.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat ISENSEE F, JAEGER PF, KOHL SAA, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods, 2021, 18(2):203-211.CrossRefPubMed ISENSEE F, JAEGER PF, KOHL SAA, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods, 2021, 18(2):203-211.CrossRefPubMed
Metadaten
Titel
T2WI-based texture analysis predicts preoperative lymph node metastasis of rectal cancer
verfasst von
Zixuan Zhuang
Yang Zhang
Xuyang Yang
Xiangbing Deng
Ziqiang Wang
Publikationsdatum
27.02.2024
Verlag
Springer US
Erschienen in
Abdominal Radiology / Ausgabe 6/2024
Print ISSN: 2366-004X
Elektronische ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-024-04209-8

Neu im Fachgebiet Radiologie

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Stören weiße Wände und viel Licht die Bildqualitätskontrolle?

Wenn es darum geht, die technische Qualität eines Mammogramms zu beurteilen, könnten graue Wandfarbe und reduzierte Beleuchtung im Bildgebungsraum von Vorteil sein. Darauf deuten zumindest Ergebnisse einer kleinen Studie hin. 

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.